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1 Overview of Planning Problems

In this report we seek to define a simple language that can be used to describe planning
problems. Hopefully, by drastically restricting the constructs in the language, two benefits
will accrue: (1) the language will be easy to understand and write, and (2) the language will
lend itself to formal verification.

We have named the language ANMLite because it was developed to support the analysis
of planning domains described in the Action Notation Modeling Language (ANML) [1] under
development at NASA Ames. In ANMLite, a planning problem consists of a finite set of
disjoint timelines, a set of valid actions for each timeline, and a set of temporal constraints
that govern the correct scheduling of the actions. The constraints can be broadly categorized
into two groups. The first group is specified by a transition relation and only involves
actions on the same timeline. These constraints express the valid succession of actions along
the timeline. The transition relation disallows overlapping actions and gaps on a timeline.
The second group consists of general constraints, expressed in some logic of choice, which
specify cross-timeline relationships between actions. The temporal logic must be chosen
with care. It has to be rich enough to cover all the significant relations that can occur
(such as Allen temporal operators [2], a popular logic in planning), but simple enough to
avoid inconsistencies and ambiguities. Furthermore, since we seek to develop a framework
for formal verification, it must be translatable into a form suitable for model checking or
theorem proving. We are currently targeting the SAL model checker [3].

Some planning problems require data structure mechanisms to properly specify them.
We have begun to look at some approaches to specifying such problems. This has led to the
introduction of simple constraint and effect statements that operate on global variables and
data structures. We suspect that it is wise to limit the power of these constructs and avoid
them where possible, but we are not prepared at this time to make any firm recommendations
about these new constructs. At this time they are significantly weaker than the corresponding
ANML constructs.

2 Timelines

Discovering a suitable sequence of actions on a timeline is fundamental to the planning/schedul-
ing problem. The first step is to identify all the actions that can be scheduled on a time-
line. We have followed the ANML convention and will specify timelines using the keyword
OBJTYPE. All of the allowed actions are then enumerated as in the following example:

OBJTYPE A ACTIONS

AO
A1: [10,_]
A2: [2,_]
A3

This specification defines the timeline A and its four actions: AO, A1, A2, and A3. Actions
A1 and A2 have time duration constraints: Al takes at least 10 time units and A2 takes at



least 2 time units. Usually, in a planning problem, there are also constraints on the sequence
of actions, so an intuitive, unambiguous specification of these constraints is highly desirable.
There are two different approaches to the specification of these constraints:

e Assume that all action sequences are possible unless specifically forbidden and then
specify the sequences that are not allowed.

e Assume that no sequences are allowed and then systematically add the allowed se-
quences.

We have currently opted for the second approach. We recognize that this is different from
many Al planning systems, but it follows the approach frequently used in the formal meth-
ods community. We currently believe that this leads to a clearer specification, though we
recognize that we may be biased by the historic conventions of our discipline.

2.1 Transitions

The transition relation on a timeline is similar to state-transition systems. Here, the states
are the actions and a directed edge represents a valid transition between states. We have
used the same construction deployed in the Abstract Plan Preparation Language (APPL) [4].
Hence, the transition relation is a set of pairs of actions, which can be declared by listing for
each action the (complete) set of its successors, as in the following example:

TRANSITIONS

AO -> A1 -> A2 -> (A0 | A1 | A3)
A3 —> A2

Action AO can only be followed by action A1. Action A1l can only be followed by action A2.
Action A2 can be followed by actions A0, A1, or A3. Action A3 can only be followed by action
A2.

The flexibility of the language is increased by allowing parametrization of actions. For
example, the following

Al(x,y: animal): [10,_]

defines an action A1 with two parameters of type animal that takes at least 10 units of times.
The type animal is defined as follows:

TYPE animal = {cat, dog, fish, horse, eel, chicken, donkey, snake}

and Al(cat,snake) is a valid instance of this action. We allow more restrictive forms of
transitions to be defined using a simple parameter matching scheme, with implicitly declared
variables. For example,

Al(cat,yy) -> A2(yy,_)



This constraint states that only A1l actions with a first parameter equal to cat are to be
followed by an A2 action and that the first parameter of A2, represented by the variable
yy, must be equal to the second parameter of Al. Unless explicitly specified on a different
constraint, no other transition from A1 is allowed. Similarly,

Al (xx,_) -> A2(dog,xx)

Here, all A1 actions must be followed by an A2 action where the first parameter equals dog
and the second parameter, represented by the variable xx, equals the first parameter of A1.
Notice the use of the place holder _ in the second parameter of A1, which matches any
possible value of the given type.

Timeline instances are defined using the VARIABLE section as follows:

VARIABLES
t1,t2: A
t3: B

This specification declares two distinct timelines, t1 and t2, defined by O0BJTYPE A, and one
timeline t3 defined by 0BJTYPE B.

The variables of the same OBJTYPE share the transition relation, but might still behave
differently, in case specific constraints are declared in the general constraint section. This
is beneficial in terms of keeping the model compact, and it is frequently seen in practice.
For example, the crew activity model (see Section 6) declares a general timeline for a crew
member, which describes the common activities, such as sleeping, eating, etc. Additional
constraints referring to non-routine tasks are then expressed by using specific crew member
identifiers to enforce, for example, that a given astronaut is disassembling the sleeping unit,
while a different one is fixing the power unit.

2.2 Goal Statements and Initialization
In ANMLite, goals can be specified by an action name:

GOALS
t1.A3
t2.A2

This specifies that A3 is scheduled and completes on timeline t1, and that A2 is scheduled
and completes on timeline t2. A generic form is also supported:

GOALS
A A2

where A is declared to be a timeline using an 0BJTYPE declaration. This expression means
that A2 is scheduled and completes on every timeline of type A. For example, if we have

VARIABLES
t1,t2,t3,t4: A



then the generic goal A.A2 is equivalent to

GOALS
t1.A2
t2.A2
t3.A2
t4.A2

Initial states can also be specified using an INITIAL-STATE declaration though they are not
necessary. For example,

INITIAL-STATE
|-> t1.A0
|-> t2.A1

This specifies that AO is the first scheduled action on timeline t1 and that A1 is the first
scheduled action on timeline t2. A generic form is also allowed

INITIAL-STATE

|-> A.AOQ

This means that on every timeline of type A, A0 is the first scheduled action.

2.3 Transition Statement Extension

For specifications where there is a large fan-out from many states, we are experimenting with
the following extension to the transition statement

Al > x

which means that A1 can transition into any of the actions on the timeline including itself.
One can restrict the allowed transitions by adding a list of exceptions as illustrated below

A1 -> x \ (A2 | A5)

This means that Al can transition into any of the actions on the timeline except A2 and A5.

3 Constraints

The transition statements are adequate to specify the allowed sequences of actions on a time-
line, but they cannot be used to specify constraints between actions on different timelines.
The constraint section is used to accomplish this. The ANMLite constraints are built upon
a simple but powerful foundation: the start and end times of actions. These time points can
be referenced as follows



Al.start

B2.end
Constraints are expressed as simple linear relations between these variables:
Al.start + 16 < B2.end

This constraint can be visualized on a timeline as follows

A1l

B2

|
| d>16

The constraints can also be chained as follows
Al.start + 4 < Bl.start < Cl.end - 10
This is equivalent to writing
Al.start + 4 < Bl.start AND Bl.start < Cl.end - 10

Restricting the constraint language to these simple linear relationships enables a very natural
translation into the SAL model checking language (see Section 5).

3.1 Contains Example

Suppose we want to specify a contains-like constraint between actions, inspired from the
Allen Temporal Logic [2]. In the New Domain Description Language (NDDL) [5], we would
write

Bl contains Al

and in ANML we might write something like

objtype B {
action B1 { ... }
}
objtype A {
action Al {
condition over all : B.state == Bl;
}



The following diagram illustrates the intended behavior graphically

A1 A2 A3

BO B1 BO

In ANMLite we would express this constraint as follows:

Bl.start < Al.start < Al.end < Bl.end

3.2 Meets Example

Suppose we want to specify a meets-like constraint. In NDDL we write
Al meets B1

The following diagram illustrates the intended behavior

A1l A2 A3

BO B1 BO

In ANMLite we would express this constraint simply as:

Al.end = Bl.start

3.3 Repetitive Actions
Consider the following fragment of ANML:

objtype FastingWindow {
FastingState fs;
transition fs {
"fasting" -> "not_fasting";
"not_fasting" -> "fasting"

+;

action not_fasting()
{
change over all { fs = "fasting" -> "not_fasting" -> "fasting" };
b
b



objtype CrewMember {
FastingWindow fw;
action pre_sleep {
condition over all : fw.state == fasting();
}
}

The condition statement asserts that the state of another timeline, called fw, must be
fasting throughout the execution of pre_sleep:

pre_Sleep S|eep

not_fasting fasting not_fasting

We can express this as follows in ANMLite:
fasting.start < pre_sleep.start < pre_sleep.end < fasting.end

This states that the start of the fasting action must take place before the start of pre_sleep
and the end of the fasting action must take place after the end of pre_sleep. The question
is whether this specification rules out the following scenario:

pl’e_S|eep S|eep

not_fasting fasting not_fasting fasting

It does if fasting.start and fasting.end refer to the first fasting interval and not the
second one. So we clearly need to distinguish between these intervals. We could call the
first interval fasting and the second interval next fasting. Now suppose we want to
specify that pre_sleep must start with fasting active and end with fasting active and
that not_fasting executes in between as shown above. This can be expressed as:

fasting.start < pre_sleep.start < pre_sleep.end < next fasting.end AND
pre_sleep.start < not_fasting.start < not_fasting.end < pre_sleep.end

Another question is whether not_fasting should be considered as current or not, that is
whether to use not_fasting or next not_fasting. To disambiguate, we need a reference
point from which the current action and the next action can be determined.

We consider two approaches!:

e Provide a new construct to establish a reference point.

e Define a default reference point such as the earliest or latest time point in the expres-
sion.

'We have also explored the use of logic quantifiers (V, 3), but we currently believe that the next operator
approach is simpler and easier to understand. However, it is not without some difficulties which will be
discussed subsequently.



3.3.1 The at Expression

The first approach could be achieved by introducing a new expression, namely an at expres-
sion, which specifies a reference timepoint. For example

at AO.start: BO.end < next AO.start

In this case, all actions that are active at the timepoint AO.start are the current ones. The
next instance after the completion of the current one is the next one. For example

A0 A1 A0 A2

BO B1 BO B1

BO.start B0.end T next AO.start next BO.end

reference point

7

If the action is not active at the reference point, then the “current” one is the last one and
the next one is the first occurrence after the reference point. For example

A0 Al A0 A2

B1 BO B1 BO B1

T B1.start T next B1.start
reference point

It should also be noted that there is an implicit universal quantifier in every constraint. If
the reference point involves action A1, e.g., Al.start, and Al can occur multiple times on a
timeline, then this constraint applies every time A1 is scheduled.

Note that the constraint above, namely

at AO.start: BO.end < next AO.start

would rule out the following solution

A0 A1 A0 A2

BO B1 BO

Because of the flexibility in attaching a reference point and the implicit universal quan-
tifier, it becomes apparent that the same constraint could have a different set of solutions,
depending on the location of the at expression.

Consider the following constraint

10



BO.start + 5 < next A2.start < next BO.start + 7
If the reference point is chosen as Al.start
at Al.start: BO.start + 5 < next A2.start < next BO.start + 7

then the following timeline is a potential solution, when next BO.start + 7 > next A2.start

A1l A2

BO B1 B2 BO

/F BO.start T next BO.start

If we change the at expression as follows:
at Al.end: BO.start + 5 < next A2.start < next BO.start + 7

the above timeline no longer satisfies the constraint

A1 A2

BO B1 B2 BO B2 BO

T BO.start T next BO.start

reference point

because the location of BO.start has changed. Therefore, one should use much care in the
application of the at expression.

3.3.2 Using a Default Time Reference Point

We have also experimented with a default reference point, namely the first or last timepoint
that appears in the expression. However, without a restriction on the at expression, some
ambiguities can arise. These ambiguities will be demonstrated using the following transition
graphs:

AO -> A1 > A2 -> A1 -> A3

BO -> B1 -> B2 -> B1 -> B3

Suppose we use the first timepoint that appears in the expression. But how should one
interpret the following?

next Al.start < Bl.end

11



Here the first expression is next Al.start. In this case, determining which instance of A1l
is the reference point is problematic:

A0 A1 A0 A1

BO B1 BO B1

K K
The same impasse is reached when trying to determine which instance of B1 is referred to
by the B1l.end term.

Now suppose we make the last timepoint the reference expression. To create an ambiguity,
one only needs reverse the constraint

Al.start < next Bl.end

Of course we can disallow the use of next in the first position in the first approach (or last
position in the second approach), though this is a bit artificial. Nevertheless, this is probably
the best approach. We need only decide whether to use the first or last term. If we use the
first term as the default, then the first constraint we looked at, namely,

Al.start + 16 < B2.end
would have to be rewritten as
Al.start + 16 < next B2.end

if the following timeline is to be a solution:

A1l

B2

|
| d>16

Therefore, we think that the best approach is to make the default the last term. By making
the default reference point the last term, all of the previous terms are earlier in time and
hence they are current ones (by definition of the reference point). Therefore, this choice
provides a nice seemless unification with the non-repetitive cases. If the last term has a
next operator, then an explicit at expression must be provided?.

2 Another attractive alternative is to require an at expression whenever there is a repetitive action.

12



3.4 Timeline Instance Specific Constraints

Constraints can be specialized by using a timeline variable in the constraint. Suppose we
have

VARIABLES
t1,t2: A
t3,t4: B

CONSTRAINTS

tl1.Al.start < t4.Bl.end

Now this constraint only affects timelines t1 and t4. But the constraint
Al.start < Bl.end

is equivalent to four constraints:

tl1.Al.start < t3.Bl.end
tl1.Al.start < t4.Bl.end
t2.A1.start < t3.Bl.end
t2.A1.start < t4.Bl.end

Mixing qualified and unqualified action names may be problematic. For example
tl.Al.start < B2.end

Even though a default interpretation can be envisioned as treating the unqualified term as
“for all” timeline instances tb of B

tl.Al.start < tb.B2.end

This is however dangerous when the terms are on the same timeline, because it can easily
lead to contradictions, such as in

tl1.Al.end < t2.A2.start < Al.end

3.5 The Interleaving Example

Suppose we need to specify that repetitive actions A0 and BO are interleaved as illustrated
below:

A0 A0 AO

BO BO

Let’s try to write some constraints that enforce this behavior

13



AO.end < BO.start
BO.end < AO.start

Immediately we encounter a problem. Consider the following timeline:

A0 A0 A0

BO BO

It satisfies the constraints because there are multiple instances of A0 and BO. In this case, it
is possible that A0 and BO overlap but the constraint is still satisfied. If instead we combine
the two inequalities in a single chain

at BO.start: AO.end < BO.start < BO.end < next AO.start

we rule out the possibility of overlap: A0 has to have ended before BO starts and cannot occur
again until BO ends. However, this is still not the complete specification. This constraint
requires that at least one instance of BO occurs between successive instances of A0. But
consider the following timeline

A0 A0 A0

BO BO BO

Unfortunately this solution meets the specification, even though there are multiple occur-
rences of BO between first and second A0. So we need to write one more constraint that is
symmetric with respect to BO:

at AO.start: AO.end < next BO.start < next BO.end < next AO.start
at BO.start: BO.end < next AO.start < next AO.end < next BO.start

The previous undesired scenario is no longer a solution. The care needed to solve this simple
problem, illustrates that correctly specifying a constraint can be a subtle matter. In fact
there is one additional aspect of this solution that should be mentioned. Namely, we have
implicitly assumed that we lift the requirements at the end of the planning horizon. The last
occurrence of either A0 or BO has no successor, hence the constraint is satisfied by default.
Suppose | | represents the end of the planning horizon on the following timeline.

A0 A0 A0

BO BO BO

The final A0 has no next AO action and there is no subsequent BO so the constraint

14



at AO.start: AO.end < BO.start < BO.end < next AO.start

is not strictly satisfied. Therefore, an exception must be made at the end of the horizon.

Note: we currently allow only one application of next. In other words, the following is
not allowed: next next A2. Allowing multiple instances of next will increase the power of
the language (and the difficulty of translation), but we are not convinced that this additional
power is needed.

3.6 Vacuous solutions

Consider the Allen operator Al contains B1l. A constantly debated issue is whether the
constraint can be satisfied by the following timeline

A0 A2

BO B1 B2

Because the Allen operator has the implicit quantifiers FORALL A1: EXISTS B1: Al contains B1,
this constraint can be vacuously met in case Al is never scheduled. Whether this is desirable
or not is a recurring theme in the plan specification domain. A non-ambiguous semantics
should be chosen for all these situations.

In ANMLite, the existence of vacuous solutions takes another dimension in the presence
of flexible at expressions. For example, an equivalent ANMTLite specification for the Allen
operator Al contains B1 is the following:

Al .start < Bl.start < Bl.end < Al.end

There could be three types of vacuous solutions, depending on whether A1 is never scheduled,
B1 is never scheduled, or both. If the at expression is associated with A1, then there exists
a vacuous solution when A1 is never scheduled, even if B1 is. If, on the other hand, the
at expression is associated with B1, then no such vacuous solution exists, because if B1 is
scheduled, then the satisfaction of Al.start < Bl.start immediately requires the existence
of a preceding A1 to B1.

The implementation of a verifier by means of a model checker further adds to the com-
plexity of this discussion, because Al.start < Bl.start could be satisfied not only by
the actual scheduling of A1, but also by the choice of initializing the variable associated to
A1l.start in the model. Usually, an action that has not been scheduled yet has a distinctive
value which is not in the range of the planning horizon. The natural choices are —oco or co.
If a negative initial value is chosen, Al.start < Bl.start is always satisfied when A1 is not
(vet) scheduled before B1.start. A positive initial value will rule this situation out. But, of
course, the situation is reversed when requiring the symmetric case: Al.start > Bl.start.

In conclusion, the existence of vacuous solutions is influenced by three factors: the refer-
ence point, the implicit quantifiers, and the initialization of variables.

15



We have added the chained constraint syntax as an alternative to the conjunctive form.
For the existence of vacuous solutions the two formats are not equivalent. Consider the
following constraint:

B.start = A.end < B.end = C.start

which is satisfied by the following:

The semantics for this constraint is
FORALL C: EXISTS A,B: at C.start: B.start = A.end < B.end = C.start

The last term is universally quantified and the other terms are existentially quantified. There-
fore if C does not execute, the constraint is satisfied, but if C does execute, then there must
also be executions of A and B as well. If one breaks up the above constraint into two separate
constraints, i.e.,

B.start = A.end
B.end = C.start

the following defines the meaning:

FORALL A: EXISTS B: at A.end: B.start
FORALL C: EXISTS B: at C.start: B.end

A.end
C.start

Note that the split version allows the following timeline:

C

whereas the first version does not. It should be noted that an equality within a constraint
is not an equivalence relation, except with respect to the timepoints. Because of the default
reference points and default quantifier rules, the timelines defined by A = B can be different
than those defined by B = A. For example,

A.end = B.start
B.end C.start

16



has the following meaning:

FORALL B: EXISTS A: at B.start: A.end
FORALL C: EXISTS B: at C.start: B.end

B.start
C.start

so that the diagram above with two Bs separated by an x action does not satisfy it. The
second B does not have an associated A for which the first constraint is satisifed.

In the future, we would like to look at the implications of eliminating all vacuous solutions
or restricting them. Many times vacuous solutions are not desirable solutions at all. It is
very easy for the writer of a domain specification to add a constraint with the expectation
that this constraint will be required to happen. But if the planner finds a solution that avoids
the implicit FORALL variable of the constraint, then it can ignore the stated constraint. In
a safety-critical application, this could result in some important action being omitted or
an important constraint not being satisfied. Of course, the domain specification can be
strengthened by explicitly listing every action that must execute. But, it is not always
intuitively obvious that this needs to be done. We believe that the clarity of a specification
language is very important. It would be interesting to investigate whether the clarity of
ANMLite would be increased by eliminating vacuous solutions or at least making it very
clear where vacuous solutions are allowed.

3.7 Summary of Constraint Semantics

There are two major issues that need to be resolved when interpreting a constraint in AN-
MLite:

e Determination of the time point from which the current and next instances of an action
can be disambiguated.

e Determination of which actions are universally quantified and which ones are existen-
tially quantified.

These issues are orthogonal and hence the most general solution allows an independent
specification of them. The first issue is handled by the at expression. If the at expression is
omitted, the last term determines the time point. For example, given

A.end < B.end

the reference time point is B.end. All actions that are active at the refererence point are
current. If an action is not scheduled at the reference point, the last instance is the current
one and the future one is next.

The second issue is handled by a syntactic convention, namely, that the last term in the
chain of inequalities determines the universally quantified action. For example, if we have

A.start < B.end < C.start < W.end

then the universally quantified action is W and the actions A, B, and C are existentially
quantified:

17



FORALL W: EXISTS A,B,C: A.start < B.end < C.start < W.end

This choice is justified by the way the constraint checking has to performed (efficiently) in
the SAL models (see Section 5). The other alternative, of attaching the universal quantifier
to the first term, is equally valid from the theoretical point of view.

Also note that these conventions depend upon the restriction that all of the operators
must be either <, <=, or =3.

If the last term contains a next operator:

at C.start: A.start < B.end < C.start < next B.end

then the existence of two instances of B (current and next) are assumed. This constraint is
interpreted as follows

FORALL B: (EXISTS B’: B = next B’ =>
(EXISTS A,C: at C.start:
A.start < B’.end < C.start < B.end))

It should be noted that inconsistent expressions can easily be created:
A.end < A.start
Such expressions are unsolvable and produce plan specifications for which there are no solu-

tions.

3.8 Some More Illustrative Examples
3.8.1 Example: Spread-out Contains

Suppose we want a Bl contains Al that is also time-constrained:

A1l

BO B1 B2

SEEE I

di d2
We want d1 > 10 and d2 > 20. We do this as follows

3We could generalize and also allow sequences of >, >=, = operators and then make the first syntactic term
be the universally quantified action. We believe the added flexibility is not worth the potential confusion
that could arise from trying to remember the quantification rule. Alternatively, we could add an explicit
quantifier to the constraint expression, e.g. FORALL W: A.start < B.end < C.start < W.end, but we would
then either have to make this mandatory or define a default. At this point we prefer not to add an explicit
quantifier to the language.
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at Bl.start: BO.start + 10 < next Al.start < next Al.end < Bl.end - 20
or more concisely as
BO.start + 10 < Al.start < Al.end < Bl.end - 20

where the default reference point is at B1.end.

3.8.2 Example: Stretch It Out

Suppose we want each B1 action to contain at least two instances of A1. This can be achieved
with one chained constraint as follows:

at Al.start: Bl.start < Al.start < next Al.end < Bl.end

Here is an example solution:

AO A1 AO A1

BO B1 B2

B1.end
reference point next Al.end

B1.start

Note that the constraint
at Bl.start: Bl.start < Al.start < next Al.end < Bl.end

has no solution. Consider the following diagram to see this:

A1 A0 A1 A0 A1
BO B1 B2
A1 .start T next A1.start B1.end
reference point
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3.8.3 Example: Forcing a Future Action to Occur Within a Time Interval

Suppose we wish to constrain action A2 to always be scheduled after action A1l and that
this must occur between 10 and 20 time units after the end of Al as illustrated below

A0 A1 A2

10<d <20

which can be written in ANMLite syntax as

at A2.start: Al.end + 10 < A2.start < Al.end + 20

3.8.4 Delayed Initiation

Suppose that you want to insure that action A1 does not begin until after 15 time units. The
following constraint

15 < Al.start

accomplishes this. Note that it is more difficult to specify something like “the final action
on the timeline is A3 and it starts after 70 time units”. If A3 is not a repetitive action, then
this can be accomplished by

CONSTRAINTS
70 < A3.start
GOALS

A A3

But what if A3 is a repetitive task and we just want the last instance of A3 to start after 707
We could use a parameter and count the instances of A3 as follows:

A0 A3(1) A0 A3(2) A0 A3(3)

We could then extend the constraint language to allow parameters and constrain a specific
instance, say 4, to occur after a specified time as follows

70 < A3(4) .start
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But this still does not solve the stated problem. Perhaps we could extend the at expression
so that it could refer to the horizon beginning or end. Then we could write

at end: 70 < A3.start

This will work if A3 is the goal state

A0 A3 A0 A3 A0 A3

A3.start reference poini

3.9 Mandatory at Expressions

We have explored the possibility of not having a default at reference time point. If there
are no cycles in the transition graph then each action can only occur once. In this case, the
next syntax is not needed and hence there is no need to specify a reference time point. But
suppose the user makes a mistake and specifies a constraint without a reference timepoint
and there is a cycle in the graph. The translator would need to detect this situation and
report an error. This will require a traversal of the graph to see if a cycle is present. This is
relatively straight-forward in the absence of parameters. But with parameters, it is possible
for there to be cycles for only certain parameter combinations. So what might appear to be
a cycle situation, may really be unreachable. If at expressions are made optional and there
is no default, it seems prudent to make the cycle check in the absence of parameters. This
is clearly conservative and will rule out some cases where the at expression can be omitted,
but the implementation code is much simpler. But, due to the difficulties associated with
this approach, we have chosen to define a default reference point whenever an at expression
is not present.

3.10 Convenient Macros

The ANMLite language can be extended with some macros which emulate some of the Allen
operators. For example, the Allen operator A contains B can be emulated by

A.start < B.start < B.end < A.end
We can introduce the notation

CONSTRAINTS
A contains B

which is then automatically expanded into

A.start < B.start < B.end < A.end
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Similarly
A meets B

can automatically be translated into
B.start = A.end

and
A met_by B

can automatically be translated into
B.end = A.start

Some of the Allen operators cause some difficulty. Consider B contained_by A. At first
we might suppose that the same constraint

A.start < B.start < B.end < A.end

will suffice. But, the semantics of the Allen operator mandates that if B executes, then it
must be contained by an A. In other words, there is an implicit universal quantification for B
and an implicit existential quantification for A, i.e. FORALL B: EXISTS A: B contained_by A.
However, the semantics of the constraint: A.start < B.start < B.end < A.end is

FORALL A: at A.end: A.start < B.start < B.end < A.end
which is satisfied by

A X

B y B

It appears that there is no convenient way to create a contained_by macro that exactly
matches the semantics of the corresponding Allen Operation using the constructs that we
have defined. To obtain exactly the same solutions would require something new like

FORALL B: at A.end: A.start < B.start < B.end < A.end

Another possibility would be to attach the default FORALL to the at or to create a special
at! where this is done:

at! B.end: A.start < B.start < B.end < A.end

But, we are not sure whether this is a wise extension of the language. Perhaps we should not
seek to duplicate the Allen Operation Semantics? Often vacuous solutions are not desirable
solutions. It is very easy for the writer of a domain specification to write a constraint
expecting that this would insure that the described situation will actually happen. But
the constraint can be avoided altogether by the planner by finding a solution where the
FORALL variable is not scheduled at all. It would be interesting to study the implications
of eliminating all or some of the vacuous solutions in ANMLite. See section 3.6 for more
information about this issue.
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4 Condition and Effects

We are currently experimenting with condition and effects clauses within the definition of
an action. This is motivated by similar clauses in the ANML language. However, we have
introduced these constructs with some reluctance because they operate through use of global
variables. Global variables are usually an attribute of programming languages rather than
specification languages. Although this makes it possible to express things in the style that
programmers are familiar with, it ultimately leads to a less abstract specification, and hence
a more difficult one to formally verify. Nevertheless, one of the main purposes of this work
is to develop verification methods suitable for verifying properties of the ANML language
under development at NASA Ames.

We augment the body of an action definition, with a condition clause and an effects
clause as illustrated below:

Al: (7,1 {
condition: start > vf + 10;
effect: vf := end;

}
where vf is a variable defined in a preceding VARIABLES section:

VARIABLES
vi: TM_rng = O;

The keyword start refers to the time that the action started execution and the keyword end
refers to the time that the action finishes execution. The condition statement represents
a constraint that must hold before the action is allowed to execute. The effect statement
results in the update of the value of variables when the task terminates. The ANML language
is more general in that it allows an arbitrary predicate and the specification of a time interval
over which this predicate must hold. This time interval can be in the future, so very complex
behaviors can be specified with that construct. However, we have restricted our effects section
to be just a sequence of variable updates. The condition statement in A1 above prevents
the initiation of A1 until the time is vf + 10. Initially vf is 0, so the first execution of
A1 is delayed until after time 10. At the termination of A1, the effect statement updates
the value of the variable vf to the termination time of A1. The net effect on subsequent
executions of Al is to make sure that they are 10 time units apart.

The use of condition and effect statements is to introduce an algorithmic flavor to
the language. If the updates to the variables are in a very restricted and controlled manner,
then the intended meaning can be easy to discern. But if variables are updated in multiple
places in different actions, then we have all of the subtleties of concurrent programming to
deal with. It seems to us that these condition/effect statements can easily lead to complex
specifications that are difficult to understand and even more difficult to verify. The more
general ANML constructs are even more dangerous.

Note that the above specification can be accomplished more naturally using the following
constraints

23



Al.start > 10
at Al.start: next Al.start > Al.end + 10

The advantage of this latter approach is that the specification is abstract and not algorithmic.

5 Translating ANMLite to SAL

Although using a model checker might not be the most efficient means of finding a solution
to a planning problem, building a translator has provided a sanity check on the meaning of
the language constructs.

5.1 Simple Example

We will begin our look at the technique for translating ANMLite to SAL with a very simple
two timeline example:

PLAN ex1

TIMELINE A
ACTIONS

AO: [2,_]

Al

A2
TRANSITIONS

A0 -> A1 > A2

END A
TIMELINE B
ACTIONS
BO: [2,_]
Bi: [1,10]
TRANSITIONS
BO -> B1
END B
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INITIAL-STATE

END ex1

Timeline A has three actions A0, A1, and A2 with only one possible sequence. The duration

of action AO is at least 2 time units, while the other two actions have no restrictions on their

duration. Similarly, timeline B has two actions BO and B1, with only one possible sequence.

BO has a duration of at least 2 time units, while B1 takes between 1 and 10 units.
Corresponding to these actions, the following types are generated

A_actions: TYPE

B_actions: TYPE

{AO0, A1, A2, A_null};

{BO, B1, B_null};

In addition to the declared actions, a null state is created for each of the timelines. There
are two purposes for these extra states:

e They provide a means for the completion of an action when the action has no successor.

e They provide a convenient mechanism for recording when a goal state has been reached
on each timeline. As shown below, a transition from a timeline’s goal state to the null
state is generated by the translator.

The generated SAL model will consist of three modules:

e Module A_m which corresponds to timeline A.

e Module B_m which corresponds to timeline B.

e Module Clock which advances time.

5.2 Multiple variables

If there are multiple variables of a timeline, say

VARIABLES
tl,t2: A
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then a variable id type is generated,
A_ids: TYPE = {t1,t2};

and the module A_m is parametrized with the variable id
A m[i: A_ids] : MODULE =

Furthermore, since each instance of the timeline is a separate module, all the local and global
variables in the parametrized module have to be arrays. For example, a non-parametrized
module A_m might include a variable for AO_start

GLOBAL
AO_start: TM_rng;

The parametrized version has to be

GLOBAL
AO_start: ARRAY A_ids OF TM_rng;

This way, the start of A0 for instance t1 is referred to as AO_start[t1].

5.3 Modeling Time

Time is governed by the generic clock module. We have experimented with various imple-
mentations of this module. The most straightforward approach is to have the clock module
increment the current time by one time unit at each step. This approach is very simple but
is not scalable, because the system would traverse a very large number of states that are
identical with the exception of the clock value. This state explosion problem is exacerbated
by problems with large planning horizons. A possible alleviation of problem is to allow the
clock to advance by larger amounts. However, this still does not rule out the traversal of
multiple states in an interval of time when nothing interesting happens (from the point of
view of action change). The best solution in this case is to use the concept of timeouts [6]
that model the event driven clocks. In this approach, each timeline maintains a future clock
value where an event is scheduled to occur, and time jumps directly to the next interesting
event. The timeouts are stored in an array of timepoints and the clock module determines
the next (minimum value in the future) timeout.
The structure of the module generated for a timeline A is:

A_m : MODULE =
BEGIN
INPUT
OUTPUT
GLOBAL
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LOCAL

INITIALIZATION
TRANSITION
[
AO_to_A1l: %% A0 -> A1l
(]
Al_to_A2: %% A1 -> A2
(]
A2_to_A_null: %% A2 -> A null
]

END; %% A
Each of these sections is used in the translation:
e INPUT is used to select values for parameters of actions.

e QUTPUT is used to store timeout values for the clocking mechanism

GLOBAL is used to hold state values and their current parameter values.

LOCAL is used to hold the start time of the currently scheduled action.
e INITTIALIZATION is used to set initial values.
e TRANSITION specifies rules for transitioning from one action to another.
The three modules will be asynchronously composed. In SAL this is specified as follows*
System: MODULE = A_m [] B_m [] Clock;

The SAL tool links the variables named in the GLOBAL and INPUT sections together. In
other words, variables with the same name are equated even though they are specified in
different modules.

The SAL model checker will be used to search through all possible sequences of actions on
the timelines to find sequences which satisfy all of the constraints specified in the ANMLite
model. These constraints fall into three broad categories:

e Timing constraints that impact durations and start/stop times of actions.

41t is actually slightly more complicated than this because of the need to coordinate the timeout variables
of the modules. This will be discussed later.
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e Simple relationships between start and end variables

e Constraints defined through condition and effect statements.

The search is started at time 0 and proceeds forward in time until the planning horizon is
reached. The stop time is specified via a constant as follows:

MAX_TM: int = 30;
TM_rng: TYPE = [0 .. MAX_TM+1];

The progress of the “clock” is controlled by the clock module:

Clock: MODULE =
BEGIN
INPUT timeout: TIMEOUT_ARRAY
OUTPUT time: TM_rng
INITIALIZATION
time = 0;
TRANSITION
[
time_elapses:
(EXISTS (i: timeline): time < timeout[i])
AND (FORALL (i: timeline): time /= timeout[i])
-=>
time’ IN { t: TM_rng | is_min(timeout, t) }
]
END;

5.4 Model Variables

The GLOBAL sections of all of the timeline modules contain variables which record the action
that is scheduled during the current time:

GLOBAL
AO_start: TM_rng,
BO_start: TM_rng,
Bl_start: TM_rng,
B_state: B_actions,
A_state: A_actions,

The _state variables contain the current action and the _start and _end variables contain
the start and end times of the actions.

The durations of the actions are controlled by the use of the _start variables. Whenever
an action is initiated, the initiation time is stored in this variable. The durations of an
action will be controlled through this variable. This will be explained more carefully when
we discuss the transitions section.

The initial actions on a timeline can be specified as follows:
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INITIAL-STATE
|-> A.AO
|-> B.BO

If a timeline’s initial state is not specified, then the model checker will explore all possible
start states. The above initialization results in

INITIALIZATION
A_state = AO;
AO_start = 0;

in the A_m module and

INITIALIZATION
B_state = BO;
BO_start = O;
Bl_start = MAX_TM+1;

in the B_m module.

5.5 Transitions

The ANMLite TRANSITIONS section is the major focus of the translation process. The SAL
TRANSITIONS section is constructed from this part of the ANMLite model. For example, the
following

TRANSITIONS

A0 -> A1 > A2

is translated into

TRANSITION
[
A_starts:
A_state = AO
-—>
timeout’ IN {t:TM_rng | t > time}
(]
AO_to_A1: %h A0 -> A1

A_state = AO
AND time >= AO_start + 2
-—=>
A_state’ = Al;
timeout’ IN {t:TM_rng | t > time}
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(]
Al_to_A2: %% A1 -> A2
A_state = Al
-=>
A_state’ = A2;
timeout’ IN {t:TM_rng | t > time}
(]
A2_to_A_null: %% A2 -> A_null
A_state = A2
-—>
A_state’ A_null;
timeout’ = MAX_TM+1;

]

When a transition occurs, an action is completed and another transition is initiated. No
empty time slots are allowed. The TRANSITIONS section defines three transitions which are
labeled as follows:

AO_to_A1l: %% A0 -> A1l
Al_to_A2: %% A1 -> A2
A2_to_A_null: %% A2 -> A null

The first transition is guarded by the following expression:

A_state = AO
AND time >= AO_start + 2

The first conjunct insures that this transition only applies when the current action on the
timeline is A0 and the second conjunct insures that the duration of the action is at least 2
time units. This corresponds to the fact that A0 was declared as A0: [2,_]. The expressions
after the —--> specify that the new state is A1. Note that start times are not maintained for
A1 and A2 because no constraints use them.

The ANMLite GOALS statement

GOALS
A.A2
B.B1

lists two actions that need to be reached (where the default meaning of the expression is
the logical conjunction of the terms). This statement is translated into the following SAL
specification:

sched_sys: THEOREM
System |- AG(NOT(A_state = A_null AND B_state = B_null));
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Since the “null” states can only be reached from the goal states (i.e., A2 and B1), these
efficiently record the fact that the appropriate goal has been reached on each timeline. Note
that the ANMLite goal statement has been negated. Therefore when the model checker is
instructed to establish the property, any counterexample provided by SAL will serve as a
feasible realization of the plan.

The complete generated SAL model is

exl: CONTEXT =
BEGIN

MAX_TM: int = 30;
TM_rng: TYPE = [0 .. MAX_TM+1];

A_actions: TYPE

{A0,
Al,
A2,
A_null};
B_actions: TYPE = {BO,
B1,
B_null};

timeline: TYPE = {A,B};
TIMEOUT_ARRAY: TYPE = ARRAY timeline OF TM_rng;

is_min(x: TIMEOUT_ARRAY, t: TM_rng): bool =
t >= 0
AND (FORALL (i: timeline): t <= x[i])
AND (EXISTS (i: timeline): t = x[i]);

A_.m : MODULE =
BEGIN
INPUT
time: TM_rng
OUTPUT
timeout: TM_rng
GLOBAL
AO_start: TM_rng,
BO_start: TM_rng,
Bl_start: TM_rng,
B_state: B_actions,
A_state: A_actions
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INITIALIZATION
A_state = AQ;
AO_start = O;
TRANSITION
[
A_starts:
A_state = AO
-—>
timeout’ IN {t:TM_rng | t > time}

(]
AO_to_A1l: %% A0 —> Al
A_state = AO
AND time >= AO_start + 2
-—>
A_state’ = Al;
timeout’ IN {t:TM_rng | t > time}
[
Al_to_A2: %h A1 —> A2
A_state = Al
-—>
A_state’ = A2;
timeout’ IN {t:TM_rng | t > time}
[]
A2_to_A_null: %% A2 -> A_null
A_state = A2
-—>
A_state’
timeout’

A_null;
MAX_TM+1;

]
END; %k A

B_.m : MODULE =
BEGIN
INPUT
time: TM_rng
OUTPUT
timeout: TM_rng
GLOBAL
AO_start: TM_rng,
BO_start: TM_rng,
Bl_start: TM_rng,
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A_state: A_actiomns,
B_state: B_actions
INITIALIZATION
B_state = BO;
BO_start = O;

Bl_start = MAX_TM+1;
TRANSITION
[

BO_to_B1: %% BO -> B1

B_state = BO
AND time >= BO_start + 2
-—>
B_state’ = B1;
Bl_start’ = time;
timeout’ IN {t:TM_rng | t > time}
[
Bil_to_B_null: %% B1 -> B_null
B_state = B1
AND time >= Bl_start + 1
AND time <= Bl_start + 10

-—>
B_state’ = B_null;
timeout’ = MAX_TM+1;
]
END; %% B

Clock: MODULE =
BEGIN
INPUT timeout: TIMEOUT_ARRAY
OUTPUT time: TM_rng
INITIALIZATION
time = O;
TRANSITION
[
time_elapses:
(EXISTS (i: timeline): time < timeout[i])
AND (FORALL (i: timeline): time /= timeout[i])
-—>
time’ IN { t: TM_rng | is_min(timeout, t) }
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System: MODULE = (WITH OUTPUT timeout: TIMEQOUT_ARRAY
(RENAME timeout TO timeout[A] IN A_m) []
(RENAME timeout TO timeout[B] IN B_m)
) [] Clock;

sched_sys: THEOREM
System |- AG(NOT(TRUE

AND A_state = A_null
AND B_state = B_null
));

END %% ex1

5.6 Translating Constraints

There are major conceptual differences between specifying constraints and checking con-
straints that need to be reconciled. In principle, the specification is declarative by nature
and the modeler usually looks “forward” in time in expressing what needs to happen in order
for the plan to complete. The checking of the plan is operational by nature, because start
and end variables are assigned values as they occur, hence testing that a constraint is valid
cannot be performed until the last timepoint has occurred. Therefore, in the checking of the
constraints the modeler has to look “backwards” in time.

For example, the constraint A.start < B.end < C.start cannot be established when A
starts. Even if B has not ended yet, its relationship to the start of C cannot be established.

The mechanism of checking constraints with a model checker is based on assigning and
updating the values of timeline state and each action start and end variables. This is per-
formed at the timepoints when a timeline transitions from one action to another, according
to the TRANSTIONS section.

Repetitive actions require special care, as multiple occurrences of the same actions will
overwrite the values of the corresponding start and end variables, so only the most recent
one is actually available (and possibly the previous occurrence, given that we allow the next
qualifier).

For example, if there is a transition A1 -> A2 on timeline A, the following updates are
necessary:

e A_state’ = A2
e Al_end’ = time
e A2 _start’ = time

A constraint is, in principle, applicable to all the transitions that affect the variables
present in the constraint expression. That is, a start variable is relevant to entering an
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action, while the end variable is relevant to exiting an action. Transition guards are generated
for the events that are involved.

The general approach of translating constraints into transition guards consists of deter-
mining the last timepoint in the chain and substituting that term with the value of the
system variable time. For example, in the constraint

Al.start + 4 < Bl.start < Cl.end

the last timepoint is C1_end. The transitions of relevance to this timepoint are from a
predecessor of C1 to C1, i.e., entering C1. For simplicity, in the following, assume there is
only one successor/predecessor of an action, according to its index (X,, precedes X,1, for
any action X and any index n). Then, the above constraint will results in a transition guard
for CO_to_C1:

TRANSITION
[
CO_to_C1:
C_state = CO
AND time >= CO_start + d %% any duration constraint here
AND (Al_start + 4 < Bl_start) AND (Bl_start < time)
-—>
C_state’ = C1;
Cl_start’ = time;
timeout’ IN {t:TM_rng | t > time}
(]

A chained constraint can be broken down into all of its pairs, e.g., treat Al.start + 4
< Bl.start and Bl.start < C1.end separately. However, this simple decomposition does
not work in the presence of a repetitive action, where both the current and the next instance
are involved simultaneously. For example,

at Bl.end: Al.end < Bl.start < Bl.end < next Al.start
at Al.end: Bl.end < Al.start < Al.end < next Bl.start

enforcing that Al.end < Bl.start separately from Bl.end < next Al.start results in an
unwanted scenario: each Bl is now required to end before the next instance of A1 which
practically delays the scheduling of A1l indefinitely.

5.7 Current and next variables

When both the current and next instances are involved in a constraint, special care is re-
quired. Since we check constraints “backwards”, the two variables needed have to be labeled
A1_start and prev_Al_start. The current instance is the last in time, so it corresponds
to next A1, while the start of earlier A1 is now denoted by prev_A1_start, which could be
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a little counter-intuitive. When no repetitive instances are involved, no such variable name
transformations are necessary.

The generated guard for the first constraint in the above example is

TRANSI
[

AO_
A_s
AND
AND
AND
AND
-—>
A

A

TION

to_Al:
tate = AO

time >= AO_start + d %) any duration constraint here
(prev_Al_end < Bl_start)

(Bl_start < B2_end)

(Bli_end < time)

_state’ = Al;
1_start’ = time;

prev_Al_start’ = Al_start;

t
(]

imeout’ IN {t:TM_rng | t > time}

Note that the value of the prev_ variables are also maintained. A special case is the first

occurrence
actually:

of a repetitive action, which has no predecessor. Hence, the complete guard is

TRANSITION

[

AO_to_A1l:
A_state = AO

AND

time >= AO_start + d %% any duration constraint here

(prev_Al_end == MAX_TM+1) OR %) first occurrence is a special case
((prev_Al_end < Bl_start) AND (Bl_start < B2_end) AND (Bl_end < time))

-=>

A_state’ = Al;

Al_start’ = time;

prev_Al_start’ = Al_start;
timeout’ IN {t:TM_rng | t > time}

(]

Further
stance. For

at

processing is required in case the constraint refers to a particular timeline in-
example, the constraint

t2.Bl.end: tl1.Al.end < t2.Bl.start < t2.Bl.end < next tl.Al.start

generates the following transition guard:
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TRANSITION

[
AO_to_A1l:
A_state[i] = AO
AND time >= AO_start[i] + d %% any duration constraint here
(prev_Al_end[i] == MAX_TM+1) OR %% first occurrence is a special case

(i==t1 IMPLIES
((prev_A1_end[i] < Bi_start[t2]) AND
(Bi_start[t2] < B2_end[t2]) AND (Bl_end[t2] < time)))
-—>
A_state’ = Al;
Al_start’ = time;
prev_Al_start’ = Al_start;
timeout’ IN {t:TM_rng | t > time}
(]

6 The Crew Activity Planning Model in ANMLite

The Crew Activity Planning Model is an example problem taken from the ANML distribu-
tion. The task is to plan the basic daily routines for several crew members over a period
of four days. The activities include, besides physiologic states (sleeping, meals), routine
activities, such as regular filter changes, medical conferences, and some payload operations.
The ANML specification of this problem is described below.

The definition of an action

action pre_sleep {
condition over all : fw.state == not_fasting();

}
is captured in the following ANMLite as follows:

not_fasting.start < pre_sleep.start
< pre_sleep.end < not_fasting.end

The three condition statements in the definition of meal

action meal {
condition over all : fw.state == not_fasting();

// keep separation between meals >= 4 hrs

condition over [start-240 start] : fw.state == fasting();
condition over [end end+240] : fw.state == fasting(Q);
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}
can be condensed into
not_fasting.start + 240 < meal.start < meal.end < not_fasting.end - 240

The following ANML specification uses an effect statement to specify that the next
filter change happens within the next 24 to 48 hours

action change_filter(FilterState fs) {
change over all : fs -> {changed,changing,changed};

// make sure next filter change happens
//within the next 24 to 48 hours
effect in [end+1440 end+2880] : fs == changing;

3

This specification relies on the use of an auxiliary variable f£s, which has no other role than
to provide a way of saying that something must occur in the future. Compare the opaqueness
of the ANML specification with the elegance of the ANMLite equivalent:

at change_filter.end:
change_filter.end + 1440 < next change_filter.start
< change_filter.end + 2880

Notice that there is no need for an auxiliary variable and it is far easier to understand. In
fact, it would be very difficult to discern the intended meaning of the ANML specification
without the presence of the comment.

The crew planning problem is centered around the idea that there is a set of jobs that
need to be done by the crew but the allocation of crew to the jobs is left to the planner. The
set of jobs is specified using the predicate

predicate payload_act_completed(
int id,
string desc,
int length,
int priority,
int dueDate,
int usesComms,
int isPhysicallyRestraining);

The only parameter that is referenced in the current model is dueDate. So at this point in
the development of the model, the other parameters are just stubs. We need to augment
the ANMLite language to conveniently handle this aspect of the problem. In particular, we
need variables which are declared to be arrays. For example:
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VARIABLES

payload_act: ARRAY [1..numacts] OF RECORD
completed: boolean,
dueTime: TM_rng
END
= (false,1440; false,1440; false,1440; false,60; false,60)

The first variable records when a payload activity is completed and the second holds the
deadline for a particular activity (note that it is a constant). The payload_activity action
is then defined as follows

pact(id: 1..numacts; desc:StringData;

length, priority, dueDate, usesComms, isPhysicallyRestraining: myint)
{

effect: payload_act[id].completed = true;
+

The following constraint is added to the constraints section
at pact.start: pact(id, ...).end < payload_act[id].dueTime;
and the following goals are added to the goals section:
FORALL myid: payload_act[myid].completed = true;

The Crew Planning problem raises another issue with its use of a decomposition construct.
This construct represents a hierarchy. There is a high-level action (e.g., daily_routine)
which “contains” a series of low-level actions, e.g., post_sleep, dpc, meal, etc., which have
a partial ordering on them. To accomplish this in NDDL a separate timeline was created with
a single action “perform” which contains all of the required crew actions. Since perform is
a goal action, the FORALL-EXISTS semantics forces all of the actions which it contains to
also occur.

But, if we use the ANMLite version of contains, e.g.,

A contains B
namely
A.start < B.start < B.end < A.end

we have to worry about the possibility of vacuous solutions. In other words, whether this
constraint can be satisfied vacuously with B never executing. The current operational se-
mantics provided by our translator can be summarized as follows: If A terminates, then B will
have to have executed and terminated as well. This is true because the translator initializes
the start/end variables to a virtually infinite value. Therefore the guard on the termination
of A cannot be satisfied unless B has executed once and acceptable values are loaded into
B.start and B.end.
So the semantics of the statement
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A.start < B.start < B.end < A.end
can be thought of
FORALL A: EXISTS B: A.start < B.start < B.end < A.end

So if the last action is required to execute, e.g., because it is in a goal statement, the execution
of the other actions in a chain is also required.
So we add a boolean variable

RPCM_done: boolean = false;
which is initialized to false and add a statement to the final rec_t_loop action:

rec_t_loop(loopCnt: myint): [ 6,6 ] {
if loopCnt == 2 then RPCM_done = true;
+

and finally add the goal

GOAL
RPCM_done;

Then the following constraints should constrain the appropriate sequence of actions:

Crew.rem_sleep_stat.end < Crew.rem_pow_src.start <
Crew.rem_pow_src.end < Crew.replace_rpcm.start <
Crew.replace_rpcm.end < Crew.place_power_source.start
Crew.place_power_source.end < Crew.ass_sl_stat.start

Crew.rec_t_loop.end < Crew.replace_rpcm.start

Crew.replace_rpcm.end < Crew.rec_t_loop(2).start

7 Conclusion

This paper discusses several design issues of a simple language for specifying planning prob-
lems. We call that language ANMLite and it is aimed to be compact, expressive, and suitable
for formal analysis. We illustrate with several examples that these objectives are not neces-
sarily compatible and that trade-offs between expressiveness, simplicity, and clarity are often
necessary. ANMLite is by no means a replacement for more expressive planning languages
such as PDDL [7], NDDL, or ANML. However, the semantic issues that arise in this simple
language strongly suggests that subtle semantic issues are probably present in these more
complex languages as well. We would argue that a clear semantics for the planning languages
is essential if planning systems are to be trusted for safety-critical applications.
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We are not completely satisfied that we have arrived at the best choice for the definition
of the at reference point or whether it would be better to define repetitive actions using a
prev concept instead of a next concept. We are not sure whether we have selected the best
defaults. Every option that we have explored so far results in some non-intuitive cases or
ugliness. We also are concerned about language constructs which allow vacuous solutions.
Because we were attempting to emulate the behavior of EUROPA 2, we have allowed these.
But we would like to explore whether the elimination of some or all of the vacuous solutions
will improve the clarity of the ANMLite specification language. We have sought to elaborate
on these issues in this paper. This work suggests that the semantics of a planning language,
even a simple one such as ANMLite, is not a simple effort. We strongly believe that a formal
semantics is a prerequisite for the use of these languages in critical aerospace applications.
The work presented in this paper is a first step in that direction.

Our efforts at using a model checker to solve planning problems have convinced us that
this is not an efficient approach that scales well. But, building the translator has forced
us to sharpen our thinking about the meaning of the language constructs. An alternative
solution approach that we would like to pursue is to apply a constraint satisfaction solver
such as Yices [8]. We believe that the translation of the ANMLite constraints into formulas
that can be processed by a constraint solver would be fairly straight forward for the non-
repetitive cases. However, the repetitive cases result in an indeterminate number of instances
of an action. Constraint solvers need a fixed set. This problem can be addressed a manner
analogous to bounded model checking. First, the satisfaction solver is given formulas that
involve only one instance of an action. If the solver fails to find a solution, then second
instances of repetitive actions can be introduced, and then three, and so on. This can
be continued until a solution is found or a pre-specified quitting point is reached. A nice
consequence of this approach is that a plan with minimal repetitions of an action will be
discovered.
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A The ANMLite Syntax

A.1 Timeline declarations

<anml_def>

<type_decl>

<simple_type_decl>::=

<compound_type_decl>:

<type>

<basic_type>

PLAN <identifier>

( <type_decl> | <timeline_decl> | <constraints_decl> |
<vars_decl> )*

[ <inits_decl> ]

[ <goals_decl> ]

END <identifier>

TYPE ( <simple_type_decl> | <compound_type_decl> )

<identifier> = <type>

:= <identifier> <parameters> [ = <type> ]

<basic_type> | <enumeration> | <interval> | <defined_type>

INT | FLOAT |BOOL | STRING |

<enumeration> = [ <identifiers> ]

<identifiers> = <identifier> ( , <identifier> )x

<identifier> = <ID>

<interval> = [ <add_expression_or_nil> , <add_expression_or_nil> ]
<add_expression_or_nil> ::= <additive_expression> | <nil>

<defined_type>

<arguments>
<strict_arguments> ::
<expression_or_nil>::
<nil>

<parameters>

<identifier> <arguments>

[ <strict_arguments> ]

"(" <expression_or_nil> ( , <expression_or_nil> )x* ")"
<expression> | <nil>

[ strict_parameters() ]
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<strict_parameters>::

<parameter>

<timeline_decls>

<actions_decl>

<action_decl>

<duration_decl>

<transitions_decl> ::

<transition_decl>

<action>

<simple_action>
<start_end_var>
<start_end>
<qualified_id>

<expression>

A.2 Constraints

"(" <parameter> ( ; <parameter> )* ")"
<identifiers> ":" <type>
OBJTYPE <identifier> <parameters>
<actions_decl>
<transition_decl>
END <identifier>
ACTIONS ( action_decl() )+
<identifier> <parameters> <duration_decl> [ action_body() ]
[ ":" <interval> ]
[ TRANSITIONS ( <transition_decl> )+ ]
<action>

( ( => <action> )+ ["-[|"] |
-> % "\" <action>

<simple_action> |

e <simple_action> ¢ mm <simple_action> Y+ "))

<qualified_id> <arguments>
[ NEXT ] <identifier> <start_end>
".start" | ".end"

<ID> ( .<ID> )

The proposed BNF for the constraints syntax includes (in)equations involving start/end of
actions timepoints, over constraints, and quantifiers (a long awaited new feature!).

<constraints_decl>

CONSTRAINTS ( <constraint_decl> )+
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<constraint_decl>

<at_formula>

<timepoint>
<start_end_term>
<add_op>

<bool_formula>

<simp_bool_formula>

<bin_logic_op>

<at_expression>
<state_var>
<state>

<inits_decl>
<goals_decl>
<goal_decl>
<vars_decl>
<var_decl>
<init_decl>

A.3 Condition and

<action_body>

<condition>
<effect>

( <at_formula> | <bool_formula> )

[ <at_expression>] <timepoint> <rel_op>
<timepoint> [ <plusinteger> ]

(<start_end_term> | <integer>)

( next ) <ID> <start_end> (<add_op> <integer>)

+ | -

( <simp_bool_formula> ("&&" | "[[" | "->")+
<simp_bool_formula>

| "!" <simp_bool_formula>
| <simp_bool_formula>

)

<state_var> "==" <state> |
<state_var> "I=" <state>
u&&u I ullu | n_sn

at <qualified_id> (<start_end>) (<strict_arguments>)
<ID>
<ID>

INITIAL_STATE ( init_decl )+

GOALS ( goal_decl )+

<action>

VARIABLES ( var_decl )+

<identifiers> <COLON> <type> ( = <integer>)
|-> <action>

Effect Statements

"{" [ condition() ] [ effect() ] "}"
"condition:" <expression>
"effect:" <identifier> ":=" <expression>
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B The Dock-Worker Robots Problem in ANMLite

The book “Automated Planning” by Ghallab, Nau and Traverso presents a planning problem
that is used throughout the book. The Dock-Worker Robots problem is centered around a
set of robots, cranes, and piles. Robots move containers from one location to another, while
cranes move containers between piles and robots. The initial state is defined by allocating
containers to piles. The final state is another distribution of containers on the piles. In the
general case, there can be multiple piles at a location. Here we assume only one pile per
location. The following is an ANMLite version of this problem:

PLAN dwr
TYPE location = [1,3]
TYPE robot_ix = [1..2]

TYPE container = {c1,c2,c3,c4,c5,c6,null}
TYPE pile_ix = [1,3]
VARIABLES

pile: ARRAY [pile_ix, 1..6] OF container = (4x6*null);
top: ARRAY[pile_ix] OF [0..6] = (4*0);

push(p,c) {
toplp] = toplpl + 1;
pilelp,top]l = c;

}

pop(p): container {
popv: container;
if topl[p] = O then popv = null;

else
popv = pilelp,top];
toplp] = toplp] - 1;
endif

return popv,;

TIMELINE Nav ACTIONS
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At(x: location)
Move(x,y: location) WITH
y=x+1|ly=x-1
%% can only move to adjacent position in 1 step
TRANSITIONS
At(x) -> Move(x,y) -> At(y)
END Nav
TIMELINE Robot ACTIONS
Unloaded
Loading(c: container)
Loaded(c: container)
Unloading(c: container)

TRANSITIONS

Unloaded -> Loading(c) -> Loaded(c) -> Unloading(c) -> Unloaded

END Robot
TIMELINE Crane ACTIONS

// need to reference the pile associated with me, e.g. Cr[2] or Cr[3]
// need a way of referencing "my_location" or "my_pile"

// or we can define a local stack variable here

//

// pile: ARRAY [1..6] OF container = (6%null);

// top: [0..6] = 0;

//

// rather than as a two-dimensional global variable.

// If I do it here, it is looking more like an object.

Empty
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Take(c:container) {
condition: top(my_pile) > 0
effect: ¢ = pop(my_pile);

Put(c:container) {
condition: top(my_pile) <= 6;
effect: push(my_pile,c);
Load_robot(c:container; r: robot_ix)
Unload_robot(c:container; r: robot_ix)
Holding(c: container)
TRANSITIONS
Empty -> (Take(c) | Unload_robot(c,r)) -> Holding(c)
Holding(c) ->( Put(c) | Load_robot(c,r) ) -> Empty
END Crane
VARIABLES
Nv: ARRAY robot_ix OF Nav
Rb: ARRAY robot_ix OF Robot
Cr: ARRAY location OF Crane

CONSTRAINTS

Cr[xx].Load_robot(c,rr) <contained_by> Nv(rr).At(xx)

Cr[xx] .Load_robot(c,rr) <meets> Rb([rr] .Loaded(c)
Cr[xx] .Unload_robot(c,rr) <contained_by> Nv(rr).At(xx)
Cr[xx] .Unload_robot(c) <ends> Robot.Loaded(c)

INITIAL-STATE

[-> Nv[1].At(1)
|-> Nv[2].At(2)
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|-> Rb.Unloaded

|-> "some distribution of containers on the piles"

GOAL

"another distribution of containers on the piles"

END dwr
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