
IEEE TRANSACTIONS ON RELIABILITY, VOL. R-35, NO. 5, 1986 DECEMBER

An Abstract Language for Specifying
Markov Reliability Models

Ricky W. Butler
NASA Langley Research Center

Key Words-Markov model, Fault-tolerant
modeling, Model specification

system, Reliability

Reader Aids-
Purpose: Advance state of the art
Special math needed for explanation: Markov concepts
Special math needed to use results: None
Results useful to: Reliability theoreticians and analysts

Abstract-In principle, Markov models can be used to describe the
reliability of virtually any fault-tolerant system. However, the process of
delineating all of the states and transitions in a model of a complex system
can be devastatingly tedious and error-prone. This paper presents a new
approach to this problem by using an abstract model-definition language.
The language essentially defines a set of rules which are used to generate
the Markov model automatically. These rules correspond to the basic
concepts used to create models of fault-tolerant systems. A small number
of statements in the language can be used to describe a very large model.
A variation in the system (such as in the number of initial spares) can be
accomplished by changing only one line in the model definition, although
such a change represents a large increase in the size of the Markov model.
This high-level language is described in a non-formal manner and il-
lustrated by several examples.

A computer program has been developed which translates the
abstract lInguage described in this paper into the input language for the
SURE (Semi-Markov Unreliability Range Evaluator) program. The pro-
gram has been named ASSIST (Abstract Semi-Markov Specification In-
terface to the SURE Tool). It is written in Pascal and runs on a VAX
11/750 in the NASA AIRLAB Facility.

1. INTRODUCTION

The reliability analysis of an aircraft or spacecraft
electronic system is an essential part of both the design and
the validation process. Traditional electronic systems were
static, not relying on system reconfiguration for fault
tolerance. For such systems, combinatorial mathematics
were adequate to analyze system reliability. A graphic
representation of such a combinatorial analysis, Fault-
Tree Analysis, is frequently used by reliability engineers.
Unfortunately, for reconfigurable systems, the fault-tree
approach is inadequate. This is true whether the recon-
figuration is by replacing a faulty unit with a spare or by
removing the faulty unit and degrading to a lower level of
redundancy. The more powerful Markov model must be
used to analyze such systems. For more than a decade
automated tools based on Markov methods have been
developed [1, 2].

A new mathematical technique was developed en-
abling the efficient computation of such models [3]. This
technique was embedded in the new reliability analysis tool

called SURE [4]. The computational power of the tool
enables it to process extremely complex models. However,
the process of defining such models is still quite tedious.
For well-structured systems, such as the Software Im-
plemented Fault Tolerance (SIFT) system [5], very small
and simple models can capture the essential fault tolerance
behavior. Highly modular systems consisting of many
statistically independent subsystems can be analyzed by
dealing with each subsystem in a separate model and com-
puting the overall system reliability with simple com-
binatorics. However, for large highly integrated systems a
single very large model might be necessary. This problem is
not related to any particular reliability analysis tool, but
arises fundamentally from the complex nature of the
system. The process of defining such a model can be
tedious and error-prone. This paper describes a new ap-
proach to defining such models using an abstract model-
definition language.

2. NOMENCLATURE

ASSIST Abstract Semi-Markov Specification Interface to
the SURE Tool - a translator of the language of
this paper into the SURE input language.

SIFT Software Implemented Fault-Tolerance - an ex-
perimental fault-tolerant computer system.

SURE Semi-Markov Unreliability Range Evaluator pro-
gram - a program that computes the probability
of entering a death-state of a semi-Markov
model.

Death state an absorbing state in a Markov or semi-
Markov model.

Reconfiguration the process of logically or physically
removing a faulty processor from a system.

Semi-Markov model A generalization of a continuous-
time Markov process where the time spent be-
tween transitions is not necessarily exponentially
distributed.

Spare extra processor in a system; the spare is used to
replace faulty processors.

Triad a set of three processors which execute the exact
same program and use 3-way voting to mask er-
rors. Also referred to as TMR, triple modular
redundancy.

3. THE MODEL-DEFINITION CONCEPT

Modeling a fault-tolerant system is not an exact
science; it is still very much an art. Reliability analysis must
study a fault-tolerant architecture and capture the essential
aspects of its design which contribute to its fault tolerance.
For example, suppose:

0018-9529/86/1200-0595$01.00O©1986 IEEE

595

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 15:04 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON RELIABILITY, VOL. R-35, NO. 5, 1986 DECEMBER

1. We have a SIFT-like system consisting initially of
six statistically-independent processors which have a con-
stant failure rate X.

2. Each processor executes the exact same program
on exactly the same inputs so that all non-faulty processors
produce exactly the same output. The system votes the out-
puts prior to external use. Thus, as long as a majority of
the processors are non-faulty, any erroneous values are
masked.

3. The system removes the faulty processors at con-
stant (hazard) rate 6 via reconfiguration.

The Markov model in figure 1 characterizes this system.

6A

Fig. 1. Markov Model of SIFT-Like Architecture

The states of the model are defined by the ordered pair
(NW, NF):

NW number of working processors currently in the
configuration

NF number of faulty processors in the configuration.

The three assumptions are clearly manifested in the
model. Assumption 1 (processors fail independently at rate
X) leads to horizontal transitions. Assumption 2 (system
failure occurs when the number of failed processors is
greater than or equal to the number of non-failed pro-
cessors) is reflected in the death states of the model.
Assumption 3 (reconfiguration occurs at rate 6) is
represented in the vertical transitions.

It is the goal of the abstract model-definition language
introduced in this paper to express concepts such as these
so that an automatic generation of the corresponding
Markov model is possible. Such a capability can be used in
conjunction with a Markov model analysis program to
provide a high-level reliability analysis work station. This
concept is illustrated in figure 2.

A new program, Abstract Semi-Markov Specification
Interface to the SURE Tool (ASSIST), has been developed
at the Langley Research Center. This program translates
the abstract model-definition language of this paper into

Abstract
model
description

Markov Markov Markov
model - .- model -- analysis
generator input programn

Fig. 2. Reliability Analysis Work-station Concept

the SURE input language. The SURE program input
language is essentially a full enumeration of the translation
matrix of the semi-Markov model.

4. THE ABSTRACT LANGUAGE

The language is not formally described. This paper
does not specify the design of a translator but rather treats
the problem of Markov model-description and a possible
approach to the problem. Nevertheless, it is necessary to
define a few conventions to facilitate the description of the
language:

1. All reserved words are in italics.
2. Lowercase words which are surrounded by quotes,

such as "const", indicate items which are to be replaced by
something defined elsewhere.

3. Items enclosed in braces { } can be omitted or
repeated as many times as desired.

The language consists of 5 types of statements each of
which is discussed in the following sections.

1. The constant-definition statement
2. The SPACE statement
3. The START statement
4. The DEA THIF statement
5. The TRANTO statement

4.1 The constant-definition statement

A constant-definition statement equates an identifier con-
sisting of letters and digits to a number. For example:

LAMBDA = 0.0052;

RECOVER = 0.005;

Once defined, an identifier can be used instead of the
number it represents. In the following sections, the phrase
"const" is used to represent a constant which can be either
a number or a constant identifier. Constants can also be
defined in terms of previously defined constants:

LAMBDA = 1E- 4;

GAMMA = 10 * LAMBDA:

In general the syntax is:

"ident" = "expression";

596

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 15:04 from IEEE Xplore. Restrictions apply.

BUTLER: AN ABSTRACT LANGUAGE FOR SPECIFYING MARKOV RELIABILITY MODELS

"ident" is a string of up to 8 characters and digits begin-
ning with a character and "expression" is an arbitrary
mathematical expression using constants and any of the
following operations:

+ addition
- subtraction
* multiplication
/ division
** exponentiation
= equals
> greater than

greater than or equal
< less than
(less than or equal
AND logical and
OR logical or
NOT logical not

and functions:

SPACE = ("ident": "const"const"{, "ident":

"const" "const"});

The identifiers, "ident", used in the SPACE statement are
referred to as the: state space variables.

4.2 The START statement

This statement indicates which state is the start state
of the model. This state corresponds to the initial state of
the system being modeled, ie, the probability the system is
in this state at time 0 is 1. In the SIFT-like architecture ex-
ample the initial state is (6, 0). This is specified in the
abstract language by:

START = (6, 0);

In general the syntax is:

EXP(X)
LN(X)
SIN(X)
COS(X)
ARCSIN(X)
ARCCOS(X)
ARCTAN(X)
SQRT(X)

exponential function
natural logarithm
sine function
cosine function
arcsine function
arccosine function
arctangent function
square root

Both () and [] can be used for grouping in the expres-
sions. The following commands contain legal expressions:

ALPHA = lE - 4;

RECV = 1.2 * EXP(- 3 * ALPHA);

DELTA = 1.2 * [(ALPHA + 2.3E - 5) * RECV

+ 1/ALPHA];

4.2 The SPACE statement

This statement is used to specify the state space on
which the Markov model is defined. Essentially, the state
space is defined by an n-dimensional vector where each
component of the vector defines an attribute of the system
being modeled. In the SIFT-like architecture example the
state space is (NW, NF). This would be defined in the
abstract language as

SPACE = (NW: 0..6, NF: 0..6);

The 0..6 represents the range of values over which the com-
ponents can vary. The number of components (ie, the
dimension of the vector space) can be as large as desired.
In general the syntax is:

START = ("const"{, "const"});

The dimension of the vector must be the same as in the
SPACE statement.

4.4 The DEA THIF statement

The DEATHIF statement specifies which states are
death states, ie, absorbing states in the model. The follow-
ing is an example in the space (DIMI: 2..4, DIM2: 3..5):

DEA THIF(DIM1 = 4) OR (DIM2 = 3);

This statement defines (4, 3), (4, 4), (4, 5), (2, 3), and (3, 3)
as death states. In general the syntax is:

DEA THIF'expression";

The expression in this statement must be Boolean.

4.5 The TRANTO statement

This is the most important statement in the language.
It is used to describe and consequently generate the model
recursively. The following statement generates all of the
fault-arrival transitions in the model of figure 1:

IF NW > 0 TRANTO (NW - 1, NF + 1)

BYNW * LAMBDA;

The general syntax is:

IF "expression" TRANTO ("expression",

{, "expression"}) BY "expression"

597

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 15:04 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON RELIABILITY, VOL. R-35, NO. 5, 1986 DECEMBER

In all of the expressions of this statement the state space
variables can be used. The value of a state space variable is
the corresponding value in the source state to which the
TRANTO statement is being applied. For example, if the
TRANTO statement is being applied to state (4, 5) and the
state space was defined by SPACE = (A: O..lO, Z: 2..15)
then A = 4 and Z = 5. The first expression following the
IF must be Boolean. Conceptually, it determines whether
this rule applies to a particular state. For example, in the
state space SPACE = (A1: L..5, A2: O..1), the expression
(Al > 3) AND (A2 = 0) is true for states (4, 0) and (5, 0)
only. The vector following the TRANTO reserved word
defines the destination state of the transition to be added
to the model. Each expression within the parentheses must
evaluate to an integer. For example, if the state space is
(Xl, X2) and the source state is (5, 3), then the vector (Xl
+ 1, X2 - 1) refers to (6, 2). The expression following the
BY indicates the rate of the transition to be added to the
model. This expression must evaluate to a real number.

The TRANTO statement is applied to every state in
the model as described by the -

Model-Generation Algorithm

Initialize READY-SET to contain the start state only
WHILE READY-SET is not empty DO

Select and remove a state from READY-SET
IF the selected state does not satisfy a DEA THIF statement THEN
Apply each TRANTO rule to the selected state as follows:
IF the TRANTO if-expression evaluates to TRUE THEN
Add the transition to the model.
If the destination state is new, add it to the READY-SET

ENDIF
ENDIF

ENDWHILE

4.6 Additional feature

Comments are included in the language to increase the
readability of a model description. Comments are placed
between (* and *) and can be used anywhere that a blank
character can be used.

5. EXAMPLE 1: SIFT-LIKE ARCHITECTURE

Now we can specify the model of figure 1 in the
language:

Model

NP = 6; (* number of processors initially *)
LAMBDA = 1E - 4; (* fault arrival rate *)
DELTA = 3.6E3; (* recovery rate *)
SPACE = (NW: O..NP, (* number working processors *)

NF: O..NP); (* number faulty processors *)
START = (NP, 0);
IF NW > 0 TRANTO (NW - 1, NF + 1) BY NW * LAMBDA; (* fault arrivals *)
IF NF > 0 TRANTO (NW, NF - 1) BY NF * DELTA; (* system recovery *)
DEATHIF NF > NW; (* death if majority not working *)

The two TRANTO statements correspond to the first and
third concepts used to define the model:

1. Every processor in the current configuration fails
at rate X.

3. The system removes faulty processors at rate 6.

The DEA THIF statement corresponds to the second con-
cept:

2. A majority of processors in the configuration must
not have failed in order for the system to be safe.

The flexibility and power of this language can be seen by
observing that only the NP = 6 statement would have to
be changed in order to model a similar system which ini-
tially contains 9 processors.

6. EXAMPLE 2- TRIAD WITH SPARES

A system consists of a triad of processors and a set of
cold spares and the following 4 rules.

1. The active triad of processors performs 3-way
voting so that the failure of a single active processor is
masked and thus does not cause system failure.

2. The active processors fail at rate LAMBDA and
the cold spares at a different rate GAMMA.

3. The system can detect a faulty active processor and
is capable of two different types of reconfiguration. If a
spare is available, the system is reconfigured by replacing
the failed processor with a spare at (hazard) rate DELTA.
If no spares are available, reconfiguration is accomplished
by degrading to a simplex at (hazard) rate DEGRATE.

4. If a spare fails it remains undetected, so the recon-
figuration process can bring in a faulty processor.

598

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 15:04 from IEEE Xplore. Restrictions apply.

BUTLER: AN ABSTRACT LANGUAGE FOR SPECIFYING MARKOV RELIABILITY MODELS

Model

NSI = 2; (* number of spares initially *)
LAMBDA = 5E - 4; (* failure rate of active processors *)
GAMMA = 2E - 5; (* failure rate of spares *)
DELTA = 3.6E3; (* rate faulty processors are removed *)
DEGRATE = 1.2E3; (* rate system degrades to a simplex *)
SPACE = (WP: 0..3, (* number of working processors *)

FP: 0..3, (* number of failed active processors *)
NS: O..NSI, (* number of spares *)
FS: O..NSI); (* number of failed spares *)

START = (3, 0, NSI, 0);
IF WP > 0 (* a processor can fail *)
TRANTO (WP - 1, FP + 1, NS, FS) BY WP * LAMBDA;

IF (NS - FS) > 0 (* a spare can fail *)
TRANTO (WP, FP, NS, FS + 1) BY (NS - FS) * GAMMA;

IF (FP > 0) AND (NS > FS) (* a non-failed spare becomes active *)
TRANTO (WP + 1, FP - 1, NS - 1, FS) BY (1 - FS/NS) * DELTA;

IF (FP > 0) AND (FS > 0) (* a failed spare becomes active *)
TRANTO (WP, FP, NS - 1, FS - 1) BY FS/NS * DELTA;

IF (FP > 0) AND (NS = 0) (* no more spares, degrade to simplex *)
TRANTO (1, 0, 0, 0) BY DEGRATE;

DEATHIF FP > WP;

The transitions generated by this specification are:

(3, 0, 2, 0) - (2, 1, 2, 0) BY 3 * LAMBDA

state space grows appreciably as this constant is increased,
yet is easily accomplished via the abstract language:

(3,
(2,
(2,
(2,
(3,
(3,

0,
1,
1,
1,
0,
0,

2,
2,
2,
2,
2,
2,

0) -

0)-
0)-
0)-
1)-
1)-

(2, 1, 2, 1)
(2, 1,2, 1) -
(2, 1,2, 1)-
(2, 1, 2, 1) -
(3 0, 1, 0)-
(3, 0, 1, 0)-
(3, 0, 2, 2) -
(2, 1, 2, 2) -
(2, 1, 2, 2)
(3, 0, 1, 1)-
(2, 1, 1, 0)
(2, 1, 1, 0) -
(2, 1, 1, 0)
(2, 1, 1, 1) -
(2, 1, 1, 1) -
(3, 0, 0, 0) -
(2, 1, 0, 0)
(2, 1, 0, 0)-
(1, 0, 0, 0)

(3, 0, 2,
(1, 2, 2,
(2, 1,2,
(3, 0, 1,
(2, 1,2,
(3, 0, 2,
(1,
(2,
(3,
(2,
(2,
(3,
(2,
(1,
(2,
(2,
(1,
(3,
(2,
(1,
(2,
(2,
(1,
(1,
(0,

2, 2,
1, 2,
0, 1,
1, 1,
1, 1 ,
0, 1,
1, 2,
2, 2,
1, 1,
1, 1,
2, 1,
0, 0,
1, 1,
2, 1,
1, 0,
1, 0,
2, 0,
0, 0,
1, 0,

1) BY 2 * GAMMA
0) BY 2 * LAMBDA
1) BY 2 * GAMMA
0) BY DELTA
1) BY 3 * LAMBDA
2) BY 1 * GAMMA
1) BY 2 * LAMBDA
2) BY 1 * GAMMA
1) BY 0.5 * DELTA
0) BY 0.5 * DELTA
0) BY 3 * LAMBDA
1) BY 1 * GAMMA
2) BY 3 * LAMBDA
2) BY 2 * LAMBDA
1) BY DELTA
1) BY 3 * LAMBDA
0) BY 2 * LAMBDA
0) BY DELTA
1) BY GAMMA
1) BY 2 * LAMBDA
0) BY DELTA
0) BY 3 * LAMBDA
0) BY 2 * LAMBDA
0) BY DEGRATE
0) BY 1 * LAMBDA

By changing the constant NSI, the effect of using more

spares can be investigated. The size and complexity of the

NSI # states # transitions

2 20 26
3 32 46
5 65 104

10 200 354

7. EXAMPLE 3 - TWO TRIADS WITH SPARES

The system characteristics are the same as example 2
except for the additional assumptions 5-7.

5. Both triads are necessary for successful system
operation. Therefore, if two active processors are faulty in
either triad the system fails.

6. As long as spares are available, a faulty processor
in a triad is replaced from the spares pool. If no spares are
available, then a triad is collapsed into a simplex and the
other good processor is added to the spares pool.

7. Spares fail at a different rate than active pro-
cessors. For simplicity, the failed spares are self announc-
ing, viz, immediately recognized as failed (say by an off-
line diagnostic) and thus are not brought into the active
configuration. (Models of systems using imperfect spare
diagnostics can be modeled using this language but would
make this example more complex).

599

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 15:04 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON RELIABILITY, VOL. R-35, NO. 5, 1986 DECEMBER

Model

NSI = 3; (* Number of spares initially, can be anything *)
SPACE = (NI: 0..3, (* Number of processors in first triad *)

N2: 0..3, (* Number of processors in second triad *)
Fl: 0..2, (* Number of faulty processors in first triad *)
F2: 0..2, (* Number of faulty processors in second triad *)
NS: 0..NSI); (* Number of spares *)

START = (3, 3, 0, 0, NSI);
LAMBDA - 5E - 4; (* failure rate of active processors *)
GAMMA = 2E - 5; (* failure rate of spares *)
DELTA = 3.6E3; (* rate faulty processors are replaced w/spares *)
DEGRATE = 1.2E3; (* rate at which a triad is degraded to a simplex *)
DEATHIF (2 * Fl > Ni) OR (2 * F2 > N2);
IF Ni > 0 TRANTO (Ni, N2, Fl + 1, F2, NS) BY (NI - Fl) * LAMBDA;
IF N2 > 0 TRANTO (NI, N2, Fl, F2 + 1, NS) BY (N2 - F2) * LAMBDA;
IF NS > 0 TRANTO (NI, N2, Fl, F2, NS - 1) BY NS * GAMMA;
IF (Fl > 0) AND (NS > 0)

TRANTO (Ni, N2, Fl - 1, F2, NS - 1) BY DELTA;
IF (F2 > 0) AND (NS > 0)

TRANTO (Ni, N2, Fl, F2 - 1, NS - 1) BY DELTA;
IF (Fl > 0) AND (NS = 0) TRANTO (1, N2, 0, F2, NS + 1) BY DEGRATE;
IF (F2 > 0) AND (NS = 0) TRANTO (NI, 1, Fl, 0, NS + 1) BY DEGRATE;

The DEA THIF statement specifies that the system fails if a
majority of processors fail in either triad. The first three
TRANTO statements specify fault arrivals in the two
triads and spares. The next TRANTO statement specifies
recovery when spares are available. The last TRANTO
statement describes the recovery process when no spares
are available. This specification generates a 58-state model
with 89 transitions.

APPENDIX

Language Extensions

The fundamental concept for an abstract specification
language for Markov models has been developed in the
main body of this paper. The constructs of the language
have adequate expressive power to describe complex
systems with a minimal number of statements. However,
there are many possible extensions to this language which
can further simplify the model-description process.

Extension 1: Array State Variables.

The basic language allows the definition of state space
variables with a SPACE statement. The language can easi-
ly be extended to allow an array of state space variables as

follows:

SPACE = (NW: ARRAY[1 .. 31 OF 0..6,

NF: ARRAY[1..3] OF 0..3);

This statement creates a 6-dimensional space. The state
space variables are NW[l], NW[2], NW[3], NF[l], NF[2],
NF[3].

Extension 2: FOR Statement.

Many times several TRANTO statements are needed which
are identical except they operate on different state space
variables. The FOR statement defines several TRANTO
rules at once:

SPACE = (NW: ARRAY[L..5] OF 0..6,

NF: ARRAY[I..5] OF 0..3);

FOR I = 1, 5

IF NW[I] > 0 TRANTO NF[I] = NF[I]

+ 1 BY LAMBDA;

ENDFOR;

This FOR statement is equivalent to five TRANTO
statements, one for each value of I in the range from 1 to 5.
The assignment statement after the TRANTO reserved
word replaces the vector of the basic TRANTO statement.
This statement defines the destination state of each new
transition by specifying the change in a state space variable
from the source to destination state. There can be as many
of these assignment statements after the TRANTO re-
served word and before the BY reserved word as there are
variables in the state space.

600

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 15:04 from IEEE Xplore. Restrictions apply.

BUTLER: AN ABSTRACT LANGUAGE FOR SPECIFYING MARKOV RELIABILITY MODELS

Extension 3: Nested IF THEN ELSE.

The IF expression of the TRANTO statement can be ex-
tended in the obvious way:

IF "expression" THEN
IF "expression" THEN
TRANTO "vector" BY "expression";
TRANTO "vector" BY "expression";
TRANTO "vector" BY "expression";

ENDIF
ELSE

TRANTO "vector" BY "expression";
TRANTO "vector" BY "expression";

ENDIF;

ACKNOWLEDGMENT

I am grateful to Sally Johnson, (the programmer of the
ASSIST program), for her review of this paper, her many
helpful suggestions concerning the language, and the use
of her prototype version of ASSIST in the generation of
the example problems.

REFERENCES

[1] Robert M. Geist, Kishor S. Trivedi, "Ultrahigh reliability prediction
in fault-tolerant computer systems", IEEE Trans. Computers, vol
C-32, 1983 Dec, pp 1118-1127.

[2] Srinivas V. Makam, Algirdas Avizienis, "ARIES 81: A reliability
and life-cycle evaluation tool for fault-tolerant systems",
Proceedings of the Fault-Tolerant Computing Symposium, vol 12,
1982.

[3] Allan L. White, "Upper and lower bounds for semi-Markov
reliability models of reconfigurable systems", NASA CR-172340,
1984.

[4] Ricky W. Butler, "The semi-Markov unreliability range evaluator
(SURE) program", NASA TM-86261, 1984 July.

[5] Jack Goldberg, et al, "Development and analysis of the software
implemented fault tolerance (SIFT) computer", NASA CR-172146,
1984.

AUTHOR

Ricky W. Butler; NASA Langley Research Center; MS 130; Hampton,
Virginia 23665 USA.

Ricky W. Butler is a research engineer at the Langley Research
Center. He received his BA degree from the University of Virginia in
Mathematics in 1976 and his MS degree in Computer Science from the
University of Virginia in 1978. His research interests are in the design and
validation of fault-tolerant computer systems used for flight-critical ap-
plications.

Manuscript TR85-126 received 1985 November 29; revised 1986 August
25.

GOEL, ET AL.: COST ANALYSIS OF A 2-UNIT PRIORITY STANDBY SYSTEM

(continued from page 585)

3. When P-unit fails, the standby unit is switched to
operate. The switch is perfect at the time of need with
probability p.

4. A single repairman is available, to repair a failed
unit or the switch, instantaneously at the time of need with
probability b.

5. The distributions of failure time, repair time, and
repairman availability time (if it is not available instan-
taneously) are general.

Supplement

Detailed derivations and results are given in a
separately available Supplement:

NAPS document No. 04412-F; 21 pages in this Supple-
ment. For current ordering information, see "Information

for Readers & Authors" in a current issue. Order NAPS
document No. 04412, 84 pages. ASIS-NAPS; Microfiche
Publications; POBox 3513, Grand Central Station; New
York, NY 10163 USA.

AUTHORS

L. R. Goel, Head; Department of Statistics; Institute of Advanced
Studies; Meerut University; Meerut - 250 005 INDIA.

Rakesh Gupta, Lecturer; Department of Statistics; Institute of Advanced
Studies; Meerut University, Meerut - 250 005 INDIA.

S. K. Singh, Reader; Department of Mathematics and Statistics; Ravi
Shanker University; Raipur - 492 010 INDIA.

Manuscript TR85-047 received 1985 June 6; revised 1986 June 2. * * *

601

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 15:04 from IEEE Xplore. Restrictions apply.

