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Abstract

The SURE program is a new reliability analysis

tool for ultrareliable computer system archi-
tectures. The program 1is based on computational
methods recently developed for NASA Langley
Research Center. These methods provide an

efficient means for computing accurate upper and
lower bounds for the death state probabilities of
a large class of semi-Markov models. Once a semi-
Markov model 1is described using 'a simple input
language, the SURE program automatically computes

the upper and lower bounds on the probability of
system failure. A parameter of the model can be
specified as a variable over a range of values

directing the SURE program to perform a sensi-
tivity analysis automatically. This feature,
along with the speed of the program, makes it

especially useful as a design tool.
Introduction

A reliability analysis of a reconfigurable
fault-tolerant computer system adequate for an
advanced integrated flight system inevitably
requires the determination of the death—-state
probabilities of a stochastic reliability model.
For more than a decade, automated tools (e.g.,
ARIES, SURF, CARE 1III, etc.) have been developed
to analyze such models. This research has been
motivated by the fact that the traditional methods
of analysis of redundant system configurations
cannot be used to compute the reliability of a
reconfigurable system. For example, the tradi-
tional fault~tree analysis method cannot compute
the probability of failure due to the occurrence
of coincident faults (i.e. the arrival of a second
fault before the system can remove the first
fault). In order to analyze a reconfigurable
system the more powerful Markov (or semi-Markov)
modeling analysis technique 1is necessary. Unfor-
tunately, calculation of the probability of system
failure using a Markov model requires the solution
of a set of coupled differential equations and a
semi-Markov reliability model requires the solu-
tion of a complex system of convolution integrals.
Furthermore, because of the large disparity
between the rates of fault arrivals and system
recoveries, models of fault-tolerant architectures
inevitably lead to numerically stiff integral/
differential equations. This problem, along with
the large computational cost of solving large
state space problems, have 1led to the use of
decomposition/aggregation techniques in recent
reliability analysis tools such as CARE III and

1

HARP. 2 In such programs, the problem is decom—
posed into a fault-handling model and a fault-
occurrence model. Coverage parameters derived

from the solution of the fault-handling model are
inserted by various aggregation techniques into
the fault-occurrence model in order to compute the
system reliability. The coverage parameters are
computed based on the assumption that critical-
pair failures are the dominant failure mode in the
system. Unfortunately, such strategies reduce the
set of architectures that can be modeled.

This paper is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.
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Recently, a new mathematical theorem was
proved which provides bounds for the probability
of entering death states of semi-Markov models (a
general class of stochastic models which inecludes
pure Markov models). ® * The upper and lower
bounds of this theorem are algebraic functions of
simple parameters of the model such as the means
and variances of the transitions. This theorem is
the basis of a new reliability analysis tool named
the Semi-Markov Unreliability Range Evaluator
(SURE). The SURE program processes semi-Markov
models described in a simple input language, and
computes the upper and lower bounds on system
unreliability defined in the theorem. Although an
exact answer is not produced by the SURE program,

the calculated bounds are close together for
reliability models of ultrareliable systems -
usually within 5 percent of each other, The

advantage of the SURE technique is that the bounds

are algebraic in form and, consequently, are
computationally efficient. Very large and complex
models can be analyzed by the program. This is

important since future integrated aircraft elec-
tronics systems will be much 1larger and far more
complex than the non—integrated systems seen
today. Because SURE does not rely on the solution

of integral/differential equations, stiffness is

not a problem. In fact, the "stiffer" the model,
the closer the upper and 1lower bounds are.
Furthermore, the technique applies to a general
class of semi-Markov models (i.e. models
containing exponential fault arrivals and

absorbing death-states) and thus
restrictions on the type of architecture that can
be analyzed. A parameter of the model can be
specified as a variable over a range of values
directing the SURE program to perform a sensi-
tivity analysis automatically.

does not impose

Since SURE can handle a general distribution
of recovery time, the overall fault-handling
process of a fault-tolerant computer system can be
captured in a single transition. It is unneces-
sary to assume some underlying parametric form or
a special model of fault-handling behavior. The
results of experimentation can be directly
utilized. However, if desired, detailed fault-
handling models can be incorporated intco the
system reliability model and analyzed by SURE.

The SURE program is currently running under
VMS 3.7 on VAX-11/750 and VAX-11/780 computers at
the NASA Langley Research Center. The program is
implemented in Pascal and has been designed with
minimal usage of VMS-specific constructs. An
optional graphical display and plotting module is
available. This module 1is written in FORTRAN and
uses a special graphics 1library named TEMPLATE
(available only from Megatek Corporation). The
SURE program can be installed with or without this
module.

Reliability Modeling of Computer System
Architecture

Highly reliable
redundancy to achieve

systems ‘must use parallel
their fault tolerance since



current manufacturing techniques cannot produce
circuitry with adequate reliability. Furthermore,
reconfiguration is often utilized in an attempt to
increase the reliability of the system without the
overhead of even more redundancy. Such systems
exhibit behavior that involves both slow and fast

processes. When these systems are modeled
stochastically, some state transitions are many
orders of magnitude faster than others. The

slower transitions correspond to fault arrivals in
the system. If the states of the system are
delineated properly, then the slow transitions can
be obtained from field data and/or by using the
MIL-STD-217D Handbook calculation, These
transitions are assumed to be distributed exponen-
tially. (Electronic component failure is known to
follow the exponential distribution very closely
after the infant mortality region has passed). °®

The faster transition rates correspond to the
system response to fault arrivals and can be
measured experimentally wusing fault injection.
(Experiments made by the Charles Stark Draper
Laboratory, Inc., on the Fault-Tolerant
Multiprocessor (FTMP), computer architecture have
demonstrated that these transitions are not

exponential). ©

A semi-Markov model of a triad of processors
with one spare is given 1in figure 1. The outputs
of the processors in the triad are voted in order
to mask faults. (In this model it is assumed that
the spares do not fail while inactive.)

Fig. 1

Model of a triad with one spare.

The horizontal transitions represent fault
arrivals. These occur with exponential rate .
The coefficients of X represent the number of
processors in the configuration that can fail.
The vertical transitions represent recovery from a
fault. A recovery transition typically is not
exponentially distributed and, consequently is
described by some general distribution F(t).
Since the system uses three-~way voting for fault
masking, there is a '"race" between the occurrence
of a second fault and the removal of the first.
If the second fault wins the race, then system
failure occurs.

Example SURE Session

Probably, the easiest way to learn the SURE
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input language is by example. The input to the

SURE program for the above model is:

LAMBDA = 1E-4;

MU = 2.7E-4;
SIGMA = 1.3E-3;
1,2 = 3*LAMBDA;
2,3 = 2*LAMBDA;
2,4 = <MU,SIGMA>;
4,5 = 3¥LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MU,SIGMA>;
7,8 = LAMBDA;

The first three statements equate values to iden-~
tifiers. The first identifier LAMBDA represents
the processor failure rate. The next two iden~
tifiers MU and SIGMA are the mean and standard
deviation of the recovery time. Conveniently,
the only information SURE needs about non—expo-
nential recovery processes are the means and
standard deviations. The final seven statements
define the transitions of the model. If the
transition is a slow fault arrival process then
only the exponential rate must be provided. For

example, the 1last statement defines a transition
from state 7 to state 8 with rate LAMBDA (or
1 x 10 H/ hour) . If the transition is a fast
recovery process then the mean and standard
deviation of the recovery time must be given. For
example, the statement 2,4 = <MU,SIGMA> above
defines a transition from state 2 to state 4 with
mean recovery time MU and standard deviation
SIGMA.

The following 1s an illustrative interactive
session using SURE to process the above model.
The above model description has Dbeen stored in a
file named TRIADP1. The user input is underlined.

$ SURE
SURE V4.1 NASA Langley Research Center

1? READ TRIADP1¥;

2: LAMBDA = 1E-6 TO¥ 1E-2 BY 10;

3: MU = 2.7E-4;

4: SIGMA = 1.3E-3;

5: 1,2 = 3¥LAMBDA;

6: 2,3 = 2¥LAMBDA;

7: 2,4 = <MU,SIGMA>;

8: 4,5 = 3*LAMBDA;

9: 5,6 = 2¥LAMBDA;
10: 5,7 = <MU,SIGMA>;

11: 7,8 = LAMBDA;

12: TIME = 10;
137 _RUN;

LAMBDA LOWERBOUND UPPERBOUND

1.00000E-06 1.12127E-14 1.77002E-14

1.00000E~-05
1.00000E~-04
1.00000E-03
1.00000E-02

2.44035E-12
1.56084E~-09
1.45010E-06
1.21116E-03

3.12024E-12
1.66224E~-09
1.51644E~06
1.50186E-03

3 PATH(S) PROCESSED
0.130 SECS. CPU TIME UTILIZED

157 PLOT XYLOG
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EXIT

The first statement uses the READ command to input

the

that LAMBDA is defined as

of

program to

file. It should be noted
a variable over a range

this file. This directs the SURE
automatically perform a sensitivity

model description

values in

analysis as a function of this parameter over the

specified range.

tim
dis
il

greek-word identifiers

Statement 12 defines the mission
e to be 10 hours. Figure 2 shows the model as
played on the graphics device after the input
e is processed. The SURE program displays all
(e.g. SIGMA) as a single

greek character to make the display more readable.

Statement
output on the graphics device.

key

15 directs the program to plot the

Figure 3 shows the

graph generated by this command. The XYLOG
word 1indicates that the X-axis and Y-axis
uld be logarithmic.
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Fig. 2 SURE's graphical display of model.
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Fig. 3 SURE program's plot of output.
When specifying a transition, a parameter may

defined wusing arbitrary expressions of the
stants and the variable. The standard
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operators +, -, ¥, /y ** and the standard
functions EXP(X), LN(X) , SIN(X), COS(X), etec.
may be used. Both ( ) and [ ] may be used for
grouping in the expressions. The following are

permissible SURE statements:

ALPHA
E3A

1E-4; LAMBDA = 2E-14;
1.2*EXP(-3%¥ALPHA);

1,2 = TX*ALPHA + 12*E3A;
2,3 = ALPHA¥(1+LAMBDA) + ALPHA*¥2;
3,7 = 2*LAMBDA + (1/ALPHA)*[LAMBDA +(1/ALPHA)]:

The time required to analyze a large model can
often be greatly reduced by model pruning. It is
essential that this be done carefully in order to
maintain accuracy. The SURE user specifies the
depth of pruning desired using the PRUNE constant.
A path is traversed by the SURE program until the
probability of reaching the current point on the
path falls below the pruning level. Clearly, the
probability of reaching a death state by contin-
uing along this pruned path must be less than the
pruning level. The error resulting from this
pruning method is therefore 1less than the product
of the number of paths pruned (NPP) and the value
of the PRUNE constant. The SURE program will warn
the user if this product is great enough to lead
to less than a user-specified number of digits
accuracy. Typically, the accuracy is far greater
than is guaranteed by this test.

Mathematical Basis

a new theorem
probability of
a specified time.

The SURE program 1is based on
which provides bounds on the
entering a death state within

This theorem must be applied to every path in a
semi-Markov model from the start state to the
death states. By summing the unreliability due to
each path, total system unreliability can be

calculated.

Path-step Classification

Once a particular path has been isolated for
analysis, each state along the path must first be
classified into one of three classes. These
classes are distinguished by the type of transi-
tions leaving the state. A state and the transi-
tions leaving it will be referred to as a "path
step." The transition on the path currently being
analyzed will be referred to as the "on-path
transition.” The remaining transitions will be
referred to as the "off-path transitions." The
classification is made on the basis of whether the
on-path and off-path transitions are slow (and
hence also exponential) or fast. If there are no
off-path transitions, the path step is classified
as if it contained a slow off-path transition.
The classes of path steps along with the infor-
mation required by the SURE program follows:

Class 1: slow on—-path, slow off-path. - All tran-

sitions from a state in this class are slow
(exponential).
Ai = the rate of the on-path exponential
transition leaving state 1i.
Yi = the sum of the off-path exponential

transition rates leaving state 1i.



Class 2: fast on-path, arbitrary off-path.
This class includes all states where the on-path
transition is fast. There may be an arbitrary
number of slow or fast off-path transitions.

e, = the sum of the off~-path exponential
transition rates leaving state 1

Fi K = The distribution of time for a fast
' transition from state 1 to state k

p(F, ) = the probability that the fast

Lk transition from state i to state
k succeeds over the other fast
transitions from state i. (If the

competing fast recovery transitions
were observed experimentally, this
parameter would correspond to the
fraction of time that transition 1
-=> k 1is successful)

w(F. . ) = the conditional mean transition time
from state 1 to state k given
that this transition is successful

02(F. ) = the conditional variance of the
transition time from state i to
state K given that this tran-
sition is successful

Class 3: slow on-path, fast off-path. - This
class includes path steps where the on-path
transition 1is slow but at least one off-path
transition is fast

a, = the slow on-path transition rate from
J state J
Bj = the sum of the slow off-path transition

rates from state

p{(G, . ) = the probability that the fast
transition from state j to state
k succeeds over the other fast
wodeQmwmneQ Konj Qwdwa j

p(G,. , ) = the conditional mean transition time
from state J to state k given
that this transition is successful

UZ(G. ) = the conditional variance of the
transition time from state j to
state k given that this tran-
sition is successful

It should be noted that the parameters
2
p(F1 k), ”(Fi,k)’ v (Fi,k)’ p(Gj,k)’ U(Gj,k

g (G k) are defined independently of the com-—

petlng slow exponential transitions. This was
done so that experimental measurement of these
parameters could be independent of the actual
failure rates of the hardware being tested.
Consequently, the sum of the fast off-path
transition probabilities at each state is 1., 1In
particular, if there 1is only one recovery tran-
sition from a state, the transition probability is
1 and the conditional mean is equivalent to the
unconditional mean recovery time, Although, the
recovery time distributions are specified without
consideration of the competing slow exponential
transitions, the bounding theorem gives bounds
that are correct 1in the presence of such expo-

), and

nential transitions.

The Semi-Markov Bounding Theorem

Preliminary Notation - For convenience, when

referring to a specific path in the model, an on-
path recovery distribution will be indicated by
using only one subscript indicating the source
state. For example, if the transition with dis-

tribution Fj K is the on-path transition, then
i)

it can be referred to as Fj:

Fj K = the kth recovery transition from state
’ J
Fj = the on-path recovery transition from

state

The theorem is also expressed in terms of the mean
and variance of the ‘'"recovery holding time"
defined below:

)

n.,
_vJ
U(Hj) —kz1p(Gj’k) u(GJ.’k

n,
2 B J 2 2 .2
o (HJ) = {kz1p(Gj,k)[o (Gj,k)+“ (Gj,k)]} u (HJ)

Theorem. The probability D(T) of entering a
particular death state within the mission time T,
following a path with k class 1 path steps, m
class 2 path steps, and n class 3 path steps, is
bounded as follows:

LB £ D(T) =

where

m n
UB = E(T) 1 p(F.,) N a,u(H,)
i=1 g1
u (F )+0° (F )
LB=E(TA)Hp(F)[1-eu(F)— —————— SR -]
i=1 r,
1
1o (u(H)-C (8.0 /20175, 1020, )+ 02 ()T}
je1 9 J NN N J J
and

E(T) = the probability of traversing a path
consisting of the k class 1 path
steps within time T.

for all ry > 0 and sj > 0 such that A< T.

The SURE program uses the following values of r,
and sj: i



r. =
i H

5, =

3 o

Two simple algebraic approximations for E(T)
were given by White ® - one that overestimates and
one that underestimates; respectively:

E(T) < Eu(T) =

E(T) > El(T) Eu(T)[1 - T/(k+1).2 (Ai + Yi)]

i=1

Both Eu(T) and EQ(T) are close to E(T)

long as T 2 (Ai + Yi) is small. Optionally, the
SURE user may specify that a matrix exponential
solver be used to calculate E(T) and E(T - A).

This is necessary for long mission times where
these algebraic bounds separate significantly.

as

An alternate formulation of the bounding theorem
in terms of means and percentiles has been
developed. 7 The SURE program also implements
these bounds but the details will not be presented
in this paper.

Transient and Intermittent Fault Models.

theorem on which SURE is
apply to models that are
The problem with non-

is that the circuits in
the model 1lead to an

The mathematical
based does not directly
not pure death processes.
pure death process models
the graph structure of
infinite sequence of paths of increasing length.
However, the longer the path, the less significant
is its contribution to the probability of entering
a death state. The SURE program automatically
unfolds a circuit into a sequence of paths. The
truncation point is user-specifiable via the
TRUNC command. If TRUNC = 4 then the sequence
of paths is terminated after unfolding the loop
four times. It is recommended that the user try

several values of TRUNC until convergence is
certain. Convergence typically occurs in
transient fault models after unfolding a circuit

two or three times.
of to intermittent
and thus, like

a infinite sequence of
however, the problem is
circuit in an intermittent
model contains only fast transitions, the rate of
convergence can be very slow. In fact, the trun-
cation point typically cannot be set to less than
100 unfoldings.

Models systems subject
faults also contain circuits
transient faults, lead to
paths., Computationally,
different. Since the

An alternative approach is recommended when
convergence is slow. Suppose the intermittent
fault oscillates between the benign and active

states with rates o and g respectively. If the
system's unconditional recovery rate is &, then
it can be shown that the conditional mean u and

. 2 .
variance o of the recovery time are
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02= (a+8)2 + 208
3252

Using these formulas, the
to be explicitly entered
recovery transition is
mean and variance, the
is implicitly included.

a B loop does not have
into the model. If the
defined wusing the above
effect of the intermittent

SURE Session Using Multiple Run Plotting

In this section an example SURE session is pre-
sented, where a degradable quadruplex system
subject to transient faults 1is analyzed. The

arrival rate of the transient faults, LAMBDA T, is
10 times the arrival rate of permanent fEults,
LAMBDA P. The transients are assumed to disappear
with exponential rate BETA. For simplicity, the
latency of a transient fault 1is assumed to be

zero. The operating system waits OMEGA units of
time before reconfiguring a faulty processor. If
the fault disappears prior to this time, it is

assumed to be transient and the processor is not
removed., The mean and standard deviation of the
recovery time in the presence of a permanent fault
is assumed to be OMEGA. The variance in this
recovery time comes from permanent fault latency.
The SURE session follows:

$ SURE
SURE Vi.1 NASA Langley Research Center

1? PLOTINIT BETA
2? READ QUAD¥*

3: LAMBDA P = 1E-U;
4: LAMBDA T = 10¥LAMBDA_P;
5: INPUT BETA;
BETA? 1ES
6: OMEGA = 2E~5 TO* 2E-2;
7: PROBTREC = EXP(-BETA*OMEGA);
8:
9: 1,2 = U*LAMBDA_P;
10: 2,3 = 3¥LAMBDA_P;
11: 1,4 = UXLAMBDA T;
12: 4,1 = FAST BETA;
13: 2,5 = <OMEGA, OMEGA>;
14: 4,5 = < OMEGA, 0.0, PROBTREC >;
15: 4,8 = 3*LAMBDA_T + 3*LAMBDA_P;
16: 5,6 = 3¥LAMBDA P;
17: 6,7 = 2%¥LAMBDA_P + 2¥LAMBDA T;
18: 6,10 = <OMEGA, OMEGA>;
19: 5,9 = 3¥LAMBDA T;
20: 9,5 = FAST BETA;
21: 9,10 = < OMEGA, 0.0, PROBTREC >;
22: 10,11 = LAMBDA_P + LAMBDA_T;
23: 9,12'= 2¥LAMBDA T + 2*¥LAMBDA_P;
24: START = 1; -
25: TIME = 10;
26: POINTS = 25;
27: TRUNC=2;
28? LIST = 0O
29? RUN
307 PLOT+ XYLOG
312 ECHO=0;
322 READ QUAD



BETA? 1E6

55?7 RUN
56? PLOT+ XYLOG
577 EXIT

The first statement initializes the SURE program
for multiple run plotting. The next command
initiates a read of a file named QUAD containing
the reliability model. The INPUT statement in the
file causes the SURE program to prompt for the
value of BETA when the file is read. The model is
displayed on the graphics terminal as the file is
read (see Fig. 4). The TRUNC=2 command (line 27)
specifies that the loops in the model be unfolded

two times. The output of the RUN command is
pressed via the LIST=0 command (line 28).

sup-
The

upper and lower bounds are plotted via the PLOT+

XYLOG command (See Fig. 5).

& Lsoa

Fig 4, Model display of a quad subject to
transient and permanent failure.

Probabl ity of Failure

Fig. 5 Plot of system failure probability
as a function of OMEGA.
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At statement 32, the file is re-read and another
value for BETA is specified. Since prior to this
command (line 31) ECHO=0 is specified the contents
of the file are not echoed back to the terminal.
After the RUN command, both sets of run data are
plotted on the graphics device simultaneously (see
Fig. 6). The plot reveals the effect of different
values of OMEGA (the time the operating system
waits to see if a fault 1is transient) and BETA
(the rate of disappearance of a transient fault)
on the probability of system failure. As
expected, if OMEGA 1is too small, then system
reliability decreases because the system incor-
rectly reconfigures processors with transient
faults too often. If OMEGA is too large, system
reliability decreases because the system does not
reconfigure permanent faults fast enough. The
optimal point can be seen to be strongly dependent
on BETA. By examining a model in this manner, the
SURE program can be used to optimally select the
design parameters of a system.
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19°° 1074 1073 1072 1971

OMEGR

Fig. 6 Plot of system failure probability
for two values of BETA.

Concluding Remarks

The SURE program is a flexible, user-friendly,
interactive design/validation tool. The program
provides a rapid computational capability for
semi-Markov models useful in describing the fault-
handling behavior of fault-tolerant computer
systems. The only modeling restriction imposed by
the program is that general recovery transitions
must be fast in comparison to the mission time.
For systems with recovery times greater than the
mission time, the bounds are still correct, but
they are not close together. The SURE reliability
analysis method wutilizes a fast approximation
theory developed by Allan L. White of PRC Kentron,
Inc., and later generalized by Larry D. Lee of the
Langley Research Center and White. This approx-
imation theory enables the calculation of upper
and lower bounds on system reliability. These
upper and lower bounds are typically within about
5 percent of each other. Since the computation



method is extremely fast, large state space models
can be analyzed.

Although the approximation theory does not
explicitly deal with models that are not pure
death processes, the SURE program utilizes simple
path truncation strategies to enable the analysis
of such models. Consequently, transient and
intermittent behavior of fault-tolerant computer
systems can be investigated with the SURE program.
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