
NASA Langley’s Research and Technology-Transfer

Program in Formal Methods

Ricky W. Butler
Victor A. Carreño

Ben L. Di Vito
Kelly J. Hayhurst

C. Michael Holloway
Jeffrey M. Maddalon

Paul S. Miner
César Muñoz (ICASE)
Alfons Geser (ICASE)

Hanne Gottliebsen (ICASE)

Assessment Technology Branch
NASA Langley Research Center

Hampton, Virginia

http://shemesh.larc.nasa.gov/fm.html

May 2002

Abstract

This paper presents an overview of NASA Langley’s research program in formal methods.
The major goals of this work are to make formal methods practical for use on high integrity
systems, to orchestrate the transfer of this technology to U.S. industry through use of carefully
designed demonstration projects, and to exploit this technology to help achieve NASA’s goals
in aeronautics. Several direct technology transfer efforts have been initiated that apply formal
methods to critical subsystems of real aerospace computer systems.

1

Contents

1 Rationale For a Formal Methods Research Program 4
1.1 The Problem With Software and Hardware . 5
1.2 What is Formal Methods . 6

2 Goals of Our Program, Strategy, and Research Team 7
2.1 Scope of Effort . 7
2.2 Technology Transfer . 7

3 Recent Technology Development and Transfer Projects 8
3.1 Formal Analysis of Air Traffic Management Systems 8
3.2 Formal Analysis of AILS . 9
3.3 Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) . . 9
3.4 Aviation Safety Program . 10
3.5 Information Technology Strategic Research (ITSR) 11

3.5.1 Integrated Modular Avionics . 11
3.5.2 MC/DC Tutorial . 12
3.5.3 Object Oriented Technology in Aviation . 12
3.5.4 PVS Strategies . 12

3.6 Engineering For Complex Systems Program . 13
3.6.1 CAUSE . 13
3.6.2 FENCE . 13
3.6.3 Formal Specifications Database . 14

3.7 Timing Analysis by Model Checking . 15
3.8 PVS Development . 15

3.8.1 Langley Inhouse Contributions . 15
3.8.2 Open PVS Contract . 16
3.8.3 Past Enhancements . 17
3.8.4 PVS Classes . 17

4 Past Efforts 18
4.1 Fundamental Research . 18

4.1.1 Streamlining Software Aspects of Certification 18
4.1.2 Formal Methods Analysis of Mode Confusion 18
4.1.3 Formal Analysis of Avionics Partitioning . 19
4.1.4 Translating UML Into PVS . 20
4.1.5 Previous ICASE Research . 20
4.1.6 Efficient Validation of Superscalar Microprocessors 20
4.1.7 Specification of Floating-point Arithmetic . 20
4.1.8 Hardware Verification Using Coinduction . 21
4.1.9 Formal Modeling of Dynamic Systems . 21

4.2 Early Technology Transfer Projects . 22
4.2.1 AAMP5/AAMP-FV Project . 22
4.2.2 Tablewise Project . 22
4.2.3 Space Shuttle Change Requests . 23
4.2.4 Boeing Hardware Devices . 23
4.2.5 Verification of Existing Ada Applications Software 24

2

4.2.6 Asynchronous Communication . 24
4.2.7 Digital Design Derivation . 24
4.2.8 NASA Small Business Innovative Research Program 24
4.2.9 Union Switch and Signal . 25
4.2.10 CSDL Scoreboard Hardware . 25
4.2.11 Allied Signal’s Hybrid Fault Algorithms . 25

4.3 Fault-tolerant Systems . 26
4.3.1 The Reliable Computing Platform . 26
4.3.2 Clock Synchronization . 27
4.3.3 Byzantine Agreement Algorithms . 28

5 Coordination Activities 29
5.1 Relationship to NASA Program Offices . 29
5.2 FAA/RTCA Involvement . 29

6 Summary 30

3

1 Rationale For a Formal Methods Research Program

NASA Langley Research Center has been developing techniques for the design and validation of
flight critical systems for over two decades. Although much progress has been made in developing
methods to accommodate physical failures, design flaws remain a serious problem [85, 112, 57, 1,
77, 49, 124].

The following recent events show the potential of design errors for disaster:

• The maiden flight of the Ariane 5 launcher (June 4 1996) ended in an explosion. Total loss
was over $850 million.

• Between June 1985 and January 1987, a computer-controlled radiation therapy machine,
called the Therac-25, massively overdosed six people, killing two.

• Replacement of defective Pentium processors costs Intel Corp. $475 million in 1995.

• The April 30, 1999 loss of a Titan I, which cost the taxpayers $1.23-billion, was due to
incorrect software (incorrectly entered roll rate filter constant)

• December 1999 loss of the Mars Polar Lander was due to an incomplete software requirement.
A landing leg jolt caused engine shutdown.

• Denver Airport’s computerized baggage handling system delayed opening by 16 months. Air-
port cost was $3.2 billion over budget.

• Patriot failure at Dharan (software error put tracking off by 0.34 of a second)

A January 24, 1999 report from the Office of Science and Technology Policy entitled Information
Technology For The Twenty-First Century: A Bold Investment In America’s Future states

Software research was judged by The President’s Information Technology Advisory
Committee to be the highest priority area for fundamental research. From the desktop
computer to the phone system to the stock market, our economy and society have be-
come increasingly reliant on software. This Committee concluded that not only is the
demand for software exceeding our ability to produce it; the software that is produced
today is fragile, unreliable, and difficult to design, test, maintain, and upgrade.

Although the aviation industry has been more conservative and cautious in its adoption of infor-
mation technology than most other industries, it is beginning to suffer from the effects of software.
David W. Robb (editor) writes in the Oct 1996 issue Avionics Magazine:

Avionics have never been more clearly at center stage. The benefits of flat-panel and
heads-up displays, the precision of GPS positioning, ... and the flexibility of integrated
avionics, to name just a few areas, are transforming aviation almost faster than we can
print these words.

It is no secret that aircraft are becoming ever more dependent on their onboard elec-
tronics. The emerging world of CNS and Free Flight promises to accelerate this trend
dramatically. As the equipment grows more capable and sophisticated, so does the
challenge of testing and maintaining it.

Harry C. Stonecipher, President and Chief Operating Officer The Boeing Company. wrote in an
article entitled ”Getting It Right: Defense Acquisition for the 21st Century” May 26, 1999:

4

... avionics systems account for about one-third of the fly-away cost of a military
aircraft and a significant amount of its life-cycle cost. It goes without saying that our
warfighters are increasingly dependent upon the use of avionics systems for everything
from navigation to targeting and to battlefield management.

1.1 The Problem With Software and Hardware

Digital systems (both hardware and software) are notorious for their unpredictable and unreliable
behavior:

Studies have shown that for every six new large-scale software systems that are put
into operation, two others are canceled. The average software development project
overshoots its schedule by half; larger projects generally do worse. And three quarters
of all large systems are “operating failures” that either do not function as intended or
are not used at all.

Despite 50 years of progress, the software industry remains years–perhaps decades–short
of the mature engineering discipline needed to meet the demands of an information-age
society[52].

Lauren Ruth Wiener describes the software problem in her book, Digital Woes: Why We Should
Not Depend Upon Software:

Software products—even programs of modest size—are among the most complex ar-
tifacts that humans produce, and software development projects are among our most
complex undertakings. They soak up however much time or money, however many
people we throw at them.

The results are only modestly reliable. Even after the most thorough and rigorous
testing some bugs remain. We can never test all threads through the system with all
possible inputs[156].

The hardware industry also faces serious difficulties, as evidenced by the 1994 design error in
the Pentium floating-point unit. In response to an outcry over the design flaw in the Pentium
floating point unit, Intel’s President, Andy Grove, wrote on the comp.sys.intel Internet bulletin
board:

After almost 25 years in the microprocessor business, I have come to the conclusion
that no microprocessor is ever perfect; they just come closer to perfection with each
stepping. In the life of a typical microprocessor, we go thru [sic] half a dozen or more
such steppings....

Three basic strategies have been advocated for dealing with the design fault problem for the life-
critical system: (1) Testing (Lots of it) (2) Design Diversity (i.e. software fault tolerance: N-version
programming, recovery blocks, etc.), and (3) Fault Avoidance (i.e. formal specification/verification,
automatic program synthesis, reusable modules). The problem with life testing is that in order to
measure ultra-reliability one must test for exorbitant amounts of time. For example, to measure
a 10−9 probability of failure for a 1 hour mission one must test for more than 109 hours (114,000
years).

The basic idea of design diversity is to use separate design and implementation teams to produce
multiple versions from the same specification. At run-time, non-exact threshold voters are used to

5

mask the effect of a design error in one of the versions. The hope is that the design flaws will manifest
errors independently or nearly so. By assuming independence, one can obtain ultrareliable-level
estimates of reliability, even with failure rates for the individual versions on the order of 10−4/hour.
Unfortunately, the independence assumption has been rejected at the 99% confidence level in several
experiments for low reliability software [80, 81].

Furthermore, the independence assumption cannot be validated for high reliability software
because of the exorbitant test times required. If one cannot assume independence then one must
measure correlations. This is infeasible as well; it requires as much testing time as life-testing the
system, because the correlations must be in the ultrareliable region in order for the system to be
ultrareliable. Therefore, it is not possible, within feasible amounts of testing time, to establish that
design diversity achieves ultrareliability. Consequently, design diversity can create an “illusion” of
ultrareliability without actually providing it. For a more detailed discussion, see [14, 13].

1.2 What is Formal Methods

Engineering relies heavily on mathematical models and calculation to make judgments about de-
signs. This is in stark contrast to the way in which software systems are typically designed—with
ad hoc technique and after-implementation testing. Formal methods bring to software and hard-
ware design the same advantages that other engineering endeavors have exploited: mathematical
analysis based on models. Formal methods are used to specify and model the behavior of a system
and to formally verify that the system design and implementation satisfy functional and safety
properties. Formal methods refers to the use of techniques from logic and discrete mathematics
in the specification, design, and construction of computer systems (both hardware and software)1

and relies on a discipline that requires the explicit enumeration of all assumptions and reasoning
steps. Each reasoning step must be an instance of a relatively small number of allowed rules of
inference. In essence, system verification is reduced to a calculation that can be checked by a
machine. In principle, these techniques can produce error-free design; however, this requires a
complete verification from the requirements down to the implementation, which is rarely done in
practice.

Thus, formal methods is the applied mathematics of computer systems engineering. It serves
a similar role in computer design as Computational Fluid Dynamics (CFD) plays in aeronautical
design, providing a means of calculating and hence predicting what the behavior of a digital system
will be prior to its implementation.

The tremendous potential of formal methods has been recognized by theoreticians for a long
time, but the formal techniques have remained the province of a few academicians, with only a few
exceptions such as the Transputer [2] and the IBM CICS project [69]. NASA Langley’s program has
helped to advance the capabilities of formal methods to the point where commercial exploitation
is near.

It is important to realize that formal methods is not an all-or-nothing approach. The application
of formal methods to the most critical portions of a system is a pragmatic and useful strategy.
Although a complete formal verification of a large complex system is impractical at this time, a
great increase in confidence in the system can be obtained by the use of formal methods at key
locations in the system. For more information on the basic principles of formal methods, see [15].

1“Formal” means that the methods of reasoning are valid by virtue of their form and independent of their content.

6

2 Goals of Our Program, Strategy, and Research Team

The major goals of the NASA Langley research program are to make formal methods practical for
use on high integrity systems developed in the United States, to orchestrate the transfer of this
technology to industry through use of carefully designed demonstration projects, and to exploit this
technology to help achieve NASA’s ambitious goals in aeronautics. Our intention is to concentrate
our research efforts on the technically challenging areas of digital flight-control systems design
that are currently beyond the state-of-the-art, while initiating demonstration projects in problem
domains where current formal methods are adequate. The challenge of the demonstration projects
should not be underestimated. That which is feasible for experts that have developed the tools and
methods is often difficult for practitioners in the aerospace industry. There is often a long “learning
curve” associated with the tools, the tools are not production-quality, and the tools have few or no
examples for specific problem domains. Therefore, we are setting up cooperative efforts between
industry and the developers of the formal methods to facilitate the technology transfer process.

2.1 Scope of Effort

It is important to realize that formal methods include a large class of mathematical techniques and
tools. Methods appropriate for one problem domain may be totally inappropriate for other problem
domains. The following are some of the specific domains in which our program has concentrated:
(1) architectural-level fault tolerance, (2) clock-synchronization, (3) interactive consistency, (4)
design of hardware devices such as microprocessors, memory management units, DMA controllers,
(5) warning systems for closely spaced parallel landings, (6) design and verification of application-
specific integrated circuits (ASICS), (7) Space Shuttle software, (8) navigation software, (9) decision
tables, (10) railroad signaling systems, and (11) flight guidance systems. We have also sought to
develop formal methods for different portions of the life-cycle, such as (1) requirements analysis,
(2) high-level design, (3) detailed design, and (4) implementation.

In the first decade of our program we focused on demonstrating the feasibility of using formal
methods to produce high quality systems. Over the last few years, as formal methods have grown
in acceptance in certain arenas (e.g. semi-conductor industry), we have shifted our attention to
software systems and to making formal methods cost-effective. Although we have always indirectly
supported tools, we are now more directly supporting tool development. Rushby explains in [115],
how the NASA-sponsored demonstration projects have lead to significant improvements in the
Prototype Verification System (PVS) theorem prover that SRI International (SRI) is developing.
Several domain-specific tools have been sponsored: (1) Tablewise, (2) VHDL-analysis tool, and (3)
DRS. These tools are discussed in later sections.

Often, there is a sizable effort associated with the development of the background mathematical
theories needed for a particular problem domain. Although such theories are reusable and in the
long run can become “cost-effective”, the initial costs can be a deterrent for industry. Therefore,
one of the goals of the NASA Langley program is to build a large body of background theories
needed for aerospace applications.

We also have been involved with standards activities in order to move formal methods technology
into digital avionics standards.

2.2 Technology Transfer

The key to successful technology transfer is building a cooperative partnership with an industrial
research or development team. We have recognized that in order for such partnerships to work, it is

7

essential that NASA Langley become directly involved in specific problem domains of the aerospace
industry. Equally important is the need for industry to make investments to work with NASA on
joint projects and help devise realistic and practical demonstration projects. The ultimate goal
of our technology transfer process is for formal methods to become the “state-of-the-practice” for
developing high integrity digital avionics systems in the United States

Our basic approach to technology transfer is as follows. The first step is to find an industry
representative who is interested in formal methods, believes that there is a potential benefit of such
methods, and is willing to work with us. The next step is to fund our formal methods research
team to apply formal methods to an appropriate application. This process allows the industry
representative to see what formal methods are and what they have to offer, and it allows us (the
formal methods team) to learn the design and implementation details of state-of-the-practice com-
ponents so we can better tailor our tools and techniques to industry’s needs. If the demonstration
project reveals a significant potential benefit, the next stage of the technology transfer process is
for the industry representative to initiate an internal formal methods program, and begin a true
cooperative partnership with us.

Another important part of our technology transfer strategy is working with the Federal Aviation
Administration (FAA) to update certification methods with respect to formal methods. If the
certification process can be redefined in a manner that awards credit for the use of formal methods,
a significant step toward the transfer of this technology to the commercial aircraft industry will
have been accomplished.

Langley has also been sponsoring a series of workshops on formal methods. The first work-
shop, held in August 1990, focused on building cooperation and communication between U.S.
formal methods researchers[18]. The second, held in August 1992, focused on education of the U.S.
aerospace industry about formal methods[76]. The third workshop was held in May 1995[63], the
fourth in September 1997 [65], and the fifth in June 2000 [64].

Finally, to facilitate technology transfer, much information on NASA Langley’s formal methods
research is available on the Internet via the World Wide Web at the following location:

http://shemesh.larc.nasa.gov/fm/

3 Recent Technology Development and Transfer Projects

3.1 Formal Analysis of Air Traffic Management Systems

This work is part of NASA’s Aviation System Capacity (ASC) Program that is led by NASA
Ames. The objective of the Advanced Air Transportation Technologies (AATT) component of this
program is to improve the overall performance of the National Airspace System (NAS). Under
AATT, Distributed Air Ground Traffic Management (DAG-TM) is a long-term concept for gate-
to-gate NAS operations beyond the year 2015. It will address dynamic NAS constraints such as
bad weather, Special Use Airspace (SUA) and arrival metering/spacing. The goal of DAG-TM is to
enhance user flexibility/efficiency and increase system capacity, without adversely affecting system
safety or restricting user accessibility to the NAS. Current work is looking at the formal analysis
of conflict detection and resolution algorithms (CD&R) and merging and self-spacing algorithms
that are being developed for the DAG-TM thrust.

A generalization of Karl Bilimoria’s CD&R algorithm (used in FACET) to 3 dimensions was
accomplished at ICASE[45, 19, 109]. The solution is decomposed into two pieces: CD3D and
KB3D, algorithms for conflict detection and resolution, respectively. A conflict is a projected
incursion of the intruder aircraft within the protected zone of the ownship. A solution is a single

8

maneuver, to be performed by the ownship, that effectively keeps the required minimum separation
without cooperation of the intruder aircraft. Both algorithms CD3D (Conflict Detection) and
KB3D (Conflict Resolution) have been formally verified in PVS [46]. Recently work on optimal
return paths has been completed[50].

Current work is also looking at new algorithms for merging and sequencing aircraft in the
terminal area.

3.2 Formal Analysis of AILS

The Airborne Information for Lateral Spacing (AILS) is a research project within the Reduced
Spacing Operations (RSO) element of the Terminal Area Productivity (TAP) Program at NASA.
The objective of the AILS research is to increase the ability of aircraft to land on closely-spaced
parallel runways in Instrument Meteorological Conditions (IMC). The current minimum runway
separation for independent landings during IMC is 4300 feet. Using AILS, independent parallel
approaches down to 2500 feet separation are expected to be possible. The AILS system is an
airborne alerting system that uses Automatic Dependent Surveillance-Broadcast (ADS-B) datalink
and differential GPS.

This inhouse project is exploring the use formal methods to analytically demonstrate that the
AILS alerting algorithm complies with its requirements for all possible parallel landing scenarios.
In particular, the following property is being proved:

For all possible states s1, s2 and all possible trajectories and assuming that one of the
airplanes is in its intended course at the time of the prediction, the algorithm modeled
by the function chtrack will warn i seconds before a collision.

3.3 Scalable Processor-Independent Design for Electromagnetic Resilience (SPI-
DER)

The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) project is a
new project jointly sponsored by NASA and the FAA. The purpose of this project is to develop an
advanced fault-tolerant computer system, gain understanding of the new RTCA DO-254 guidance
document by developing SPIDER in accordance with its provisions, and generate training materials
for the FAA. The RTCA DO-254 document entitled “Design Assurance Guidance for Airborne
Electronic Hardware” is intended to provide a basis for the certification of complex electronic
hardware devices used in future aircraft.

For the case study, a core subsystem of the Scalable Processor-Independent Design for Elec-
tromagnetic Resilience (SPIDER) has been selected. SPIDER is a new fault-tolerant architecture
under development at NASA Langley Research Center. Several factors motivated the choice of a
fault-tolerant system for this exercise. Hardware realizations of fault-tolerant protocols are gen-
erally compact designs; this allows for comprehensive treatment within the time constraints of a
training exercise. Also, the behavior of fault-tolerant devices is inherently complex; such a device
is clearly within the scope of DO-254. Furthermore, there is a considerable amount of research
literature addressing the formal analysis of fault-tolerant protocols; a fault-tolerant system is a
good candidate for a formal methods demonstration. Finally, any device expected to recover from
transient failures will necessarily need to deal with a bounded set of permanent failures, as well.

In the SPIDER architecture, the primary basis for fault-tolerance is a communication subsystem
called the Reliable Optical Bus (ROBUS). This concept builds on twenty years of fault-tolerant

9

computing research at NASA Langley Research Center2

The SPIDER architecture has been formally modeled and analyzed using a hybrid fault model
(See section 4.2.11.) Faulty nodes are globally classified based on the locally observable character-
istics to other nodes within the system. The system is partitioned into Fault Containment Regions
(FCRs) that ensure independence of random physical failures. The failure status of an FCR is
then one of four mutually exclusive possibilities: Good, Benign Faulty, Symmetric Faulty, and
Asymmetric Faulty. As part of the conceptual design activities, the algorithms for providing the
fault-tolerant services are being formally specified and verified using PVS (http://pvs.csl.sri.com/).
The focus of the verification activities during the detailed design and implementation stages will
be to preserve the integrity of the verification performed at the conceptual design level. We also
intend to explore elemental analysis and safety-specific analysis as we proceed but nothing has been
done with these techniques yet.

An initial lab prototype of the ROBUS has been developed using FPGAs and eight off-the-shelf
PCs. The lab prototype does not have an operating system and is not packaged in EMI-resistant
hardware. The fundamental fault-tolerance protocols (i.e. group membership, clock synchroniza-
tion, interactive consistency) have been completed. The formal proofs are nearly complete3

3.4 Aviation Safety Program

The goal of the new NASA Aviation Safety Program is to reduce the civil aviation fatal accident
rate by 80% in ten years and 90% in twenty years. In 2000, a competitive procurement (NRA
99-LaRC-4) resulted in 4 awards that apply formal methods to this goal.

• Rockwell Collins Advanced Technology Center: Develop extensions to existing methods and
commercial off-the-shelf tools that enable (1) requirements modeling and analysis, (2) safety
analysis and partitioning, (3) mode confusion detection, applying formal methods to many
different portions of the life-cycle, such as (1) requirements analysis, (2) high-level design, (3)
detailed design, and (4) implementation, and (4) auto-generation of code.

• Honeywell Engines and Systems: utilize new Time Triggered Architecture (TTA) developed
in Europe for the automotive industry by TTTech and formal verification methods to de-
velop a FTIMA architecture. Targeted application is Full Authority Digital Engine Control
(FADEC). SRI International is performing a formal verification of the key protocols [133, 134].

• Barron Associates/Goodrich: Develop formal verification methods that can serve as a basis
for certifying non-adaptive neural nets for use on military and commercial aircraft[70].

• University of Virginia/Litton: Identify causes and develop tools to facilitate integration of
formal verification methods into the software development lifecycle within an aerospace com-
pany. Current focus is on developing a specification tool that integrates natural language and
formal language in a synergistic manner.

See section 4.1.2 for previous research this program is building upon. This work is supported by the
Flight Critical Systems Design and Validation component of the Aviation Safety Program (AvSP).

2The main concept was inspired by a fault-tolerant system designed as part of the Fly-by-Light/Power-by-Wire
(FBL/PBW) program.

3The proofs have been completed for earlier versions, but are being updated as nice improvements have been made
to the protocols themselves.

10

3.5 Information Technology Strategic Research (ITSR)

The Information Technology Strategic Research (ITSR) program is being led by NASA Ames.
The current work is centered around the development of a rigorous approach to verifying avionics
computing platforms that support integrated modular avionics.

3.5.1 Integrated Modular Avionics

Two contracts are supporting this thrust:

• Honeywell DEOS Project: A cooperative agreement with Honeywell (SRI International as a
subcontractor) is applying formal methods to DEOS, which is a partitioned real-time operat-
ing system used in Honeywell’s Primus Epic flight deck that is being developed to DO-178B
Level A certification standards.

• Open PVS Project: A contract with SRI International (with Honeywell as a subcontractor)
to open up PVS internals to other domain-specific tools. This contract is also being used to
extend PVS’s capabilities and to directly support the DEOS project. See section 3.8.2 for
details about this work.

The goal of the Honeywell/SRI DEOS project is to demonstrate that formal methods can be
used to assure the safety of new operating systems being developed for commercial avionics that
support Integrated Modular Avionics. Integrated Modular Avionics (IMA) is beginning to emerge
in commercial aviation as a more cost-effective means for implementing advanced avionics systems
(reducing size, weight, power and recurring cost). IMA systems use shared computing resources
to simultaneously host functions of differing criticality in separate logical partitions. But the cost
savings and increased flexibility comes with a significantly greater safety risk. The sharing of
resources raises the possibility of a low criticality task adversely affecting a high-criticality task.
Therefore, it is essential that rigorous methods of assurance be developed that can guarantee
that operating systems that are providing logical partitions are indeed free of errors that could
compromise the safety of critical applications. The verification technology developed under this
task is being demonstrated on a new Honeywell commercial operating system called DEOS.

The developed formal methods technology has already been successfully demonstrated on an
early version of DEOS [27]. However, as DEOS has continued to evolve it has become more

11

complex and the verification problem has become increasingly more difficult. Recently slack-time
reclamation and reallocation has been added to DEOS, which has dramatically increased the size
of the state-space of the formal models. The previous approach based upon model checking has not
scaled up to this problem size. The Honeywell/SRI research team is currently seeking to develop
a verification method based upon both model checking and theorem proving. The status of this
project is available at [28].

For more information about the Open PVS project see section 3.8.2.

3.5.2 MC/DC Tutorial

In cooperation with Rockwell Collins Inc, the Boeing Company, and the FAA, a tutorial was de-
veloped for MC/DC structural coverage, which is mandated by the FAA software certification
document DO-178B[62]. The tutorial provides a practical approach to assessing modified condi-
tion/decision coverage (MC/DC) for aviation software products that must comply with regulatory
guidance for DO-178B level A software. The tutorial’s approach to MC/DC is a 5-step process that
allows a certification authority or verification analyst to evaluate MC/DC claims without the aid of
a coverage tool. In addition to the MC/DC approach, the tutorial addresses factors to consider in
selecting and qualifying a structural coverage analysis tool, tips for reviewing life cycle data related
to MC/DC, and pitfalls common to structural coverage analysis.

3.5.3 Object Oriented Technology in Aviation

The Object Oriented Technology in Aviation (OOTiA) project is a joint effort with the FAA to
develop guidelines for the safe use of object oriented technology in software development. Aviation
software developers, like many software developers, are advocating the use of object-oriented tech-
nology (OOT) as a way to increase productivity and reusability of software. Unlike the mainstream
software industry, however, OOT has not seen widespread use in commercial aviation applications.
A primary reason is that the RTCA/DO-178B guide, Software Considerations in Airborne Sys-
tems and Equipment Certification, does not specifically address OOT. Consequently, certification
authorities have relied on issue papers on a project-by-project basis to address OOT concerns.

Current work on the project includes a task with the Boeing Company to look at the impact of
object orientation on structural coverage. Also, OOTiA workshops with the FAA and industry are
being conducted to identify safety issues relevant to using OOT and to propose acceptable solutions.
The goal is to produce general guidelines to help software developers meet DO-178B when using
OOT; and also provide useful evaluation criteria for certification authorities. Information about
the OOTiA project is available at http://shemesh.larc.nasa.gov/foot/

3.5.4 PVS Strategies

One of the major obstacles to the transfer of formal methods technology to industrial practice has
been the high manpower cost of developing proofs. Although the proof of a complex system property
often involves difficult reasoning, the task is further encumbered in modern theorem proving tools
by an insufficient automated support for manipulating nonlinear algebraic formulas. To overcome
this problem a task was issued to the PVS developers to improve the capabilities of the PVS
theorem prover in this area. Unfortunately the term-rewriting approach taken by the contractor
did not completely resolve the problem. Consequently Dr. Ben Di Vito decided to address the
problem in a new way. He recognized that there will always be a limit to where automation can
carry you, so he decided to develop a suite of proof-manipulation commands that mimic the style

12

of proof used in high-school algebra. These commands raise the level of abstraction of the proof
process and eliminate the need for the time-consuming search for lemmas in the PVS prelude. Dr.
Di Vito also developed a new interface for prover command invocation. See [39] for details. See
also 3.8.1 for related work.

3.6 Engineering For Complex Systems Program

The Engineering for Complex Systems (ECS) Program is part of NASA’s Office of Aerospace
Technology’s Pioneer Revolutionary Technology program. The primary objective of the program is
to develop new approaches to system engineering and design that will substantially reduce safety
and success risks for NASA missions. We have three research projects under ECS:

• Causality Analysis Using Symbolic Expression (CAUSE)

• Formal-Enough Notations for Computer-system Engineering (FENCE)

• Formal Specifications Database

3.6.1 CAUSE

The goal of CAUSE is to develop appropriate notations and tools for creating and analyzing ar-
guments about causes of failures. We believe that fully understanding past failures is an essential
precondition for mitigating safety and success risks when designing new systems. Some expected
benefits from successful completion of the project include the following: (1) improved confidence
in the correctness of explanations of the causes of failures; (2) increased use of lessons taught by
previous failures for improving new designs; and (3) storing of causal explanations in a form suitable
for automated search, retrieval, and analysis.

We are currently completing a detailed analysis of existing notations and techniques for causal
analysis. Once this analysis is complete, we will begin building prototype tools for creating, dis-
playing, analyzing, storing, and retrieving causal arguments[59].

3.6.2 FENCE

The goal of the FENCE project is to develop techniques and tools for appropriate integration of
natural, visual, and formal notations for requirements elicitation, capture, and tracing for software-
intensive systems. The motivation for this work is to try to achieve the benefits of the different
notations, while mitigating the problems of any specific one. The research approach being pursued
is to develop techniques and tools to integrate requirements specifications developed in natural,
graphical, and mathematical languages so that the resulting requirements will be (1) understand-
able by all who must understand them, (2) analyzable for completeness, consistency, and other
desired attributes, and (3) traceable and verifiable throughout the system life-cycle. These tools
and techniques are will be developed through cooperation among computer scientists, software
engineers, system engineers, linguists, and application domain experts.

There are currently three main parts of the FENCE project:

• University of Virginia: Integrating Natural and Formal Languages

• Safeware: Spectrum-RL tools

• Mathworks: Formal Methods Applied to Simulink and Stateflow

13

Integrating Natural and Formal Languages

The University of Virginia is extending the work that they began under the Aviation Safety
Program by further developing the necessary theories and tools to enable the effective integration of
natural language and formal languages for system requirements specification. This research effort
is one of the first in the world to try to apply important concepts from linguistics (such as cognitive
categories, hierarchies, and economy) to the problems of computer system requirements elicitation
and propagation[58].

The Zeus toolkit, which serves as the basis for the work, is available on the web at

http://www.cs.virginia.edu/ zed/zeus/

SpecTRM-RL Development and Demonstration

Safeware Engineering Corporation is working to improve their requirements modeling and anal-
ysis tool named SpecTRM-RL in the following ways:

• Improvement of the human interface to make SpecTRM easily usable by industry with mini-
mal training.

• Expanded visualizations (both static and dynamic) of SpecTRM models.

• Expand the static analysis capabilities of SpecTRM

• Demonstrate the usability of the tool by applying it to a realistic NASA-related system or
subsystem.

Mathworks

SRI is seeking to develop formal methods to support the analysis of Stateflow diagrams. In
principle one would like to model check the Stateflow diagrams which are at the heart of a Simulink
design, but it is impossible to establish anything useful without some knowledge of the constraints
imposed by the differential equations in the other blocks. The SRI approach is to automatically
construct sound discrete abstractions of the differential equations using automated theorem proving
over the reals. A new decision procedure called QEPCAD, which performs quantifier elimination
using cylindrical algebraic decomposition is used to find the sign-invariant regions. The end result
is a completely discrete system you can model check[153].

http://www.csl.sri.com/users/tiwari/hscc02.html

The constructed abstractions are conservative and can be used to establish safety properties
of the original system. The technique works on linear and non-linear polynomial hybrid systems,
that is, the guards on discrete transitions and the continuous flows in all modes can be specified
using arbitrary polynomial expressions over the continuous variables. A prototype tool in the SAL
environment has been developed which uses the PVS theorem prover. The technique appears to
have a good potential to scale to large and complex hybrid systems.

3.6.3 Formal Specifications Database

Despite steady progress in theorem proving tools, effective use of formal methods is still held back
by a lack of codified deductive knowledge. Theorem proving today takes place too close to the

14

ground, too close to first principles. Many of the potential benefits will lie dormant until engineers
can reason at the level of their problem domains rather than elementary properties of mathematics.

The goal of the Formal Specifications Database task is to extend Langley’s work on PVS li-
braries by developing a capability for compiling, structuring and hosting a database of deductive
theories suitable for integration with leading formal methods tools. A large-scale infrastructure
(10K theories, 1M theorems) will enhance productivity for interactive theorem prover users. Pas-
sive collaboration will be encouraged by enabling theory contributions from users worldwide.

A database server is being established based on the PostgreSQL DBMS. Web server interfaces
are being developed using the Zope Web applications tools. A small amount of application software
will need to run within the theorem provers, e.g., special strategies for PVS. Populating the database
will be a large, gradual effort that will be continued through community contributions once the
server is fully operational.

3.7 Timing Analysis by Model Checking

Odyssey Research Associates (now known as ATC-NY) has been awarded a three-year contract to
develop analysis methods for real-time systems analysis. Timing aspects of embedded systems have
been notoriously difficult to analyze and verify. This work will address some of the limitations of
Rate Monotonic Analysis (RMA) by applying model checking, a technique with successful industrial
applications in hardware design. In addition to schedulability, the new methods will be able to
analyze such properties as freedom from deadlock and from certain timing-dependent runtime
errors. The goal is both to increase the design space and to reduce the costs of verification. The
new methods will be applied to a suitable avionics subsystem. The work concentrates on applying
the methods to designs expressed in Abstract Ada, a modeling notation based on a runtime system
that meets the Ravenscar Profile.

3.8 PVS Development

NASA Langley’s formal methods program has exploited the capabilities of PVS (Practical Verifi-
cation System) developed by SRI International

http://www.csl.sri.com/sri-csl-fm.html

in no small measure. We have found the tool to be extremely capable, but have also desired
improvements. Consequently, over the past decade we have funded improvements and extensions
to the PVS system. The application of this theorem prover to real industrial applications has
pushed this technology in many ways. In [115], Sam Owre, et. al. describe how NASA’s program
has shaped the development of PVS. Several tutorial introductions to PVS are available [34, 10,
148, 15, 117, 147] some of which were written at Langley.

3.8.1 Langley Inhouse Contributions

The Langley inhouse team has been supporting the PVS theorem prover by developing libraries
and strategies. Libraries are the main way for users to extend a theorem prover, and they are an
excellent way to support reuse and reduce the cost of new applications.

The following table provides a brief summary of NASA Langley PVS libraries:

15

array.dmp.gz min, max, majority, sort, concatenation over arrays + permutations
calculus.dmp.gz axiomatic version of calculus
div.dmp.gz integer division: Ada and number theory definitions
mod.dmp.gz modulo arithmetic: mod(i,j): {k| abs(k) < abs(j)} = i-j*floor(i/j)
reals.dmp.gz summations, sup, inf, sqrt over the reals, abs lemmas
nat funs.dmp.gz special functions over nats: min, max, mod, div
trig.dmp.gz trigonometry: definitions, identities, approximations
graphs.dmp.gz graph theory: connectedness, walks, trees, Menger’s Theorem
digraphs.dmp.gz directed graphs: circuits, maximal subtrees, paths, dags
number theory.dmp.gz fundamental theorem arithmetic, primes infinite cardinality
bags.dmp.gz bags, finite bags, inductions, conversions to sets
analysis.dmp.gz real analysis, limits, continuity, derivatives
series.dmp.gz power series, comparison test, ratio test, Taylor’s theorem
powersets.dmp.gz powersets: bijections, cardinality
fixedpoints.dmp.gz fixed-points of [set[T] -> set[T]], mu-calculus, dual(H)

The following table provides a summary of the strategies developed at NASA Langley:

Name Download Documentation Concept
Munoz/Mayero field-strategy README-field remove divisions from a formula
Di Vito manip-package.tar.gz manip.ps algebraic manipulation of formulas
Butler test-probs.dmp test-prob-doc.txt theorem prover benchmark problems

These libraries and strategies are available at:

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

The Langley MANIP package assists users to develop proofs of arithmetic properties that require
extensive use of built-in and new libraries. The FIELD package supports automatic proof of
formulas involving division and nonlinear products.

3.8.2 Open PVS Contract

SRI international (with a subcontract with Honeywell HTC) has been awarded a three-year contract
to develop a customizable version of PVS[114, 113, 144]. The goal of this work is provide a
more customizable and more open system architecture for PVS; make decision procedures available
standalone and demonstrate their utility on Honeywell Applications. such as the Honeywell HOPTs
(Hierarchical Operational Procedure Tables) tool for analyzing mode transition tables.

During the first year of the contract, SRI integrated a SAT solver (i.e. propositional satisfiabil-
ity) with their stand-alone ICS decision procedures, which advances the power of the automation
for certain problems (e.g., bounded model checking). The result is that one can automatically solve
enormous formulas with large, complex propositional structures. The idea is as follows. You have
a huge formula with lots of propositional structure (thousands of if-then-elses, ands, implies etc.)
and interpreted terms at the leaves (x+ y < z etc). The basic idea is “variable abstraction”, which
replaces any interpreted term with a new propositional constant (e.g., Q replaces x+ y < z). Then
you try to find a satisfying assignment to the resulting propositional formula (i.e., it’s now a SAT
problem). The SAT solver might come up with a solution that requires Q to be true and some

16

other P to be false etc. and so you now take the interpretation of those terms and give them to
the decision procedure to see if they are simultaneously valid. If so, you’re done; if not, you ask
the SAT solver to find a different solution. Now you know the previous assignment didn’t work
and you don’t want the SAT solver to generate another similar one. But you’ve just applied the
decision procedure to the result of the previous assignment and discovered it is false, so you do a
bit of work to find pieces of that assignment that are inconsistent on their own (e.g., “Q and not
P” might be). You then throw the negation of those into the set of facts that the SAT solver knows
before you ask it for another solution. By being clever about how you do this (and by seeding the
process with facts about all pairs and triples of terms, and by having as many “don’t cares” as
possible) you rapidly cut down the search space. What makes all this work is that the decision
procedures are enormously fast, and so are the latest SAT solvers. The result is that we can now
solve enormous formulas of this type4.

During the second year of the contract SRI focused on adding new capabilities to PVS that
allow authors of specification libraries to control how the system and theorem prover use libraries.
Capability was added to PVS to (1) indicate which formulas should automatically be used as
rewrites and/or expanded during typechecking (macros), (2) control the application of conversions,
and (3) allow user-defined proof strategies to be loaded with a library. These capabilities were
implemented in PVS 2.4.1 released January 2002.

3.8.3 Past Enhancements

NASA Langley has supported the development of abstract datatypes in PVS [118] and the formal
semantics for the specification language [143]. In 1996 NASA Langley sponsored the development
of a tabular notation for PVS[116]. NASA Langley also supported the development of the PVS
validation suite and funded a task to develop an approach for efficient direct execution of PVS
specifications that can help users validate their specification through exploration of its behavior
on test cases or symbolic execution. With the 2.3 release of PVS, users “run” a specification as if
were a program, many times faster than can be achieved using rewriting. Static analysis for live
variables allows safe use of destructive updates so that compiled PVS runs at speeds comparable
to an imperative program.

Recently NASA Langley funded SRI to develop a mechanization for theory interpretations. The
developed mechanization will make it possible to show that one collection of theories is correctly
interpreted by another collection of theories under a user-specified interpretation5.

3.8.4 PVS Classes

The formal methods team has provided training classes on the PVS theorem prover every 2 to
3 years (1995, 1997, 1998, 2001). The course is designed to accommodate a small number of
professionals (12-16) with engineering backgrounds and provides hands-on exercises that develop

4Bounded model checking is currently the leading approach in model checking because it is more robust than
BDDs and finds deeper bugs faster. Some researchers are trying to extend SAT solvers with some ability to do
arithmetic (e.g., small-domain instantiations). The SRI approach is unique in that they extend their SAT solver with
a sophisticated decision procedure.

5The mechanization will generate the proof obligations necessary to ensure the appropriate relationship, and
provide theorem-proving enhancements (for example, rewriting under congruences, and congruence closure) that
enable these obligations to be discharged efficiently. The PVS grammar will been extended so that names can
include mappings. The goal is to map uninterpreted types and constants of a source theory into types and constants,
respectively, of another theory.

17

the skills presented in the lectures. There have been attendees from Rockwell Collins, Honeywell,
Loral, Draper Labs, Rome AFB, JPL, and several Universities.

4 Past Efforts

This section describes previous work in three categories: technology transfer, fault-tolerant systems,
other fundamental research.

4.1 Fundamental Research

4.1.1 Streamlining Software Aspects of Certification

Kelly Hayhurst served as the Technical Program Manager for a FAA initiative called Streamlining
Software Aspects of Certification (SSAC) starting in November 1997. The goal of the SSAC program
was to identify and eliminate unnecessary costs in software aspects of certification for both airborne
and ground-based systems. Unnecessary costs in certification not only waste money, but they also
can delay adopting new, safety-enhancing technologies.

Since January 1998, the SSAC team has conducted 3 industry workshops and 1 FAA workshop
to identify specific software issues to be addressed by the program. The team also conducted a
survey of U.S. companies about the extent and significance of the issues identified through the
workshops. A report describing the results and recommendations was published and is available
electronically. The FAA response to the survey recommendations and the letter accompanying this
response are also available in PDF format.

In October 1999, the FAA discontinued funding for the SSAC team activities. However, there
continues to be interest in the SSAC program results and recommendations. A presentation on the
current status of the SSAC program was given at the FAA National Software Conference on April
20, 2000. See

http://shemesh.larc.nasa.gov/ssac/

to obtain details about these workshops and copies of the workshop reports. A published report
[61] about the project is available electronically at

http://shemesh.larc.nasa.gov/ssac/workshop3.html

The FAA response to the survey recommendations and the letter accompanying this response are
also available in PDF format at this web page.

4.1.2 Formal Methods Analysis of Mode Confusion

The January 30, 1995 issue of Aviation Week lists 184 incidents and accidents involving mode
awareness including the Bangalore A320 crash (14 February 1990), the trasbourg A320 crash (20
January 1992), the Habsheim A320 crash (26 June 1988), and the Toulouse A330 crash (30 June
1994) [2]. These incidents and accidents reveal that pilots sometimes become confused about what
the cockpit automation is doing. Consequently, human factors research is an obvious investment
area. However, even a cursory look at the incident and accident data reveals that the mode confusion
problem is much deeper than just training deficiencies and a lack of human-oriented design. This
is readily acknowledged by human factors experts. For example, Charles E. Billings, writes in
Aviation Automation: The Search for a Human-Centered Approach, 1997 (pg 144):

18

... today’s flight management systems are “mode rich” and it is often difficult for pilots
to keep track of them (see Fig 9.2). The second problem, which is related to the first
involves lack of understanding by pilot’s of the system’s internal architecture and logic,
and therefore a lack of understanding of what the machine is doing, and why, and what
it is going to do next.

Similarly, Sarter and Woods write in Decomposing Automation (1994):

What is needed is better understanding of how the machine operates, not just how to
operate the machine.

It seems that further progress in human factors will only come through a deeper scrutiny of the
internals of the automation. Formal methods can contribute in this arena. The fundamental goal
of formal methods is to capture requirements, designs, and implementations in a mathematically-
based model that can be analyzed in a rigorous manner. By capturing the internal behavior of a
flight deck in a rigorous and detailed formal model, the dark corners of a design can be analyzed.

This project is exploring two complementary strategies based on a formal model:

• Visualization: Create and display a clear, executable formal model of the automation that is
easily understood by flight crew and use it to drive the flight deck simulation during training.

• Analysis: Conduct mathematical analysis of the model and search for mode confusion poten-
tial.

The first phase of a new project involving NASA Langley and Rockwell Collins in applying
formal methods to a realistic business jet flight guidance system has been completed and was
reported at DASC’98 [16]. A final report on the phase I work has been published[97].

4.1.3 Formal Analysis of Avionics Partitioning

The RTCA Special Committee 182 (SC-182) was established to develop a Minimum Operational
Performance Standard (MOPS) for an Avionics Computer Resource (ACR). The ACR will have the
capability of performing multiple aircraft functions through use of partitioning. Fundamental to
the success of the ACR strategy is a guarantee that the ACR platform will prevent any application
from corrupting another. In particular, the ACR must provide:

• space partitioning (no matter what an application does it cannot corrupt the memory of
another application), and

• time partitioning (no matter what an application does it cannot prevent another application
from obtaining its scheduled allocation of CPU time)

while supporting:

• inter-partition communications, and

• common modular/configurable I/O (the ACR must allow the partitions access to external
devices through a suite of bus protocols such as ARINC 429, ARINC 629, etc.)

Our first efforts have been directed towards developing an abstract formal model of space
partitioning that can serve as the basis for evaluating the design of an ACR[154, 38]. The PVS
formal model is based on mathematical modeling techniques developed by the computer security

19

community. The model has been used on three candidate designs, each an abstraction of features
found in real systems.

SRI International was funded by the FAA and NASA to identify the requirements for partition-
ing in integrated modular avionics (IMA) and to explore how to achieve those requirements with
very high assurance. The final report entitled “ Partitioning in Avionics Architectures: Require-
ments, Mechanisms and Assurance” has been published [132].

4.1.4 Translating UML Into PVS

Odyssey Research Associates was tasked to develop a UML-based specification and analysis method
appropriate for flight guidance systems. The goal was to develop a specification method that uses
standard UML notation and develop algorithms to translate these specifications into PVS for
analysis. ORA has defined a design style that is strictly hierarchical and local, declarative (i.e.
not operational), and object oriented. The defined UML idiom uses restricted class/state diagrams
and additional stereotypes for specification. ORA has defined the semantics of the UML subset
formally. An executable definition generates formal PVS model of the UML design. The formal
model respects the OO structure of the UML.

4.1.5 Previous ICASE Research

The Formal Methods research program at NASA Langley’s Institute For Computer Applications
in Science and Engineering (ICASE) has been developing and applying techniques and tools for
the specification, analysis, and verification of aerospace digital systems. Research efforts focus
especially on the investigation of heterogeneous verification technologies in order to enhance the
utility of formal methods for specifying, analyzing, and verifying large-scale systems. Topics of
investigation in the past included:

• applying state-exploration methods to the verification of flight-guidance systems and to the
analysis of mode confusion [91, 51, 25]

• developing compositional approaches to Statecharts semantics (including UML Statecharts)[95,
92, 94]

• combining process algebras and temporal logics[26, 93]

4.1.6 Efficient Validation of Superscalar Microprocessors

SRI has developed a new approach to decompose and incrementally build the proof of correctness of
pipelined microprocessors. The approach centers around the construction of an abstraction function
using completion functions, one per unfinished instruction in the pipeline. In addition to avoiding
the term size and case explosion problem that limits the pure flushing approach, the new method
helps localize errors and handles stages with iterative loops. A final report has been written and is
under review to be published as a NASA CR [151].

4.1.7 Specification of Floating-point Arithmetic

Significant portions of the ANSI/IEEE-854 [72] standard have been defined using the PVS [101]
and HOL [20] systems. IEEE-854 is a standard for radix-independent floating-point arithmetic.
The main motivating factors for the formalization of the standard are 1) The creation of a formal

20

specification against which an implementation (such as the AAMP5 [96]) could be verified; 2) The
highly publicized floating-point divide flaw in the Intel Pentium (R) processor [138].

The formalization of the standard has brought to light the interesting and challenging issues
of translating a natural language document into a logic based language in a precise, unambiguous,
and accurate manner. In addition, the formalization of the standard in two different systems has
given the opportunity to compare the verification systems and specification styles [24].

A parameterized formal theory of subtractive floating point division algorithms has been de-
veloped in the PVS specification language. This parameterized theory defines a general algorithm
that covers a broad class of algorithms and can serve as a tool for design tradeoffs. This generalized
theory has been formally proved to satisfy the IEEE-854 standard for floating point arithmetic.
The proof covers the entire class of algorithms. Thus, after an optimal algorithm has been selected
for a particular target technology, and the parameters are shown to be type-correct, one knows that
your selected algorithm is formally consistent with the IEEE standard. This work was presented at
the Formal Methods in Computer-Aided Design Conference (FMCAD) on Nov. 6-8, 1996 [104].

4.1.8 Hardware Verification Using Coinduction

This research was aimed at overcoming some of the technical problems associated with the formal
verification of hardware. Often the initial value of state had to be retained in expression, even
when they are no longer relevant. The formal models included the number of clock ticks since start
of computation, which made it difficult to verify revisions to a design, particular for aggressive
optimizations. Also the formal models restricted the design space available and verification was
still expensive.

This work sought to overcome these limitations through use of a better formal model based
upon stream equations. Hardware designs, which are represented as system of equations, can be
refined using algebraic transformations. The state component represents the current state and
not the initial state and there is no explicit clock parameter. There is also a significant potential
for a much more efficient verification process. Stream equations lead to a corecursive definition
of hardware behavior and hence allows verification by coinduction, a very efficient approach for
verifying design optimizations. A general mechanized support for reasoning about streams (within
theorem proving system PVS was developed and demonstrated on two significant case studies: (1)
Fault-Tolerant Clock Synchronization Circuit [106, 103] and, (2) Floating Point Division[102] .

4.1.9 Formal Modeling of Dynamic Systems

Transition Assertions[21, 22] is an experimental modeling method to represent or specify real-time
systems. The model is intended to be used where timing is a critical element. Timing constrains
can be represented directly in the model and verified using mathematical logic. Variables and
conditions in a system are functions from time to value. A system is specified by using transition
templates which describe a cause and effect relation of the system. Each transition template consists
of a durational lower and upper bound, enabling predicate, and execution predicate. Ten generic
transition templates have been created featuring single transition, multiple transition, transition
with preemption, transition with inertia, and a combination of these.

21

4.2 Early Technology Transfer Projects

4.2.1 AAMP5/AAMP-FV Project

In 1993, NASA Langley initiated a joint project involving Collins Commercial Avionics and SRI
International. The goal was to investigate the application of formal techniques to a commercial
microprocessor design, the Collins AAMP5 microprocessor. The AAMP5 is the latest member
of the CAPS/AAMP family of microprocessors and is object code compatible with the AAMP2
processor [3]. The CAPS/AAMP family of microprocessors has been widely used by the commercial
and military aerospace industries. Some examples of use of earlier members of the family (1) Boeing
747-400 IDS, (2) Boeing 737-300 EFIS, and (3) Boeing 757,767 AFDS

The first phase of the project consisted of the formal specification of the AAMP5 instruction set
and microarchitecture using SRI’s PVS. While formally specifying the microprocessor, two design
errors were discovered in the microcode. These errors were uncovered as a result of questions
raised by the formal methods researchers at Collins and SRI while seeking to formally specify the
behavior of the microprocessor[96, 152]. The Collins formal methods team believes that this effort
has prevented two significant errors from going into the first fabrication of the microprocessor.

The second phase of the project consisted of formally verifying the microcode of a representative
subset of the AAMP5 instructions. Collins seeded two errors in the microcode provided to SRI in
an attempt to assess the effectiveness of formal verification. Both of these errors (and suggested
corrections) were discovered while proving the microcode correct[96]. It is noteworthy that both
the level 2 and level 3 applications of formal methods were successful in finding bugs. Based on the
success of the AAMP5 project, a new effort was initiated with Rockwell-Collins to apply formal
methods in the design level verification of a microprocessor, currently designated as AAMP-FV.
This project is nearing completion.

This work has has significant impact on the development of a hardware verification capability
within PVS [36]. This project has also had major impact on Rockwell Collins. There are now four
engineers at Collins that are skilled in formal methods. In the fall of 1996 Rockwell Collins hired
a formal methods expert whose full-time job is to integrate the use of formal methods into their
product lines.

Rockwell Collins used the formal specifications of the AAMP5/AAMP-FV micro-architecture
as a means to design and perform prototype testing on their JEM1 Java chip. Collins was the
first supplier to SUN Microsystems to deliver a microprocessor that directly executes the JAVA
instruction set.

4.2.2 Tablewise Project

Under NASA funding, Odyssey Research Associates worked with Honeywell Air Transport Sys-
tems Division (Phoenix) beginning in 1993 to study the incorporation of formal methods into the
company’s software development processes. As part of this work, ORA developed a prototype
tool, called TableWise, to analyze the characteristics of certain types of operational procedure
tables[67, 66]. Boeing Defense and Space Systems funded ORA to develop an extension to Table-
wise: to enable it to reason about arithmetic expressions that are commonplace in navigation
system decision logic at Boeing.

22

4.2.3 Space Shuttle Change Requests

A team spread across three NASA centers (LaRC, JSC, and JPL), together with support from
Loral Space Information Systems 6 , SRI International, and Vı́GYAN Inc., was formed to study the
application and technology transfer of formal methods to NASA space programs from 1992 until
1996. The NASA Formal Methods Demonstration Project for Space Applications focused on the
use of formal methods for requirements analysis because the team believed that formal methods
are more practically applied to requirements analysis than to late-lifecycle development phases [73].
This proved to be a valuable decision.

In 1993 a formal specification of a very mature piece of the Space Shuttle flight control require-
ments called Jet Select was developed. Few proofs were produced for the first specification, but 46
issues were identified and several minor errors were found in the requirements. A second specifi-
cation was produced for an abstract (i.e., high level) representation of the Jet Select requirements.
This abstraction, along with the 24 proofs of key properties, was accomplished in under 2 work
months, and although it only uncovered 6 issues, several of these issues were significant [31].

NASA Langley’s primary role in 1994–95 included support for three Space Shuttle software
change requests (CRs)[32]. One CR concerned the integration of new Global Positioning System
(GPS) functions[44, 37]., while a second CR concerned a new function to control contingency aborts
known as Three Engine Out (3E/O)[33], and the third CR concerned improved crew displays when
entering the “heading alignment cylinder” (HAC) during landing [123].

In addition to the Shuttle activities, LaRC contributed to two NASA guidebooks produced
by the inter-center team. The first volume of the guidebook, published in 1995, is intended for
managers of NASA projects who will be using formal methods in requirements analysis activities
[110]. The second volume was published in 1997 and was aimed at practitioners [111]. LaRC’s
efforts in 1996 were directed primarily at this second guidebook volume, with members of the
LaRC team having been the lead contributors.

4.2.4 Boeing Hardware Devices

The Boeing Company was contracted by NASA Langley to develop advanced validation and verifi-
cation techniques for fly-by-wire systems. As part of the project, Boeing explored the use of formal
methods. The goal of this work was two-fold: (1) technology transfer of formal methods to Boeing,
and (2) assessment of formal methods technology maturity.

The first phase of this project focused on the formal verification of “real” hardware devices
using the HOL hardware verification methodology. With the assistance of a subcontract with U.
C. Davis, Boeing partially verified a set of hardware devices, including a microprocessor[159], a
floating-point coprocessor similar to the Intel 8087 but smaller[120, 119], a direct memory access
(DMA) controller similar to the Intel 8237A but smaller[79], and a set of memory-management
units[142, 139]. U. C. Davis also developed the generic-interpreter theory to aid in the formal
specification and verification of hardware devices[160, 158, 157], and a horizontal-integration theory
for composing verified devices into a system[141, 140, 121, 78]. After demonstrating the feasibility
of verifying standard hardware devices, Boeing applied the methodology to a proprietary hardware
device called the Processor Interface Unit (PIU) that was developed for aeronautics and space
applications[48].

Boeing and U.C. Davis also performed an assessment of the U.K. Royal Signals and Radar
Establishment’s (RSRE) VIPER chip [86]. This was part of a now-completed 3 year Memorandum

6now Lockheed Martin Space Information Systems

23

of Understanding (MOU) with RSRE. CLI and Langley researchers also performed assessments of
the VIPER project[9, 23, 17].

4.2.5 Verification of Existing Ada Applications Software

Odyssey Research Associates completed two tasks applying their Ada verification tools to aerospace
applications. The first task was to verify some utility routines obtained from the NASA Goddard
Space Flight Center and the NASA Lewis Research Center using their Ada Verification Tool named
Penelope [55]. This task was accomplished in two steps: (1) formal specification of the routines
and (2) formal verification of the routines. Both steps uncovered errors [47]. The second task was
to formally specify the mode-control panel logic of a Boeing 737 experimental aircraft system using
Larch (the specification language used by Penelope) [56].

4.2.6 Asynchronous Communication

CLI developed a formal model of asynchronous communication and demonstrated its utility by
formally verifying a widely used protocol for asynchronous communication called the bi-phase mark
protocol, also known as “Bi-Φ-M,” “FM” or “single density” [107]. It is one of several protocols
implemented by microcontrollers such as the Intel 82530 and is used in the Intel 82C501AD Ethernet
Serial Interface.

4.2.7 Digital Design Derivation

Funded in part by a NASA Langley Graduate Student Research Program fellowship, Bhaskar Bose
developed the Digital Design Derivation system (DDD) and used it to design a verified micropro-
cessor. DDD implements a formal design algebra that allows a designer to transform a formal
specification into a correct implementation[7]. Bose formally derived the DDD-FM9001[8] micro-
processor from Hunt’s top-level specification of the FM9001 microprocessor[71].

4.2.8 NASA Small Business Innovative Research Program

Through the NASA Small Business Innovative Research (SBIR) program we funded four formal
methods proposals. We have funded three proposals through Phase II. The following list shows the
year of selection, proposal title, and company funded.

1. 1998, Multi-Formal Hardware Verification System, Levetate Design Systems, Inc.
(http://www.levetate.com/)

2. 1997, Verified VHDL Synthesizable Cores, Derivation Systems Inc.
(http://www.derivation.com/)

3. 1994, Analysis Tools for VHSIC Hardware Description Language, Odyssey Research Asso-
ciates, Inc. (http://www.oracorp.com/)

4. 1994, Digital Design Derivation System for Hardware Synthesis, Derivation Systems, Inc.
(http://www.derivation.com/)

24

4.2.9 Union Switch and Signal

As part of a joint research agreement, NASA Langley formal methods researchers collaborated
with engineers at Union Switch and Signal (US&S) to use formal methods in the design of railway
switching and control applications. Railway switching control systems, like digital flight control
systems, are safety critical systems. US&S is the leading U.S. supplier of railway switching control
systems.

The result of this first project was a formal mathematical model of a railway switching network,
defined in two levels. The top level provided the mechanisms for defining the basic concepts: track,
switches, trains and their positions and control liners of a train The second level formalized the
standard railroad control method called the block model control system. A level 2 proof that the
fixed block control system is “safe” with respect to the top level model was also completed [68]

The research team also looked at safety issues associated with a CAD system begin developed by
US&S for use by railway control engineers. An area of particular concern has been the correctness
of internal compilation processes which translate graphical representations of control diagrams into
code that will be executed on US&S’s proprietary V FRAME++ architecture.

4.2.10 CSDL Scoreboard Hardware

A joint project between ORA and Charles Stark Draper Laboratory (CSDL) was completed in 1993.
NASA Langley and the Army had funded CSDL to build advanced, fault-tolerant computer systems
for over two decades. During this time, CSDL became interested in the use of formal methods to
increase confidence in their designs. ORA was given the task of formally specifying and verifying
a key circuit (called the scoreboard) of the Fault-Tolerant Parallel Processor (FTPP) [60] in Clio
[150]. The formal verification uncovered previously unknown design errors. When the scoreboard
chip was fabricated, it worked without any error manifestation. It was the first time that CSDL
produced a chip that worked “perfectly” on a first fabrication. CSDL credits VHDL-development
tools and formal methods for the success.

4.2.11 Allied Signal’s Hybrid Fault Algorithms

Thambidurai and Park (Allied-Signal) introduced a hybrid fault model (1988) that classified faults
into three categories: asymmetric, symmetric and crash. They further suggested the need for
and developed an algorithm that had capabilities beyond that of the earlier Byzantine generals
algorithms. In particular, their algorithm can mask the effects of a less severe class of faults, in a
more effective way7. A formal analysis by SRI discovered flaws in Allied-Signal’s algorithm Z and
together with Allied Signal, they developed an improved algorithm [88, 87, 89].

The newly developed hybrid-fault theory was then applied to the analysis of the Charles Stark
Draper Labs “Fault-Tolerant Processor” (FTP). A unique feature of this architecture is its use of
“interstages” to relay messages between processors. These are significantly smaller than a processor
and lead to an asymmetric architecture that is far more efficient than the traditional Byzantine
agreement architectures8. The SRI work not only formalized the existing informal analysis but
extended it to cover a wider range of faulty behavior[90]. Also, SRI generalized their clock syn-
chronization work to encompass the hybrid fault model [128].

7This was done during the development of the [Multicomputer Architecture for Fault Tolerance (MAFT) system
[155].

8This combination of algorithm, architecture, and fault model represents the best known compromise between
economy and fault tolerance. Other combinations either tolerate less faults, or less severe kinds of faults, for a given
level of redundancy, or require more hardware to tolerate the same number and kinds of faults.

25

Next, SRI investigated authenticated Byzantine Agreement while extending fault model to
include link failures as well as hybrid faults in the processors [54]. The analysis was performed
using both the PVS theorem proving system and model checking (Stanford Murφ). Tradeoffs
between different algorithms were explored via symbolic fault-injection with the Murφ Tool. There
is currently much interest in combining model checking and general purpose theorem proving. Some
effort in this direction has been sponsored by the NASA program [122, 35].

Other work by SRI applied these ideas to reconfigurable, fault-tolerant systems [130].

4.3 Fault-tolerant Systems

The goal of this focus area was to create a formalized theory of fault tolerance including redun-
dancy management, clock synchronization, Byzantine agreement, voting, etc. Much of the theory
developed here is applicable to future fault-tolerant systems designs. A detailed design of a fault-
tolerant reliable computing base, the Reliable Computing Platform (RCP), was developed and
proven correct.

The RCP architecture was designed in accordance with a system-design philosophy called “De-
sign For Validation” [75, 74].

A major objective of this philosophy is to minimize the amount of experimental testing required
and maximize the ability to reason mathematically about correctness of the design. Although
testing cannot be eliminated from the design/validation process, the primary basis of belief in the
dependability of the system must come from analysis rather than from testing.

4.3.1 The Reliable Computing Platform

The Reliable Computing Platform dispatches control-law application tasks and executes them on
redundant processors. The intended applications are safety critical with reliability requirements
on the order of 1 − 10−9. The reliable computing platform performs the necessary fault-tolerant
functions and provides an interface to the network of sensors and actuators.

The RCP operating system provides the applications software developer with a reliable mech-
anism for dispatching periodic tasks on a fault-tolerant computing base that appears to him as
a single ultrareliable processor. A multi-level hierarchical specification of the RCP is shown in
figure 1.

The top two levels of the RCP were originally formally specified in standard mathematical
notation and connected via mathematical (i.e. level 2 formal methods) proof [43, 42, 40]. Un-
der the assumption that a majority of processors is working in each frame, the proof establishes
that the replicated system computes the same results as a single processor system not subject to
failures. Sufficient conditions were developed that guarantee that the replicated system recovers
from transient faults within a bounded amount of time. SRI subsequently generalized the models
and constructed a mechanical proof in Ehdm [125]. Next, the inhouse team developed the third
and fourth level models. The top two levels and the two new models (i.e. DS and DA) were then
specified in Ehdm and all of the proofs were done mechanically using the Ehdm 5.2 prover [11, 41].
Both the DA minv model and the LE model were specified formally and have been verified using
the Ehdm verification system[12].

Two recent publications by SRI provide some new theoretical insights [130, 131].

26

Uniprocessor System Model (US)
|

Fault-tolerant Replicated Synchronous Model (RS)
|

Fault-tolerant Distributed Synchronous Model (DS)
|

Fault-tolerant Distributed Asynchronous Model (DA)
| |

Clock Sync Property Minimal Voting DA (DA minv)
| |

Clock Sync Algorithm Local Executive Model (LE)
|

Hardware/Software Implementation

Figure 1: Hierarchical Specification of the Reliable Computing Platform.

4.3.2 Clock Synchronization

The redundancy management strategies of virtually all fault-tolerant systems depend on some form
of voting, which in turn depends on synchronization. Although in many systems the clock synchro-
nization function has not been decoupled from the applications (e.g. the redundant versions of the
applications synchronize by messages), research and experience have led us to believe that solving
the synchronization problem independently from the applications design can provide significant sim-
plification of the system [82, 53]. The operating system is built on top of this clock-synchronization
foundation and thus the correctness of this foundation is essential. The clock synchronization algo-
rithm and its implementation are prime candidates for formal methods. The verification strategy
shown in figure 2 is being explored.

Maximum Clock Skew Property
↑
|

Synchronization Algorithm
↑
|

Digital Circuit Implementation

Figure 2: Hierarchical Verification of Clock Synchronization

The top-level in the hierarchy is an abstract property of the form:

∀ non-faulty p, q : |Cp(t) − Cq(t)| < δ

where δ is the maximum clock skew guaranteed by the algorithm as long as a sufficient number
of clocks (and the processors they are attached to) are working. The function Cp(t) gives the
value of clock p at real time t. The middle level in the hierarchy is a mathematical definition

27

of the synchronization algorithm. The bottom level is a detailed digital design of a circuit that
implements the algorithm. The bottom level is sufficiently detailed to make translation into silicon
straight forward.

The verification process involves two important steps: (1) verification that the algorithm satisfies
the maximum skew property and (2) verification that the digital circuitry correctly implements
the algorithm. The first step was completed by SRI International. The first such proof was
accomplished during the design and verification of SIFT [83]. The proof was done by hand in the
style of journal proofs. More recently this proof step was mechanically verified using the Ehdm
theorem prover[135, 136]. In addition, SRI mechanically verified Schneider’s clock synchronization
paradigm [137] using Ehdm[145, 146]. A further generalization was found at NASA Langley [98]9.
The design of a digital circuit to distribute clock values in support of fault-tolerant synchronization
was completed by SRI and was partially verified.10 CLI reproduced the SRI verification of the
interactive convergence algorithm using the Boyer-Moore theorem prover [161].

NASA Langley researchers designed and implemented a fault-tolerant clock synchronization cir-
cuit capable of recovery from transient faults [100, 99, 98]. The top-level specification for the design
is the Ehdm verification of Schneider’s paradigm. The circuit was implemented with programmable
logic devices (PLDs) and FOXI fiber optic communications chips [105].

Using a combination of formal techniques, a verified clock synchronization circuit design has also
been developed[106]. The principal design tool was the Digital Design Derivation system (DDD)
developed by Indiana University[7]. Some design optimizations that were not possible within DDD
were verified using PVS.

4.3.3 Byzantine Agreement Algorithms

Fault-tolerant systems, although internally redundant, must deal with single-source information
from the external world. For example, a flight control system is built around the notion of feedback
from physical sensors such as accelerometers, position sensors, and pressure sensors. Although
these can be replicated (and they usually are), the replicates do not produce identical results.
To use bit-by-bit majority voting, all of the computational replicates must operate on identical
input data. Thus, the sensor values (the complete redundant suite) must be distributed to each
processor in a manner which guarantees that all working processors receive exactly the same value
even in the presence of some faulty processors. This is the classic Byzantine Generals problem
[84]; algorithms to solve the problem are called Byzantine agreement algorithms. CLI investigated
the formal verification and implementation of such algorithms. They formally verified the original
Marshall, Shostak, and Lamport version of this algorithm using the Boyer Moore theorem prover
[4]. They also implemented this algorithm down to the register-transfer level and demonstrated
that it implements the mathematical algorithm [5], and then subsequently verified the design down
to a hardware description language HDL developed at CLI [108]. A more efficient mechanical proof
of the oral messages algorithm was also developed by SRI[126].

ORA also investigated the formal verification of Byzantine Generals algorithms. They focused
on the practical implementation of a Byzantine-resilient communications mechanism between Mini-
Cayuga micro-processors [149, 6]. The Mini-Cayuga is a small but formally verified microprocessor
developed by ORA. It was a research prototype and was not fabricated.

9The bounded delay assumption was shown to follow from the other assumptions of the theory.
10Unlike the NASA circuit, the SRI intent is that the convergence algorithm be implemented in software.

28

5 Coordination Activities

5.1 Relationship to NASA Program Offices

The formal methods research program is currently being funded by NASA Ames’ Information Tech-
nology (IT) Program, Langley’s Aerospace Vehicle Systems Technology (AVST) Program, Lang-
ley’s Aviation Safety Program (AvSP), and Ames’ Advanced Aviation Transportation Technology
(AATT) Program.

5.2 FAA/RTCA Involvement

As the federal agency responsible for certification of civil air transports and modernization of our
air traffic management system, the FAA shares our interest in promising approaches to engineering
and validating ultrareliable digital systems. Additionally, because the FAA must approve new
methodologies for developing digital systems for civil air transports and air traffic management
systems, FAA acceptance of formal methods is a necessary precursor to its adoption by industry
system designers.

The Formal Methods Team has developed a strong working relationship with the FAA to ad-
dress safety and certification concerns with digital systems. We are working with Leanna Rierson,
current National Resource Specialist for Aircraft Computer Software, and Charles Kilgore, Pro-
gram Manager for the Software and Digital Systems Safety (SDSS) Research Program at the FAA
Technical Center, to insure that our program is relevant to the certification process. The following
is a sample of some of the notable accomplishments stemming from this partnership:

John Rushby wrote a chapter for the FAA Digital Systems Validation Handbook Volume III on
formal methods[29], which is also available as a NASA contractor report [129, 127]. The handbook
provides detailed information about digital system design and validation and is used by the FAA
certifiers.

George Finelli, the former assistant Branch Head of the System Validation Methods Branch
(the Branch in which the formal methods team worked before NASA Langley’s reorganization in
1994) and Ben Di Vito, a member of the formal methods team, were instrumental in including
formal methods as an alternate means of compliance in the DO-178B standard.

Kelly Hayhurst, a member of the formal methods team, directed the first software engineering
case study of the DO-178B standard. Data from this case study has being used since 1994 to train
FAA certification specialists and avionics industry representatives in aspects of software certifica-
tion. Ms. Hayhurst also led the FAA’s high-profile program to Streamline Software Aspects of
Certification (SSAC). The SSAC program worked with the FAA and industry to identify ways to
reduce unnecessary software development and certification costs for application to the FAA’s Free
Flight initiative[61]. A spin-off of the SSAC program was work with John Chilenski of the Boe-
ing Company and Dan Veerhusen of Rockwell Collins to develop a practical tutorial on modified
condition/decision coverage[62].

Paul Miner was instrumental in getting Formal Methods included as an acceptable technique
for design assurance of level A and B hardware in the RTCA DO-254 /EUROCAE ED-80:Design
Assurance Guidance for Airborne Electronic Hardware.

Members of the Formal Methods group have historically supported and continue to support
committees working technical issues related to digital systems technology. These committees include
SC-180 (Airborne Electronic Hardware), SC-182 (Minimal Operating Performance Standard for an
Airborne Computer Resource), SC-190 (Committee On Application Guidelines For RTCA DO-
178b/ED-12b), SC-200 (Committee on Modular Avionics), and in the ISO sponsored Ada Annex

29

H Rapporteur Group (HRG).
New projects with FAA sponsorship include:

• development of a case study of RTCA/DO-254 based on the Scalable Processor-Independent
Design for Electromagnetic Resilience (SPIDER). See section 3.3.

• development of a guide for the use of object oriented technology (OOT) in aviation soft-
ware products. This project involves bringing together industry, government, and academic
communities to identify safety and certification issues in OOT.

• development of new qualification criteria for structural coverage analysis tools.

6 Summary

The NASA Langley program in formal methods has three major goals: (1) develop formal methods
technology suitable for a wide range of aerospace designs and (2) facilitate technology transfer
by initiating joint projects between formal methods researchers and aerospace industries to apply
the results of the research to real systems, and (3) capitalize on the formal methods technology
transferred to industry to meet NASA’s new goals in increasing aircraft safety and decreasing the
cost of air travel.

Starting in 1991, NASA Langley initiated several aggressive projects designed to move FM into
productive use in the aerospace community:

• Boeing PIU Project (1991)

• Charles Stark Draper FTPP Scoreboard Project (1991)

• Allied Signal Hybrid Fault Models (1992)

• Shuttle Tile Project (1992)

• Space Shuttle Jet Select Project (1993)

• Honeywell Navigation (1993)

• Rockwell Collins AAMP5 (1993)

• Honeywell Tablewise (1994)

• Union Switch and Signal (1994)

• Rockwell Collins AAMP-FV (1995)

• Space Shuttle GPS and 3EO upgrades (1995)

• Integrated Modular Avionics and RTCA SC-182 (1997)

• Collins Mode Confusion Project (1998)

• Translation of UML into PVS (1999)

• Formal Analysis of AILS (1999)

• SPIDER (2000)

• Honeywell Technology Center DEOS verification (2000)

• Rockwell Collins requirements analysis and mode confusion (2000)

• Honeywell Engines and Systems: FTIMA for FADEC (2000)

30

• Barron Associates/BF Goodrich: non-adaptive neural nets. (2000)

• Univ. of Va/Litton: Integration w/ SW lifecycle (2000)

NASA’s program has advanced aerospace-related formal methods in the United States to the point
where commercial exploitation of formal methods has begun in some application areas. Our pro-
gram has driven the development of PVS, one of the most widely used general-purpose theorem
prover in the world [115], and the Odyssey Research Associates VHDL-verification tool. Commer-
cial industry has been anxious to work with our team, although we have not had sufficient resources
to work with as many as we would have liked. Nevertheless, we have helped lay the necessary foun-
dation for productive use of formal methods in several companies. We are now exploiting this newly
developed capability in these companies to address NASA’s ambitious goal of reducing the accident
rate to 1/10th of today’s level within 20 years.

References

[1] Saab Blames Gripen Crash on Software. Aviation Week & Space Technology, Feb. 1989.

[2] Barrett, Geoff: Formal Methods Applied to a Floating-Point Number System. IEEE Trans-
actions on Software Engineering, vol. 15, no. 5, May 1989, pp. 611–621.

[3] Best, David W.; Charles E. Kress, Nick M. Mykris; Russell, Jeffrey D.; and Smith, William J.:
An advanced-architecture CMOS/SOS microprocessor. IEEE Micro, vol. 2, no. 4, Aug. 1982,
pp. 11–26.

[4] Bevier, William R.; and Young, William D.: Machine Checked Proofs of the Design and
Implementation of a Fault-Tolerant Circuit. NASA Contractor Report 182099, Nov. 1990.

[5] Bevier, William R.; and Young, William D.: The Proof of Correctness of a Fault-Tolerant Cir-
cuit Design. In Second IFIP Conference on Dependable Computing For Critical Applications,
Tucson, Arizona, Feb. 1991, pp. 107–114.

[6] Bickford, Mark; and Srivas, Mandayam: Verification of the FtCayuga Fault-Tolerant Mi-
croprocessor System (Volume 2: Formal Specification and Correctness Theorems). NASA
Contractor Report 187574, July 1991.

[7] Bose, Bhaskar: DDD - A Transformation System for Digital Design Derivation. Indiana
University, Technical Report 331, Computer Science Department, May 1991.

[8] Bose, Bhaskar; and Johnson, Steven D.: DDD-FM9001: Derivation of a Verified Micropro-
cessor. An Exercise in Integrating Verification with Formal Derivation. In Milne, G.; and
Pierre, L., editors 1993:, Proceedings of IFIP Conference on Correct Hardware Design and
Verification Methods. Springer, LNCS 683, 1993, pp. 191–202. also published as Tech Report
380, Computer Science Department, Indiana University.

[9] Brock, Bishop; and Hunt, Jr., Warren A.: Report on the Formal Specification and Partial
Verification of the VIPER Microprocessor. NASA Contractor Report 187540, July 1991.

[10] Butler, Ricky W.: An Elementary Tutorial on Formal Specification and Verification Using
PVS. NASA Technical Memorandum 108991, Sept. 1993.

31

[11] Butler, Ricky W.; and Di Vito, Ben L.: Formal Design and Verification of a Reliable Com-
puting Platform For Real-Time Control (Phase 2 Results). NASA Technical Memorandum
104196, Jan. 1992.

[12] Butler, Ricky W.; Di Vito, Ben L.; and Holloway, C. Michael: Formal Design and Verification
of a Reliable Computing Platform For Real-Time Control (Phase 3 Results). NASA Technical
Memorandum 109140, Aug. 1994.

[13] Butler, Ricky W.; and Finelli, George B.: The Infeasibility of Experimental Quantification
of Life-Critical Software Reliability. In Proceedings of the ACM SIGSOFT ’91 Conference on
Software for Critical Systems, New Orleans, Louisiana, Dec. 1991, pp. 66–76.

[14] Butler, Ricky W.; and Finelli, George B.: The Infeasibility of Quantifying the Reliability of
Life-Critical Real-Time Software. IEEE Transactions on Software Engineering, vol. 19, no. 1,
Jan. 1993, pp. 3–12.

[15] Butler, Ricky W.; and Johnson, Sally C.: Formal Methods For Life-Critical Software. In
Computing in Aerospace 9 Conference, San Diego, CA, Oct. 1993, pp. 319–329.

[16] Butler, Ricky W.; Miller, Steve; Potts, Jim; and Carreno, Victor: A Formal Methods Ap-
proach to the Analysis of Mode Confusion. In 17th Digital Avionics Systems Conference
(DASC’98), Bellevue, WA, Nov. 1998.

[17] Butler, Ricky W.; and Sjogren, Jon A.: Hardware Proofs Using EHDM and the RSRE
Verification Methodology. NASA Technical Memorandum 100669, Dec. 1988.

[18] Butler, Ricky W., (ed.): NASA Formal Methods Workshop 1990. NASA Conference Publi-
cation 10052, Nov. 1990.

[19] Butler, R.W.; Carreño, V.; Dowek, G.; and Muñoz, C.: Formal Verification of Conflict
Detection Algorithms. In Proceedings of the 11th Working Conference on Correct Hardware
Design and Verification Methods CHARME 2001, vol. 2144 of LNCS, Livingston, Scotland,
UK, 2001, pp. 403–417. A long version appears as report NASA/TM-2001-210864.

[20] Carreño, Victor A.: Interpretation of IEEE-854 Floating-Point Standard and Definition in
the HOL system. NASA, NASA Technical Memorandum 110189, Langley Research Center,
Hampton, VA, Sept. 1995.

[21] Carreño, Victor: The Transition Assertions Specification Method. University of Cambridge
Computer Laboratory, Technical Report 279, Jan. 1993.

[22] Carreño, Victor: Verification in Higher Order Logic of Mutual Exclusion Algorithm. In Higher
Order Logic Theorem Proving and Its Applications, vol. 780 of Lecture Notes in Computer
Science, pp. 502–515. Springer Verlag, Vancouver, B.C., Canada, Aug. 1993.

[23] Carreño, Victor A.; and Angellatta, Rob K.: A Case Study for the Real-Time Experimental
Evaluation of the VIPER Microprocessor. NASA Technical Memorandum 104098, Sept. 1991.

[24] Carreño, Victor A.; and Miner, Paul S.: Specification of the IEEE-854 Floating-Point Stan-
dard in HOL and PVS. In 1995 International Workshop on Higher Order Logic Theorem
Proving and its Applications, Aspen Grove, Utah, Sept. 1995. track B paper and included in
supplemental proceedings.

32

[25] Ciardo, Gianfranco; Luettgen, Gerald; and Siminiceanu, Radu: Efficient symbolic state-space
construction for asynchronous systems. Technical Report NASA/CR-1999-209827, Dec. 1999.

[26] Cleaveland, Rance; and Luettgen, Gerald: Model checking is refinement - Relating Buechi
testing and linear-time temporal logic. Technical Report NASA/CR-2000-210090, Mar. 2000.

[27] Cofer, D.; Engstrom, E.; Weininger, N.; Penix, J.; and Visser, W.: Using model checking
for verification of partitioning properties in integrated modular avionics. In Digital Avionics
Systems Conference, Philadelphia,PA, Oct. 2000.

[28] Cofer, D.; and Rangarajan, M.: Formal modeling and analysis of advanced scheduling features
in an avionics RTOS. In Embedded Software Conference(EMSOFT 02), Grenoble, France,
Oct. 2002. to appear.

[29] Computer Resource Management Inc.: In Digital Systems Validation Handbook – volume III,
no. DOT/FAA/CT-88/10. FAA.

[30] Courcoubetis, Costas, editor 1993: Computer Aided Verification, CAV ’93, vol. 697 of Lecture
Notes in Computer Science, Elounda, Greece, June/July 1993. Springer Verlag.

[31] Crow, Judith; and Di Vito, Ben L.: Formalizing Space Shuttle Software Requirements. In
Workshop on Formal Methods in Software Practice (FMSP ’96), San Diego, California, Jan.
1996, pp. 40–48.

[32] Crow, Judith; and Vito, Ben Di: Formalizing Space Shuttle Software Requirements: Four
Case Studies. ACM Transactions on Software Engineering and Methodology, vol. 7, no. 3,
July 1998.

[33] Crow, Judy: Finite-State Analysis of Space Shuttle Contingency Guidance Requirements.
NASA Contractor Report 4741, May 1996.

[34] Crow, Judy; Owre, Sam; Rushby, John; Shankar, Natarajan; and Srivas, Mandayam: A Tuto-
rial Introduction to PVS. In WIFT’95 Workshop on Industrial-strength Formal Specification
Techniques, Boca Raton, Florida USA, Apr. 1995.

[35] Cyrluk, David; Rajan, S.; Shankar, N.; and Srivas, M. K.: Effective Theorem Proving for
Hardware Verification. In Second International Conference on Theorem Proving in Circuit
Design, Theory, Practice, and Experience, Bad Herrenalb, Germany, Sept. 1994.

[36] Cyrluk, David A.; and Srivas, Mandayam K.: Theorem Proving: Not an Esoteric Diversion:
but the Unifying Framework for Industrial Verification. In IEEE International Conference
on Computer Design (ICCD) ’95, Austin, Texas, Oct. 1995.

[37] Di Vito, Ben L.: Formalizing New Navigation Requirements for NASA’s Space Shuttle. In
Formal Methods Europe (FME ’96), Oxford, England, Mar. 1996, pp. 160–178. Lecture Notes
in Computer Science 1051, Springer.

[38] Di Vito, Ben L.: A Formal Model of Partitioning for Integrated Modular Avionics. NASA
Langley Research Center, Contractor Report 1998-208703, Hampton, VA, Aug. 1998.

[39] Di Vito, Ben L.: A PVS Prover Strategy Package for Common Manipulations. NASA Langley
Research Center, NASA Technical Memorandum 2002-211647, Hampton, VA, Apr. 2002.

33

[40] Di Vito, Ben L.; and Butler, Ricky W.: Provable Transient Recovery for Frame-Based,
Fault-Tolerant Computing Systems. In Real-Time Systems Symposium, Phoenix, Az, Dec.
1992.

[41] Di Vito, Ben L.; and Butler, Ricky W.: Formal Techniques for Synchronized Fault-Tolerant
Systems. In Dependable Computing for Critical Applications 3, Dependable Computing and
Fault-Tolerant Systems, pp. 279–306. Springer Verlag, Wien New York, 1993. Also presented
at 3rd IFIP Working Conference on Dependable Computing for Critical Applications, Mon-
dello, Sicily, Italy, Sept. 14–16, 1992.

[42] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L.: High Level Design Proof
of a Reliable Computing Platform. In Dependable Computing for Critical Applications 2,
Dependable Computing and Fault-Tolerant Systems, pp. 279–306. Springer Verlag, Wien
New York, 1992. Also presented at 2nd IFIP Working Conference on Dependable Computing
for Critical Applications, Tucson, AZ, Feb. 18–20, 1991, pp. 124–136.

[43] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L., II: Formal Design and Verification
of a Reliable Computing Platform For Real-Time Control (Phase 1 Results). NASA Technical
Memorandum 102716, Oct. 1990.

[44] Di Vito, Ben L.; and Roberts, Larry W.: Using Formal Methods to Assist in the Require-
ments Analysis of the Space Shuttle GPS Change Request. NASA Langley Research Center,
Contractor Report 4752, Hampton, VA, Aug. 1996.

[45] Dowek, G.; Muñoz, C.; and Geser, A.: Tactical Conflict Detection and Resolution in a 3-D
Airspace. ICASE-NASA Langley, Technical Report NASA/CR-2001-210853 ICASE Report
No. 2001-7, ICASE Mail Stop 132C, NASA Langley Research Center, Hampton VA 23681-
2199, USA, April 2001.

[46] Dowek, Gilles; Munoz, Cesar; and Geser, Alfons: Tactical Conflict Detection and Resolution
In A 3-D Airspace. In 4th USA/Europe Air Traffic Management R&D Seminar, Santa Fe,
Dec. 2001, pp. 3–7.

[47] Eichenlaub, Carl T.; Harper, C. Douglas; and Hird, Geoffrey: Using Penelope to Assess the
Correctness of NASA Ada Software: A Demonstration of Formal Methods as a Counterpart
to Testing. NASA Contractor Report 4509, May 1993.

[48] Fura, David A.; Windley, Phillip J.; and Cohen, Gerald C.: Formal Design Specification of a
Processor Interface Unit. NASA Contractor Report 189698, Nov. 1992.

[49] Garmen, John R.: The Bug Heard ’Round The World. ACM Software Engineering Notes,
vol. 6, no. 5, Oct. 1981, pp. 3–10.

[50] Geser, A.; Muñoz, C.; Dowek, G.; and Kirchner, F.: Air Traffic Conflict Resolution and
Recovery. ICASE-NASA Langley, Technical Report ICASE Report No. 2002-12 NASA/CR-
2002-211637, ICASE Mail Stop 132C, NASA Langley Research Center, Hampton VA 23681-
2199, USA, May 2002.

[51] Gianfranco Ciardo, Gerald Luettgen; and Siminiceanu, Radu: An efficient iteration strategy
for symbolic state-space generation. Technical Report NASA/CR-2001-210663, Feb. 2001.

[52] Gibbs, W. Wayt: Software’s Chronic Crisis. Scientific American, Sept. 1994, pp. 86–95.

34

[53] Goldberg, Jack; et al.: Development and Analysis of the Software Implemented Fault-
Tolerance (SIFT) Computer. NASA Contractor Report 172146, 1984.

[54] Gong, Li; Lincoln, Patrick; and Rushby, John: Byzantine Agreement with Authentication:
Observations and Applications in Tolerating Hybrid and Link Faults. In Dependable Com-
puting for Critical Applications (DCCA-5), Champaign, IL, Sept. 1995.

[55] Guaspari, David: Penelope, an Ada Verification System. In Proceedings of Tri-Ada ’89,
Pittsburgh, PA, Oct. 1989, pp. 216–224.

[56] Guaspari, David: Formally Specifying the Logic of an Automatic Guidance Controller. In
Ada-Europe Conference, Athens, Greece, May 1991.

[57] Hamilton, Margaret: Zero-defect software: the elusive goal. IEEE Spectrum, Mar. 1986.

[58] Hanks, Kimberly S.; and Knight, John C.: In Search of Best Practices for the Use of Natural
Language in the Development of High-Consequence Systems. In Fastabstracts, International
Conference of Dependable Systems and Networks, Annapolis, MD, June 2002.

[59] Hanks, Kimberly S.; Knight, John C.; and Holloway, C. Michael: The Role of Natural
Language in Accident Investigation and Reporting Guidelines. In 2002 Workshop on the
Investigation and Reporting of Incidents and Accidents (IRIA 2002), Glasgow, Scotland,
July 2002.

[60] Harper, Richard E.; Lala, Jay H.; and Deyst, John J.: Fault Tolerant Parallel Processor
Architecture Overview. In Proceedings of the 18th Symposium on Fault Tolerant Computing,
1988, pp. 252–257.

[61] Hayhurst, Kelly J.; Dorsey, Cheryl A.; Knight, John C.; Leveson, Nancy G.; and McCormick,
G. Frank: Streamlining Software Aspects of Certification: Report on the SSAC Survey. NASA
Technical Memorandum 1999-209519, Aug. 1999.

[62] Hayhurst, Kelly J.; Veerhusen, Dan S.; Chilenski, John J.; and Rierson, Leanna K.: A Prac-
tical Tutorial on Modified Condition/Decision Coverage. NASA Langley Research Center,
NASA Technical Memorandum 2001-210876, Hampton, VA, May 2001.

[63] Holloway, C. Michael: Third NASA Formal Methods Workshop 1995. NASA Conference
Publication 10176, June 1995.

[64] Holloway, C. Michael: Lfm2000 Fifth NASA Langley Formal Methods Workshop. NASA
Conference Publication 2000-210100, June 2000.

[65] Holloway, C. Michael; and Hayhurst, Kelly J.: Lfm97 Fourth NASA Langley Formal Methods
Workshop. NASA Conference Publication 3356, Sept. 1997.

[66] Hoover, D. N.; Guaspari, David; and Humenn, Polar: Applications of Formal Methods to
Specification and Safety of Avionics Software. NASA Contractor Report 4723, Apr. 1996.

[67] Hoover, Doug; and Chen, Zewei: TBell: A Mathematical Tool for Analyzing Decision Tables.
NASA Contractor Report 195027, Nov. 1994. Note: Tbell is now known as TableWise.

[68] Hoover, Doug N.: A Mathematical Model for Railway Control Systems. NASA Contractor
Report 198353, June 1996.

35

[69] Houston, Iain; and King, Steve: CICS Project Report: Experiences and Results from the
Use of Z in IBM. In Prehn, S.; and Toetenel, W.J., editors 1991:, VDM ’91: Formal Software
Development Methods, Noordwijkerhout, The Netherlands, Oct. 1991, Springer Verlag, pp.
588–596. Volume 1: Conference Contributions.

[70] Hull, J.; Ward, D.; and Zakrzewski, R.: Verification and validation of neural networks for
flight-critical applications. In Proceedings of the American Controls Conference, Anchorage,
Alaska, May 2002.

[71] Hunt, Warren A.: A Formal HDL and its use in the FM9001 Verification. In Hoare, C.A.R.;
and Gordon, M.J., editors 1992:, Mechanized Reasoning in Hardware Design. Prentice-Hall,
1992.

[72] IEEE. IEEE Standard for Radix-Independent Floating-Point Arithmetic, 1987. ANSI/IEEE
Std 854-1987.

[73] John Kelly, et. al.: Formal Methods Demonstration Project for Space Applications - Phase
I Case Study: Space Shuttle Orbit DAP Jet. Dec. 1993.

[74] Johnson, Sally C.; and Butler, Ricky W.: Design For Validation. In AIAA/IEEE 10th Digital
Avionics Systems Conference, Los Angeles, California, Oct. 1991, pp. 487–492.

[75] Johnson, Sally C.; and Butler, Ricky W.: Design For Validation. IEEE Aerospace and
Electronics Systems, Jan. 1992, pp. 38–43.

[76] Johnson, Sally C.; Holloway, C. Michael; and Butler, Ricky W.: Second NASA Formal
Methods Workshop 1992. NASA Conference Publication 10110, Nov. 1992.

[77] Joyce, Ed: Software Bugs: A Matter of Life and Liability. Datamation, May 1987.

[78] Kalvala, Sara; Archer, Myla; and Levitt, Karl: A Methodology for Integrating Hardware
Design and Verification. In ACM International Workshop on Formal Methods in VLSI Design,
Miami, FL, Jan. 1991.

[79] Kalvala, Sara; Levitt, Karl; and Cohen, Gerald C.: Design and Verification of a DMA
Processor. NASA contractor report, 1992. Unpublished.

[80] Knight, John C.; and Leveson, Nancy G.: An experimental evaluation of the assumptions
of independence in multiversion programming. IEEE Transactions on Software Engineering,
vol. SE-12, no. 1, Jan. 1986, pp. 96–109.

[81] Knight, John. C.; and Leveson, Nancy. G.: A Reply To the Criticisms Of The Knight &
Leveson Experiment. ACM SIGSOFT Software Engineering Notes, Jan. 1990.

[82] Lamport, Leslie: Using Time Instead of Timeout for Fault-Tolerant Distributed Systems.
ACM Transactions on Programming Languages and Systems, vol. 6, no. 2, Apr. 1984, pp.
254–280.

[83] Lamport, Leslie; and Melliar-Smith, P. M.: Synchronizing Clocks in the Presence of Faults.
Journal Of The ACM, vol. 32, no. 1, Jan. 1985, pp. 52–78.

36

[84] Lamport, Leslie; Shostak, Robert; and Pease, Marshall: The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, vol. 4, no. 3, July 1982, pp.
382–401.

[85] Leveson, Nancy G.: Software Safety: What, Why, and How. Computing Surveys, vol. 18,
no. 2, June 1986.

[86] Levitt, Karl; and et. al.: Formal Verification of a Microcoded VIPER Microprocessor using
HOL. NASA Contractor Report 4489, Feb. 1993.

[87] Lincoln, Patrick; and Rushby, John: Formal Verification of an Algorithm for Interactive
Consistency under a Hybrid Fault Model. In Courcoubetis [30], pp. 292–304.

[88] Lincoln, Patrick; and Rushby, John: A Formally Verified Algorithm For Interactice Consis-
tency Under a Hybrid Fault Model. NASA Contractor Report 4527, July 1993.

[89] Lincoln, Patrick; and Rushby, John: A Formally Verified Algorithm for Interactive Consis-
tency under a Hybrid Fault Model. In Fault Tolerant Computing Symposium 23, Toulouse,
France, June 1993, IEEE Computer Society, pp. 402–411.

[90] Lincoln, Patrick; and Rushby, John: Formal Verification of an Interactive Consistency Al-
gorithm for the Draper FTP Architecture under a Hybrid Fault Model. In 1994 Computer
Assurance (COMPASS) Conference, June 1994.

[91] Luettgen, Gerald; and Carreno, Victor: Analyzing mode confusion via model checking. Tech-
nical Report NASA/CR-1999-209332, May 1999.

[92] Luettgen, Gerald; and Mendler, Michael: The intuitionism behind Statecharts steps. Technical
Report NASA/CR-2000-210302, July 2000.

[93] Luettgen, Gerald; and Vogler, Walter: A faster-than relation for asynchronous processes.
Technical Report NASA/CR-2001-210651, Jan. 2001.

[94] Luettgen, Gerald; von der Beeck, Michael; and Cleaveland, Rance: Statecharts via process
algebra. Technical Report NASA/CR-1999-209713, Oct. 1999.

[95] Luettgen, Gerald; von der Beeck, Michael; and Rance Cleaveland, A: Compositional approach
to Statecharts semantics. Technical Report NASA/CR-2000-210086, Mar. 2000.

[96] Miller, Steve; and Srivas, Mandayam: Formal Verification of the AAMP5 Microprocessor: A
Case Study in the Industrial Use of Formal Methods. In WIFT’95 Workshop on Industrial-
strength Formal Specification Techniques, Boca Raton, Florida USA, Apr. 1995, pp. 30–43.

[97] Miller, Steven P.; and Potts, James N.: Detecting Mode Confusion Through Formal Modeling
and Analysis. Technical Report CR-1999-208971, Jan. 1999.

[98] Miner, Paul S.: An Extension to Schneider’s General Paradigm for Fault-Tolerant Clock
Synchronization. NASA Technical Memorandum 107634, Langley Research Center, Hampton,
VA, 1992.

[99] Miner, Paul S.: A Verified Design of a Fault-Tolerant Clock Synchronization Circuit: Pre-
liminary Investigations. NASA Technical Memorandum 107568, Mar. 1992.

37

[100] Miner, Paul S.: Verification of Fault-Tolerant Clock Synchronization Systems. NASA Tech-
nical Paper 3349, Nov. 1993.

[101] Miner, Paul S.: Defining the IEEE-854 Floating-Point Standard in PVS. NASA, NASA
Technical Memorandum 110167, Langley Research Center, Hampton, VA, June 1995.

[102] Miner, Paul S.: Hardware Verification using Coinductive Assertions. PhD thesis, Computer
Science Department, Indiana University, USA, 1997.

[103] Miner, Paul S.; and Johnson, Steven D.: Verification of an Optimized Fault-Tolerant Clock
Synchronization Circuit. In Sheeran, Mary; and Singh, Satnam, editors 1996:, Designing
Correct Circuits, Electronic Workshops in Computing, Bastad, Sweden, Sept. 1996, Springer-
Verlag.

[104] Miner, Paul S.; and Leathrum, James F., Jr.: Verification of IEEE Compliant Subtractive
Division Algorithms. In Srivas, Mandayam K., editor 1996:, Formal Methods in Computer-
Aided Design, FMCAD ’96, Lecture Notes in Computer Science, Palo Alto, CA, Nov. 1996,
Springer-Verlag. To Appear.

[105] Miner, Paul S.; Padilla, Peter A.; and Torres, Wilfredo: A Provably Correct Design of a
Fault-Tolerant Clock Synchronization Circuit. In 11th Digital Avionics Systems Conference,
Seattle, WA, Oct. 1992, pp. 341–346.

[106] Miner, Paul S.; Pullela, Shyamsundar; and Johnson, Steven D.: Interaction of Formal Design
Systems in the Development of a Fault-Tolerant Clock Synchronization Circuit. In 13th
Symposium on Reliable Distributed Systems. IEEE Computer Society Press, 1994, pp. 128–
137. Proceedings of SRDS 94 held at Dana Point, California, October 1994.

[107] Moore, J Strother: A Formal Model of Asynchronous Communication and Its Use in Me-
chanically Verifying a Biphase Mark Protocol. NASA Contractor Report 4433, June 1992.

[108] Moore, J Strother: Mechanically Verified Hardware Implementing an 8-bit Parallel IO Byzan-
tine Agreement Processor. NASA Contractor Report 189588, Apr. 1992.

[109] Muñoz, C.; Butler, R.W.; Carreño, V.; and Dowek, G.: On the verification of conflict
detection algorithms. Technical Report NASA/TM-2001-210864, May 2001.

[110] National Aeronautics and Space Administration, Office of Safety and Mission Assurance,
Washington, DC. Formal Methods Specification and Verification Guidebook for Software and
Computer Systems, Volume I: Planning and Technology Insertion, July 1995.

[111] National Aeronautics and Space Administration, Office of Safety and Mission Assurance,
Washington, DC. Formal Methods Specification and Verification Guidebook for Software and
Computer Systems, Volume II: A Practitioner’s Companion, May 1997.

[112] Neumann, Peter G.: Some Computer-Related Disasters and Other Egregious Horrors. ACM
Software Engineering Notes, vol. 10, no. 1, Jan. 1985, pp. 6–12.

[113] Owre, S.; Shankar, N.; and Rushby, J. M.: The PVS Specification Language (Beta Release).
Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.

38

[114] Owre, S.; Shankar, N.; and Rushby, J. M.: User Guide for the PVS Specification and
Verification System (Beta Release). Computer Science Laboratory, SRI International, Menlo
Park, CA, Feb. 1993.

[115] Owre, Sam; Rushby, John; ; Shankar, Natarajan; and von Henke, Friedrich: Formal Verifica-
tion for Fault-Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Transactions
on Software Engineering, vol. 21, no. 2, Feb. 1995, pp. 107–125.

[116] Owre, Sam; Rushby, John; and Shankar, Natarajan: Analyzing Tabular and State-Transition
Requirements Specifications in PVS. NASA Contractor Report 201729, July 1997.

[117] Owre, Sam; Rushby, John; Shankar, Natarajan; and Srivas, Mandayam: A Tutorial Using
PVS For Hardware Verification. In Second International Conference on Theorem Proving in
Circuit Design, Theory, Practice, and Experience, Bad Herrenalb, Germany, Sept. 1994.

[118] Owre, Same; and Shankar, Natarajan: Abstract Datatypes in PVS. NASA Contractor Report
97-206264, Nov. 1997.

[119] Pan, Jing; and Levitt, Karl: Towards a Formal Specification of the IEEE Floating-Point Stan-
dard with Application to the Verification of Floating-Point Coprocessors. In 24th Asilomar
Conference on Signals, Systems & Computers, Monterrey, CA., Nov. 1990.

[120] Pan, Jing; Levitt, Karl; and Cohen, Gerald C.: Toward a Formal Verification of a Floating-
Point Coprocessor and its Composition with a Central Processing Unit. NASA Contractor
Report 187547, Aug. 1991.

[121] Pan, Jing; Levitt, Karl; and Schubert, E. Thomas: Toward a Formal Verification of a
Floating-Point Coprocessor and its Composition with a Central Processing Unit. In ACM
International Workshop on Formal Methods in VLSI Design, Miami, FL, Jan. 1991.

[122] Rajan, S.; Shankar, N.; and Srivas, M. K.: An Integration of Model Checking with Automated
Proof Checking. In Computer Aided Verification (CAV 95), Liege, Belgium, July 1995.

[123] Roberts, Larry W.; and Beims, Mike: Using Formal Methods to Assist in the Requirements
Analysis of the Space Shuttle HAC Change Request (CR 90960E). NASA Johnson Space
Center, Technical report, 1996. To appear.

[124] Rogers, Michael; and Gonzalez, David L.: Can We Trust Our Software? Newsweek, Jan.
1990.

[125] Rushby, John: Formal Specification and Verification of a Fault-Masking and Transient-
Recovery Model for Digital Flight-Control Systems. NASA Contractor Report 4384, July
1991.

[126] Rushby, John: Formal verification of an Oral Messages algorithm for interactive consistency.
NASA Contractor Report 189704, Oct. 1992.

[127] Rushby, John: Formal Methods and Digital Systems Validation for Airborne Systems. NASA
Contractor Report 4551, Dec. 1993.

[128] Rushby, John: A Formally Verified Algorithm Clock Sychronization Under a Hybrid Fault
Model. In ACM Principles of Distributed Computing ’94, Aug. 1994.

39

[129] Rushby, John: Formal Methods and Their Role in Digital Systems Validation for Airborne
Systems. NASA Contractor Report 4673, Aug. 1995.

[130] Rushby, John: Reconfiguration and Transient Recovery in State-Machine Architectures.
In 26th Annual International Symposium on Fault-tolerant Computing (FTCS-26), Sendai,
Japan, June 1996.

[131] Rushby, John: Systematic Formal Verification for Fault-Tolerant Time-Triggered Algorithms.
In Meadows, Catherine; and Sanders, William, editors 1997:, Dependable Computing for
Critical Applications—6, Garmisch-Partenkirchen, Germany, Mar. 1997, IEEE Computer
Society, pp. 191–210.

[132] Rushby, John: Partitioning in Avionics Architectures: Requirements, Mechanisms, and As-
surance. NASA Contractor Report CR-1999-209347, June 1999.

[133] Rushby, John: Bus Architectures For Safety-Critical Embedded Systems. In Henzinger, Tom;
and Kirsch, Christoph, editors 2001:, EMSOFT 2001: Proceedings of the First Workshop on
Embedded Software, vol. 2211 of Lecture Notes in Computer Science, Lake Tahoe, CA, Oct.
2001, Springer-Verlag, pp. 306–323.

[134] Rushby, John: An Overview of Formal Verification for the Time-Triggered Architecture. In
Damm, Werner; and Olderog, Ernst-Rüdiger, editors 2002:, Formal Techniques in Real-Time
and Fault-Tolerant Systems, Lecture Notes in Computer Science, Oldenburg, Germany, Nov.
2002, Springer-Verlag. To appear.

[135] Rushby, John; and von Henke, Friedrich: Formal Verification of a Fault-Tolerant Clock
Synchronization Algorithm. NASA Contractor Report 4239, June 1989.

[136] Rushby, John; and von Henke, Friedrich: Formal Verification of Algorithms for Critical
Systems. IEEE Transactions on Software Engineering, vol. 19, no. 1, Jan. 1993, pp. 13–23.

[137] Schneider, Fred B.: Understanding Protocols for Byzantine Clock Synchronization. Cornell
University, Ithaca, NY, Technical Report 87-859, Aug. 1987.

[138] Schrage, Michael: ‘When the Chips Are Down’ Will Likely Be Heard More Often in Com-
puting. The Washington Post, pp. B3. December 16, 1994.

[139] Schubert, Thomas; and Levitt, Karl: Verification of Memory Management Units. In Second
IFIP Conference on Dependable Computing For Critical Applications, Tucson, Arizona, Feb.
1991, pp. 115–123.

[140] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Towards Composition of Verified
Hardware Devices. NASA Contractor Report 187504, Nov. 1991.

[141] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Formal Mechanization of Device
Interactions With a Process Algebra. NASA Contractor Report 189644, Nov. 1992.

[142] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Formal Verification of a Set of
Memory Management Units. NASA Contractor Report 189566, 1992.

[143] Shankar, N.; and Owre, S.: PVS Semantics. NASA Contractor Report yyy, 1998.

40

[144] Shankar, N.; Owre, S.; and Rushby, J. M.: The PVS Proof Checker: A Reference Manual
(Beta Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.

[145] Shankar, Natarajan: Mechanical Verification of a Schematic Byzantine Clock Synchronization
Algorithm. NASA Contractor Report 4386, July 1991.

[146] Shankar, Natarajan: Mechanical Verification of a Generalized Protocol for Byzantine Fault-
Tolerant Clock Synchronization. In Second International Symposium on Formal Techniques
in Real Time and Fault Tolerant Systems, vol. 571 of Lecture Notes in Computer Science, pp.
217–236. Springer Verlag, Nijmegen, The Netherlands, Jan. 1992.

[147] Shankar, Natarajan: Verification of Real-Time Systems Using PVS. In Courcoubetis [30],
pp. 280–291.

[148] Shankar, Natarajan; Owre, Sam; and Rushby, John: PVS Tutorial. Computer Science
Laboratory, SRI International, Menlo Park, CA, Feb. 1993. Also appears in Tutorial Notes,
Formal Methods Europe ’93: Industrial-Strength Formal Methods, pages 357–406, Odense,
Denmark, April 1993.

[149] Srivas, Mandayam; and Bickford, Mark: Verification of the FtCayuga Fault-Tolerant Micro-
processor System (Volume 1: A Case Study in Theorem Prover-Based Verification). NASA
Contractor Report 4381, July 1991.

[150] Srivas, Mandayam; and Bickford, Mark: Moving Formal Methods Into Practice: Verifying
the FTPP Scoreboard: Phase 1 Results. NASA Contractor Report 189607, May 1992.

[151] Srivas, Mandayam; Hosabettu, Ravi; and Gopalakrishnan, Ganesh: A Systematic Methodol-
ogy for Verifying Superscalar Microprocessors. NASA Contractor Report 208991, Feb. 1999.

[152] Srivas, Mandayam; and Miller, Steve: Formal Verification of an Avionics Microprocessor.
NASA Contractor Report 4682, July 1995.

[153] Tiwari, A.; and Khanna, G.: Series of Abstractions for Hybrid Automata. In Tomlin, C. J.;
and Greenstreet, M. R., editors 2002:, Hybrid Systems: Computation and Control HSCC, vol.
2289 of LNCS. Springer, Mar. 2002, pp. 465–478.

[154] Vito, Ben L. Di: A Model of Cooperative Noninterference for Integrated Modular Avionics.
In Proceedings of Dependable Computing for Critical Applications (DCCA-7), San Jose, CA,
1999.

[155] Walter, C. J.; Kieckhafer, R. M.; and Finn, A. M.: MAFT: A Multicomputer Architecture
for Fault-Tolerance in Real-Time Control Systems. In Real Time Systems Symposium, Dec.
1985.

[156] Wiener, Lauren Ruth: Digital Woes. Addison-Wesley Publishing Company, 1993. ISBN
0-201-62609-8.

[157] Windley, Phillip J.: Abstract Hardware. In ACM International Workshop on Formal Methods
in VLSI Design, Miami, FL, Jan. 1991.

[158] Windley, Phillip J.: The Formal Verification of Generic Interpreters. In 28th Design Au-
tomation Conference, San Franciso, CA, June 1991.

41

[159] Windley, Phillip J.; Levitt, Karl; and Cohen, Gerald C.: Formal Proof of the AVM-1 Micro-
processor Using the Concept of Generic Interpreters. NASA Contractor Report 187491, Mar.
1991.

[160] Windley, Phillip J.; Levitt, Karl; and Cohen, Gerald C.: The Formal Verification of Generic
Interpreters. NASA Contractor Report 4403, Oct. 1991.

[161] Young, William D.: Verifying the Interactive Convergence Clock Synchronization Algorithm
Using the Boyer-Moore Theorem Prover. NASA Contractor Report 189649, Apr. 1992.

42

