
JPF-Core-X: Tool Operational Requirements (TOR)

JPF-Core-X:

Tool Operational Requirements (TOR)

Contents

a. Description of context 1

a.1. Functional Overview . 5

b. Description of operational environment 6

c. Description of input files 7

c.1. Java Application to Test . 7

c.2. JPF Properties . 7

d. Description of output 12

d.1. Application Output . 12

d.2. JPF-Core-X Logs . 13

d.3. JPF-Core-X Reports . 14

d.4. JPF-Core-X Reporting System . 15

e. Requirements for tool functions 16

e.1. JPF-Core-X External Interface Requirements . 16

e.2. JPF-Core-X Verification Operational Requirements 20

f. Requirements to address abnormal activation modes 22

g. User information 23

h. Description of operational use 24

h.1. Execution from the Command Line . 24
h.2. Execution from the IDE . 24

i. Performance requirements 24

i.1. Normal Operation . 25

i.2. Abnormal Operation . 27

1

JPF-Core-X: Tool Operational Requirements (TOR)

Introduction

This document is one of a several exemplar documents prepared as part of a research Case Study

whose objective is to simulate a Formal Methods Tool qualification exercise under DO-330. The

specific tool considered in this case study is the core module of Java PathFinder (JPF-Core). As

with any tool qualification exercise, the qualification is done with respect to a specific version of

the tool. Therefore, throughout this document, we refer to our version of JPF-Core as “JPF-Core-

X”, as described in Section a of the Tool Qualification Plan. This particular document provides

a representative example of the “Tool Operational Requirements” (TOR) for JPF-Core-X, and is

written according to the guidelines in DO-330 Section 10.3.1.

Because this is a research study, in which there is no actual qualifying organization and accom-

panying context, and because the tool under consideration is a research implementation without

specific versions, release control, user documentation, or standard configurations, some of the sec-

tions of an actual TOR will not be relevant. This document is thus a Framework for an actual TOR,

organized according to the DO-330 enumeration of required contents. Accordingly, some sections

will represent content that is concrete enough to be part of an actual TOR; some will discuss how

a more concrete implementation of this tool might fulfill the required contents; and some will not

be applicable for the purposes of this research simulation.

The sections that follow are organized according to sub-parts a) through i) of Section 10.3.1

in DO-330. In each section, we attempt to provide representative content of what should appear

in an actual TOR for a real qualification exercise. In addition, we offer supplemental meta-level

comments throughout the document.

Discussion

This is how a meta-level comment appears in the text. These comments are meant to provide

insight into our process of writing the document, and to suggest interesting or important

topics that relate to the qualification of formal methods tools.

a. Description of context

DO-330

“Description of the context of the tool use, including interfaces with other tools and integra-

tion of the tool output files into the resultant software.” [DO330-10.3.1-a]

We will apply JPF-Core-X to a subset of the Low Level Requirements (LLRs) to verify that they

comply with certain High Level Requirements (HLRs) which JPF-Core-X is particularly well-suited

to test. These LLRs will express system requirements such as function sequencing and concurrency

as relatively short programs in the Java language. By model-checking these LLRs, JPF-Core-X will

verify the absence of faults corresponding to these HLRs. (If faults are discovered by the tool at

1

JPF-Core-X: Tool Operational Requirements (TOR)

this stage during the development process, the faulting execution trace discovered by JPF-Core-X

can be used to correct the implicated LLRs.) This approach to early validation of the LLRs has

been shown in academic research to reveal errors before source code generation [1].

As shown in Figure 1, JPF-Core-X will support four of the Software Verification Processes

required by the DO-178C certification regime.

• JPF-Core-X will verify the compliance of the LLRs with certain HLRs representing properties

of liveness (i.e., freedom from deadlock) and correct sequencing.

• JPF-Core-X will verify the accuracy and consistency of the LLRs by enforcing their expression

in a formal language (Java) that can be checked for internal consistency (through compilation).

• JPF-Core-X will demonstrate the verifiability of the LLRs by enforcing their representation

in a formal notation.

• JPF-Core-X will help verify the algorithm accuracy of the LLRs by checking application-

specific assertions.

Figure 2 shows JPF-Core-X’s inputs and outputs in the context of its proposed use in cer-

tification activities. As shown, JPF-Core-X consumes files containing properties to be verified

represented in its own input language and one or more files containing Java code representing

system LLRs. It’s output is presented to the user in the form of a report file.

The application of JPF-Core-X will be limited to the high-level requirements corresponding to:

• Deadlocks occurring when two or more threads get stuck in a state where each is waiting on

the other(s) before continuing execution;

• Race Conditions in multi-threaded programs when either a) two or more threads can access

the same shared data and try to change it at the same time, or b) shared data is changed by

threads in a particular (undesired) order, resulting in a fault;

• Application-Specific Assertions - specific conditions that we (as developers) say must be true

in order to for us to claim that the application is functioning properly;

These classes of high-level requirements can be verified by JPF-Core-X’s native functionality, with-

out the use of any of the “modules” available from the JPF-Core-X maintainers or the addition of

any end user extensions, such as custom Listener classes. Accordingly, we seek to qualify only the

core JPF-Core-X tool. We will not use or qualify any modules or custom extensions.

2

JPF-Core-X: Tool Operational Requirements (TOR)

System
Requirements

High-Level
Requirements

Low-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

Accuracy and Consistency
Verifiability

Algorithm Accuracy

Compliance

Figure 1: JPF-Core-X will be used to automate the indicated review and analysis DO-178C

certification activities, including compliance of LLRs with HLRs, the accuracy and

consistency of the LLRs, the verifiability of the LLRs, and algorithm accuracy in

the LLRs. This diagram shows how these certification activities supported by JPF-

Core-X fit into the overall Level A Software Verification Processes as illustrated in
Figure FM.6-1 of DO-333.

3

JPF-Core-X: Tool Operational Requirements (TOR)

JPF Properties &
Assertions

Representing HLRs

Manual
Encoding

Manual
Encoding

System Under Test:
LLRs as Java

Source

SuccessViolation Safe

High Level
Requirements

Source Code

JPF Model
Checking

Repair High or Low
Level Requirements,
or their encodings.

JPF Report

Inputs

Output

Tool

Source code generation
from LLRs is the next step
in the software life cycle
process.

JPF Report will indicate if the
system under test has any:
 1) deadlocks,
 2) race conditions, or
 3) assertions.

Figure 2: Flow of HLRs and LLRs for JPF-Core-X model checking.

4

JPF-Core-X: Tool Operational Requirements (TOR)

a.1. Functional Overview

Discussion

This section overlaps with Section “c” in the TQP.

JPF-Core-X is a configurable environment with its own virtual machine designed to enable

customized verification of Java bytecode programs.

Discussion

The full JPF architecture includes a core virtual machine with a basic set of verification
tools (JPF Core), plus several optional extension modules that may be added to perform

more customized analysis. As discussed above, however, this qualification exercise is for

JPF-Core-X only.

A diagram of the architecture is shown in Figure 3. The JPF-Core-X installation resides and

runs on top of the native Java installation on the host OS. It is therefore a VM on top of a VM.

The JPF-Core-X virtual machine then executes the Java application being tested. This Java source

code being checked by JPF-Core-X is also referred to as the System Under Test (SUT).

Figure 3: JPF-Core-X Layered Architecture. Image taken from: http://babelfish.arc.

nasa.gov/trac/jpf/wiki/user/components

In general, a potential challenge with using JPF-Core-X to verify an application (especially

large scale applications) is that JPF-Core-X cannot execute Java libraries that use native code.

Doing so would prevent JPF-Core-X from matching and/or backtracking the program states. The

workaround is to use native peers and/or model classes.

5

http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/components
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/components

JPF-Core-X: Tool Operational Requirements (TOR)

Native peers are Java classes that effectively replace native methods. The native peers are

executed by the real Java VM (not JPF-Core-X). Model classes are simple replacements of standard

classes, such as java.lang.Thread. The model classes provide alternatives for native methods which

are fully observable and backtrackable.

b. Description of operational environment

DO-330

“Description of the tool operational environment(s) (where the tool will be installed).”

[DO330-10.3.1-b]

Discussion

There’s nothing interesting with respect to model checkers about this section. However, the

fact that JPF is an open-source tool distributed from a source code repository does present

possibly interesting issues.

The specific instance of JPF to be qualified for certification is JPF-Core-X. We obtained JPF-

Core-X from the JPF mercurial repository maintained by NASA on March 1, 2016. On that date,

JPF-Core-X was the tip tag on the default branch of the repository at http://babelfish.arc.nasa.gov/hg/jpf/jpf-core.

The last changeset included in JPF-Core-X is 29:820b89dd6c97 committed on October 16, 2015.

From here forward, we will use JPF-Core-X to refer to this specific version of JPF-Core.

JPF-Core-X is a pure Java application. As such, it runs on the Java virtual machine, which

itself can be run on Windows, OS X, or Unix operating systems. The minimal required Java version

is Java SE 7, which corresponds to JDK 1.7.

The JPF-Core-X distribution is provided with project configurations for both the NetBeans

and Eclipse IDEs. This qualification exercise assumes that only the NetBeans IDE is used.

Given that JPF-Core-X is generally a resource hungry application, it is recommended to run

with at least 2 GB of RAM. This is just a general guideline. The actual memory usage will depend

on the size of the application being tested.

Discussion

This section overlaps with Section “d” in the TQP.

6

JPF-Core-X: Tool Operational Requirements (TOR)

c. Description of input files

DO-330

“Description of input files, including format, language definition, etc.” [DO330-10.3.1-c]

As the diagram in Figure 2 shows, the two main inputs provided to JPF-Core-X are: 1) the

System Under Test (SUT), which is the Java application to be tested, and 2) the JPF properties.

c.1. Java Application to Test

The Java application to be tested with JPF-Core-X should be provided as Java source code. This

is referred to as the System Under Test (SUT). One class in the set of *.java files must contain the

main() method.

This Java source code represents the low level requirements of the software to be certified. In

addition, a subset of the high level requirements may be embedded in the Java source code in the

form of application specific assertions.

c.2. JPF Properties

JPF-Core-X will be used to verify that the SUT meets certain high-level requirements. In particular,

it will check the SUT for deadlocks, race conditions, and application-specific assertions. The manner

in which JPF-Core-X searches for these faults can be configured through a .jpf properties file.

Defining the overall JPF-Core-X configuration involves specifying properties at three different

levels: site, project, and application.

Discussion

The JPF architecture was designed to be both extensible, through the inclusion of additional

modules, and configurable, through the definition of a large set of configuration parameters.

The goal of this design, of course, is to grant users as much freedom as possible so they can

shape JPF to meet their own needs. Although this degree of flexibility is extremely useful,

it also permits the tool to exhibit a wide range of behaviors. Qualification of a tool with

such loosely defined behavior is impractical and ill-advised. With the goal of providing a

well-defined set of behaviors, while also allowing some configuration, we therefore restrict

the scope of the tool to include only JPF-Core, and further restrict which configuration

parameters may be changed.

Site Properties The site.properties file is created as part of the install process. Unless

otherwise specified, it is installed at: {user.home}/.jpf/site.properties. The purpose of the

7

JPF-Core-X: Tool Operational Requirements (TOR)

site.properties file is to inform JPF-Core-X where to find all of the installed projects and exten-

sions. An example site.properties file for JPF-Core-X is shown below.

Discussion

Note that this example includes two additional extensions beyond JPF-Core-X. This is, in

general, how the site.properties file would be defined for a particular installation of JPF-

Core-X with multiple extensions. However, for our verification exercise, only JPF-Core will

be used, so only the first two (non-comment) lines are necessary.

1 # JPF site configuration

2

3 # jpf -core must always be defined and included in the extensions

4 jpf -core = ${user.home}/ projects/jpf/jpf -core

5 extensions=${jpf -core}

6

7 # Additional extensions would be listed here. For example:

8 jpf -numeric = ${user.home}/ projects/jpf/jpf -numeric

9 extensions +=${jpf -numeric}

10

11 jpf -aprop = ${user.home}/ projects/jpf/jpf -aprop

12 extensions +=${jpf -approp}

13

14 # and so on...

Project Properties

Discussion

Each JPF module contains a project properties file in its root directory, named

jpf.properties. For this verification exercise, we require only one project properties file,

which is specifically for JPF-Core.

The System Under Test (SUT) may also have a jpf.properties file. If so, it would simply define

the classpath variable so that JPF-Core-X will know where to find all of the SUT classes.

The jpf.properties files are executed in the order in which they are listed in the site.properties file,

with one exception. If JPF-Core-X is started from within a directory that contains a jpf.properties

file, this file will be loaded last and will therefore overwrite any previously defined settings in the

other files.

The site and project properties must be consistent. This means that the module names (e.g.

“jpf-core”) in site.properties and jpf.properties need to be identical.

This properties file does two things: 1) it defines the JPF-Core-X specific paths that need to

be set for the module or system under test to work properly, and 2) it defines numerous default

properties that govern JPF-Core-X functionality. This includes properties for the VM, search

methods, choice generation, reports, and listeners.

8

JPF-Core-X: Tool Operational Requirements (TOR)

The first entry in every jpf.properties file must define the module name. For JPF-Core-X, it is:

1 jpf -core=${config_path}

JPF automatically expands ${config path} with the pathname of the directory in which the

jpf.properties file resides.

The next entries in jpf.properties set the classpath, sourcepath, and peer packages.

1 jpf -core.native_classpath =\

2 ${jpf -core}/build/jpf.jar;\

3 ${jpf -core}/build/jpf -annotations.jar;\

4 ${jpf -core}/lib/junit -4.10. jar

5

6 jpf -core.classpath =\

7 ${jpf -core}/build/jpf -classes.jar;\

8 ${jpf -core}/build/examples

9

10 jpf -core.sourcepath =\

11 ${jpf -core}/src/examples

12

13 jpf -core.test_classpath =\

14 ${jpf -core}/build/tests

15

16 jpf -core.peer_packages = gov.nasa.jpf.jvm ,<model >,<default >

The remaining parts of jpf.properties sets values for key/value pairs. Both the site.properties

and the jpf.properties files can define or override any key/value pairs recognized by JPF-Core-X.

Important: The default key/value pairs that are defined in the jpf.properties file of JPF-Core-

X should not be changed. For the purpose of this verification, it is assumed that these default

values will be used. Only a subset of the key/value pairs may be changed, and that those changes

should be specific in the Application Properties *.jpf file (see below).

Discussion

For a real qualification exercise, the tool should provide some protection to prevent the user

from changing default properties that should remain unchanged.

Application Properties When JPF-Core-X is run, it must be provided a *.jpf application

properties file. At a minimum, the *.jpf file defines the target, which is the main java class that

should be started to begin execution of the application. A list of target args may be provided if

the target class requires input arguments. If necessary, multiple *.jpf files may be created, each

defining different values for the target input arguments. An example is shown below to explain the
syntax.

1 # Define the target class of the SUT. This class must have a main() method.

9

JPF-Core-X: Tool Operational Requirements (TOR)

2 target = MY_SUT_CLASSNAME

3 # Target arguments , if necessary.

4 target_args =1,2,’’a’’,’’b’’

Discussion

In general, the *.jpf application properties file may also list dependencies on other JPF

modules, such as jpf-awt or jpf-shell, for example. However, because our tool qualification

includes only JPF-Core, no other modules may be listed.

In addition, the *.jpf file may also define JPF-Core-X properties as key/value pairs. Any JPF-

Core-X properties defined in the *.jpf file will overwrite the values set in the jpf.properties file.

Important: For the purpose of this verification exercise, only the following properties may be

changed in the *.jpf file:

search.class This defines which method of search JPF-Core-X will use in navigating the state
space.

1 # DEFAULT

2 search.class = gov.nasa.jpf.search.DFSearch

3 # OTHER OPTIONS

4 search.class = gov.nasa.jpf.search.BFSHeuristic

5 search.class = gov.nasa.jpf.search.RandomHeuristic

Discussion

Note that, in the Tool Requirements (TR) document, we limit our discussion to func-

tional requirements associated with depth-first search. If other search methods are

allowed, the functional requirements in the TR would have to be expanded to include

them.

search.depth limit Defines the depth limit for search. The default value is 2147483647.

Discussion

Limiting the search depth may be a practical need for large programs. A greater search

depth requires more memory and takes more time for the tool to process. However,

this represents one of the fundamental issues with model-checking. If the search is

halted at a certain depth, then we have not fully examined the entire search space,

leaving open the possibility for faults to occur in the unexamined part. This could lead

to a false negative. One mitigating factor for this issue is that, if the search depth is

reached, it is indicated in the JPF report. Thus, any interpretation of a negative (no

errors found) result would be tempered with the fact that the full search space was

not examined. In some cases, it may be possible to make the argument that searching

10

JPF-Core-X: Tool Operational Requirements (TOR)

beyond a given depth is unnecessary, based on how the SUT is implemented. However,

this argument would have to be made outside the scope of the tool qualification, and

would be specific to the SUT.

cg.randomize choices Defines the randomization policy for choice generation.

1 # choice randomization policy in effect:

2 # "NONE" - choice sets are not randomized

3 # "FIXED_SEED" - choice sets are randomized using a fixed seed for each JPF

run (reproducible)

4 # "VAR_SEED" - choice sets are randomized using a variable seed for each JPF

run

5 cg.randomize_choices = NONE

cg.seed This defines the standard seed value used for any FIXED SEED policy.

1 # DEFAULT - the value of 42 below can be changed to any integer.

2 cg.seed = 42

log.level This defines how log messages are displayed. A set of preset options are available, each

producing log messages of a different format and content.

1 # DEFAULT

2 log.level=warning

3 # OTHER OPTIONS: severe , info , fine , finer , finest

report.publisher This defines what types of reports JPF-Core-X will output during and after the

run. The console is defined as the one publisher by default, and this should not be changed.

However, additional publishers may be added.

1 # DEFAULT (this should not be changed)

2 report.publisher=console

3 # OPTIONAL ADD -ONs:

4 report.publisher +=xml

5 report.publisher +=html

report.console.file This defines a file name for the console output to be redirected to. If added

to the *.jpf file, the console output will be saved in the specified file. If the file does not exist,

it will be created. If the file does exist, its contents will be replaced with the output from the

next run. If this line is not added to the *.jpf file, the console outputs will not be stored in

any file.

11

JPF-Core-X: Tool Operational Requirements (TOR)

1 report.console.file=MY_JPF_REPORT

report.console.property violation This defines, for the console publisher, which of the property

violation topics should be processed and in which order. See Section d.3. for more discussion

of property violations.

1 # DEFAULT (this should not be changed)

2 report.console.property_violation=error ,snapshot

3 # OPTIONAL ADD -ONs:

4 report.console.property_violation +=trace

5 report.console.property_violation += output

6 report.console.property_violation += statistics

d. Description of output

DO-330

“Description of output files, including format and contents.” [DO330-10.3.1-d]

JPF-Core-X can produce three different types of outputs:

Application Output - describes what the application, a.k.a. the System Under Test (SUT), is

doing as it runs.

JPF-Core-X Logs - describes what JPF-Core-X is doing as it performs its evaluation of the SUT.

JPF-Core-X Reports - describes the result of the JPF-Core-X run.

The manner in which each of these outputs is provided is controlled by the JPF-Core-X config-

uration mechanism.

Each of the output types is described in the subsections that follow.

d.1. Application Output

This represents all outputs printed during execution of the application. This output is typically

generated from Java source code with a call like: System.out.println(...). Because it is executed

by JPF-Core-X as part of the application, the same print statement might be executed several

times. Consider the following example:

public class MyApplication ..{

...

12

JPF-Core-X: Tool Operational Requirements (TOR)

boolean cond = Verify.getBoolean();

System.out.println("and the cond is: " + cond);

...

}

This will produce the following application output:

...

and the cond is: true

...

and the cond is: false

...

Following the first print statement, JPF-Core-X performs a backtrack operation. The Verify.getBoolean()

statement has two possible outcomes, true or false, which ultimately leads to both results being

printed. It is, in general, confusing to view the application output in isolation because the back-

tracking operations performed by JPF-Core-X are not visible. This makes it difficult (or impossible)

to ascertain whether repeated printouts with different values (such as the example above) are due

normal to iterations within the application, or the result of JPF-Core-X backtracking.

JPF-Core-X provides two different configuration options to help with this issue:

• vm.tree output = {true|false} – (Default.) Output will be displayed on the console each

time a print statement is executed. This corresponds to the above example.

• vm.path output = {true|false} – Output will not be immediately printed to the console.

Instead, it will be stored in the path for later processing once JPF-Core-X terminates. This

will cause the application output to appear as if it were run on a normal JVM.

d.2. JPF-Core-X Logs

JPF-Core-X logs convey the internal status of JPF-Core-X. This can include high-level notifications,

such as errors or assertion violations, as well as low-level information, such as fine-grained details

about internal JPF-Core-X operations. The JPF-Core-X logging mechanism extends the standard

java.util.logging infrastructure. Specialized extensions of the LogHandler and Formatter classes

are provided with JPF-Core-X. This enables logging configuration to be performed via JPF-Core-

X’s own configuration mechanism.

The JPF-Core-X user can use JPF property files (*.jpf) to control two main aspects of the

logging: 1) log output destination and 2) log levels.

Defining the Log Level The default log level is set with the log.level property. It may be set

to any of the following levels: severe, warning, info, fine, finer, finest.

This defines the default manner in which all logs are displayed during JPF-Core-X execution.

In addition, users may elect to override the default log level for individual logs in their custom

13

JPF-Core-X: Tool Operational Requirements (TOR)

JPF-Core-X code. To do so, first declare a static logger instance in your custom JPF-Core-X class

where the logs will be generated, and then use the desired log method:

1 static Logger log = JPF.getLogger(‘‘appropriate ID’’);

2 ...

3 log.severe(‘‘there was an error’’);

4 log.warning(‘‘there was a problem ’’);

5 log.info(‘‘there was something of interest ’’);

Defining the Log Output Destination The log outputs may be sent to a different console.

From the machine where the log should be displayed, enter the following command in a Unix shell:

1 $ java gov.nasa.jpf.tools.LogConsole <port >

Here, <port> is the port where JPF-Core-X will direct its output. To specify this port for JPF-

Core-X, enter the following on the host machine running JPF-Core-X:

1 $ jpf +log.output=<host >:<port > ... MyTestApp

The default host is “localhost” and the default port is 20000.

d.3. JPF-Core-X Reports

JPF-Core-X reports are the primary output of interest. They report any property violations that

are found, along with the corresponding traces and statistics of the overall run.

The JPF-Core-X reporting system can be configured to output reports in different formats and

to different targets. Users can also control what items of the report are displayed, and in what

order.

Reporting is organized according to a predefined set of output phases. In general, each phase

may include a configured, ordered list of topics. The distinct set of output phases are:

start – processed when JPF-Core-X starts

transition – processed after each transition

property violation – processed when JPF-Core-X finds a property violation

finished – processed when JPF-Core-X terminates

If a property violation occurs, different types of information about that violation may be re-

ported. Each JPF-Core-X run can be configured to report specific types of information, or topics.

The predefined set of topics for the property violation phase is listed below.

14

JPF-Core-X: Tool Operational Requirements (TOR)

error – shows the type and details of the property violation found

trace – shows the program trace leading to this property violation

snapshot – lists each threads status at the time of the violation

output – shows the program output for the trace (see above)

statistics – shows property statistics information

When JPF-Core-X terminates it transitions to the finished phase. In this phase, two different

topics may be reported:

result – reports if property violations were found, and shows a short list of them

statistics – shows overall statistics information about JPF-Core-X’s processing of the current run.

d.4. JPF-Core-X Reporting System

The JPF-Core-X reporting system is comprised of three main components:

1. Reporter – Performs data collection; manages and notifies Publisher objects when a certain

output phase is reached.

2. Publisher objects – Produce output in a specific format.

3. PublisherExtension objects – Can be registered for specific Publisher objects at startup.

Publisher objects are used to produce specific types of output format, such as text or XML.

For example, readable text output is displayed to the console by the ConsolePublisher. The Pub-

lisherExtension objects provide a way for users to extend the built-in publishing capabilities of

JPF-Core-X. To do so, the user must first implement the required phase- and format-specific

methods, then register the extension for a specific Publisher class. An example of a publisher

extension provided with JPF-Core-X is the DeadlockAnalyzer. This class is a registered listener of

ConsolePublisher and creates property specific traces (with more information about the deadlock)

when a deadlock event is published.

Configuration of the Reporter, Publisher, and PublisherExtension components can be managed

by specifying properties in the JPF property file. The listing below provides one example of how

the user might specify these properties.

1 r epor t . c l a s s=gov . nasa . j p f . r epo r t . Reporter
2 r epor t . pub l i s h e r=conso le , xml
3 r epor t . c on so l e . c l a s s=gov . nasa . j p f . r epo r t . Conso lePubl i sher
4 r epor t . xml . c l a s s=gov . nasa . j p f . r epo r t . XMLPublisher
5 r epor t . c on so l e . p r op e r t y v i o l a t i o n=error , t race , snapshot
6 r epor t . xml . p r op e r t y v i o l a t i o n=error , t race , snapshot , output , s t a t i s t i c s

15

JPF-Core-X: Tool Operational Requirements (TOR)

Line 1 specifies the reporter class. The built-in JPF-Core-X reporter can always be used, unless

you are implementing your own custom class to perform data collection differently.

Line 2 specifies a list of Publisher objects to use in the reporting. Here we use only two. The

values “console” and “xml” are symbolic names for the two types of publication we’ve chosen. Each

of the symbolic names must have a corresponding class name defined for it.

Lines 3-4 specify the class names that correspond to the symbolic publisher names.

Finally, lines 5-6 specify which of the property violation topics should be processed and which

order. Here, more information is published to the xml file, and less to the console.

e. Requirements for tool functions

DO-330

“Requirements for all the tool functions and technical features used to satisfy the identified

software life cycle process(es).” [DO330-10.3.1-e]

Discussion

The term ”identified software life cycle process(es)” here refers to the specific aspects of the

software to be certified for which we are seeking certification credit. In other words, this

step focuses on identifying all of the requirements for the tool so that it can support the

certification credit we are claiming in the TQP.

e.1. JPF-Core-X External Interface Requirements

This section specifies the operational requirements on the external interfaces of JPF-Core-X, with

the purpose of enabling the qualification of JPF-Core-X as a verification tool.

e.1.1. Inputs to JPF-Core-X

External inputs to JPF-Core-X include:

• The System Under Test (SUT)

• JPF-Core-X Configuration Options

Requirement TOR-e..1: JPF-Core-X shall run and analyze the SUT, where the SUT is

provided as a set of Java classes that compile and run under JRE 1.6 or above.

Requirement TOR-e..2: JPF-Core-X shall execute the SUT by running one of its classes with

a main() method.

16

JPF-Core-X: Tool Operational Requirements (TOR)

Discussion

If any third party libraries are involved in the SUT, the user must replace them with ab-

stractions in Java in order for JPF-Core-X to faithfully and completely analyze the SUT.

Requirement TOR-e..3: JPF-Core-X will accept the configuration options that are specified

in the application properties .jpf file. See Section c.2. for details.

Requirement TOR-e..4: JPF-Core-X will run the SUT by executing the SUT class that is

specified as the “target” in the .jpf file. See Section c.2. for details.

Note that one complete .jpf file must be defined for each distinct use case of the software that

is to be verified. See Section c.2. for details.

e.1.2. Outputs from JPF-Core-X

JPF-Core-X’s output must reliably inform its consumer whether the SUT has passed its tests

(i.e., whether any property violations were found) and whether JPF-Core-X has completed its task

without errors. The output consumer may be an operator or an test automation system. JPF-

Core-X output must include both human-readable output and process signals to ensure correct

interpretation by both engineers and automated testing scripts. Human users and programs should

use both the unambiguous log output and the process signals to provide redundant information

about JPF-Core-X success and failure.

High quality, easily understood output regarding the cause of a SUT failure is a secondary

consideration for qualification purposes, but an important aspect for reduction of development costs.

JPF-Core-X should provide clear failure messages to facilitate the debugging of tool operation,

LLRs, and safety properties, so that engineers can quickly determine whether identified failures are

actual problems with the LLRs or improper use of the tool.

There are four important outcome categories that must be readily apparent to the user:

• SUT failure, when JPF-Core-X discovers one or more property violations in the LLRs;

• SUT passes, when JPF-Core-X completely explores the system state space without finding

any property violations;

• JPF-Core-X error, when either inputs or internal fault cause JPF-Core-X to fail without

completing its exploration of the state space.

• JPF-Core-X interruption, when an external source (such as the operating system, a user, or

a test automation system) terminates JPF-Core-X before it has completed its test.

Correct indication of the last two conditions must be signaled clearly to the user, because a partial

run of JPF-Core-X does not provide any information about the absence of property violations and

must not be treated as such.

17

JPF-Core-X: Tool Operational Requirements (TOR)

Requirements related to SUT failure The following set of requirements specify the correct

behavior of JPF-Core-X when a SUT failure is detected.

Requirement TOR-e..5: JPF-Core-X shall report every property violation that it detects.

Requirement TOR-e..6: JPF-Core-X shall return an exit status of one to the calling process

when it completes a run in which it finds one or more property violations.

Requirement TOR-e..7: JPF-Core-X shall direct reports of detected faults to the console.

Reporting detected faults to the console is part of JPF-Core-X’s default behavior. The following

lines must be present in the jpf.properties file in the JPF-Core-X project directory, and they must

not be overwritten in the application properties .jpf file.

1 r epor t . pub l i s h e r=conso l e
2 r epor t . c on so l e . c l a s s=gov . nasa . j p f . r epo r t . Conso lePubl i sher

Requirement TOR-e..8: JPF-Core-X shall print the full error to the console for every property

violation, if the user requests it.

To request this behavior, add the following line to the .jpf file:

1 r epor t . c on so l e . p r op e r t y v i o l a t i o n=e r r o r

Requirement TOR-e..9: JPF-Core-X shall report other topics (in addition to “error”) for

each property violation, if the user requests it.

To report all topics, the *.jpf file should include the following:

1 r epor t . c on so l e . p r op e r t y v i o l a t i o n=error , t race , snapshot , output , s t a t i s t i c s

The order in which each topic is listed is the order in which it will be published in the report.

Requirement TOR-e..10: JPF-Core-X shall direct reports to an xml file if the user requests
it.

Reports will be directed to an xml file if the following lines are added to the *.jpf file:

1 r epor t . pub l i s h e r+=xml
2 r epor t . xml . c l a s s=gov . nasa . j p f . r epo r t . XMLPublisher

Requirement TOR-e..11: JPF-Core-X shall report all topics of property violations in the xml

file if the user requests it.

18

JPF-Core-X: Tool Operational Requirements (TOR)

To request that all topics of property violations be reported in the xml file, the *.jpf file should

include the following:

1 r epor t . xml . p r op e r t y v i o l a t i o n=error , t race , snapshot , output , s t a t i s t i c s

Requirements specifying behavior when SUT passes The following set of requirements

specify the correct behavior of JPF-Core-X when it completes a run without finding any property

violations in the SUT.

Requirement TOR-e..12: JPF-Core-X shall output, to the console and to a log file, the string

“JPF-Core-X TEST COMPLETE. RESULT: SUCCESS.” followed, on the same line, by a unique

test identifier whenever it completes a test without detecting any property violations in the SUT.

Discussion

JPF-Core-X must be written to ensure that the only circumstance in which it returns a zero

exit status is when it completes a full exploration of the system without discovering any

property violations. For example, invocations of JPF-Core-X to display usage information

or any functionality that only simulates test operations should return an exit status of one

to prevent the misinterpretation of JPF-Core-X output as a successful test.

Requirement TOR-e..13: JPF-Core-X shall return an exit status of zero to the calling process

when it completes a run without finding any property violations.

Requirements related to JPF-Core-X error output The following set of requirements spec-

ify the correct behavior of JPF-Core-X when JPF-Core-X encounters an error condition in its own
operation.

Requirement TOR-e..14: JPF-Core-X shall output, to the console and to a log file, the string

“JPF-Core-X ERROR. RESULT: ERROR.” whenever it encounters an internal error condition
caused by abnormal inputs or incorrect internal operation.

JPF-Core-X can be configured to provide additional error output when desired to assist in the

debugging of possible errors in input files and internal function.

Requirement TOR-e..15: JPF-Core-X shall return an exit status of one to the calling process

when it encounters an internal error condition caused by abnormal inputs or incorrect internal
operation.

19

JPF-Core-X: Tool Operational Requirements (TOR)

Requirements related to JPF-Core-X interruption The following set of requirements spec-

ify the correct behavior of JPF-Core-X when JPF-Core-X is interrupted by an external signal or
event.

Requirement TOR-e..16: JPF-Core-X shall output, to the console and to a log file, the string

“JPF-Core-X INTERRUPTED. RESULT: INTERRUPT.” whenever it terminates operation in

response to an external signal or event.

Requirement TOR-e..17: JPF-Core-X shall return an exit status of one to the calling process

when it terminates operation in response to an external signal or event.

e.2. JPF-Core-X Verification Operational Requirements

This section specifies the operational requirements on the verification methods implemented by

JPF-Core-X, with the purpose of enabling the qualification of JPF-Core-X as a verification tool.

e.2.1. Deadlocks

Requirement TOR-e..18: JPF-Core-X shall verify whether or not the SUT satisfies the

“Not-Deadlocked” property.

Discussion

Req. TOR-e..18 is expanded in the Tool Requirements document to list several supporting

functional requirements.

Requirement TOR-e..19: When JPF-Core-X detects a deadlock, it shall provide a printout

in its report that includes the terms “NotDeadlockedProperty” and “deadlock encountered”.

An example of a deadlock in a console report is shown below: 1

1 == er r o r #1
2 gov . nasa . j p f . jvm . NotDeadlockedProperty
3 deadlock encountered :
4 thread FirstTask :{ id : 1 , name : Thread−1, s t a tu s :WAITING, p r i o r i t y : 5 , lockCount : 1 ,

suspendCount : 0}
5 thread SecondTask :{ id : 2 , name : Thread−2, s t a tu s :WAITING, p r i o r i t y : 5 , lockCount : 1 ,

suspendCount : 0}

Requirement TOR-e..20: When JPF-Core-X detects a deadlock, it shall provide a program

trace that includes the complete execution history leading to the deadlock.

1This example is taken from the “oldclassic” example that is included with the JPF-Core distribution.

20

JPF-Core-X: Tool Operational Requirements (TOR)

e.2.2. Race Conditions

Requirement TOR-e..21: JPF-Core-X shall detect and report the presence of a race condition

in the SUT, for applications with up to 8 threads.

Discussion

Tool requirements that support Req. e..21 should be developed in a manner similar to that

shown for Deadlocks in Section e.2.1..

e.2.3. Application Specific Assertions

Requirement TOR-e..22: JPF-Core-X shall detect the presence of an Application Specific

Assertion in the SUT.

JPF-Core-X’s AssertionProperty class is a property listener that will intercept assertion errors

before they are caught, and generate property violations for them. These property violations are

automatically reported in JPF-Core-X’s output.

To detect application specific assertions, the user must first add the AssertionProperty class to

the list of listeners in the JPF properties file.

1 l i s t e n e r+=gov . nasa . j p f . l i s t e n e r . Asser t ionProperty

Then, individual assertions must be added to the Java source code that implements the LLRs.

In general, the assertions are triggered when specific logical expressions evaluate to false. For

example, the following will throw an assertion if variable “x” is greater than a prescribed threshold.

1 a s s e r t (x <= THRESHOLD) : ”Var iab le x exceeded the p r e s c r i b ed thr e sho ld . ”

Discussion

Tool requirements that support Req. e..22 should be developed in a manner similar to that

shown for Deadlocks in Section e.2.1..

21

JPF-Core-X: Tool Operational Requirements (TOR)

f. Requirements to address abnormal activation modes

DO-330

“Requirements to address the abnormal activation modes or inconsistency inputs that should

be detected by the tool. These requirements should consider the impact of those modes on

the functionality and outputs of the tool. (This item is not applicable to TQL-5.)” [DO330-

10.3.1-f]

Discussion

One priority: The tool should indicate input errors in a fashion that cannot be inadvertently

ignored by users or scripts/tools that might be used to automate its application.

This section has some overlap with section b of the Tool Requirements Document.

Requirement TOR-f..1: The tool shall exit with an error and clearly indicate to the user the

type of the error when it encounters a syntactically incorrect low-level requirement.

Requirement TOR-f..2: The tool shall exit with an error and clearly indicate to the user the

source of error when it completes the execution of a test, but does not invoke one of the Listener

objects associated with a property representing a high-level requirement.

Requirement TOR-f..3: The tool shall exit with an error and clearly indicate to the user the

source of error when it is invoked in an environment which causes it to use a standard Java class
library in place of a JPF-enabled analog class supporting simulated execution or when a method

is called by the application that is not supported by the JPF-enabled analog class.

Discussion

As described earlier in Section a.1., JPF uses a combination of “model classes” and “native

peer classes” to emulate the behavior of parts of system libraries and third-party libraries

which cannot be emulated directly by JPF. For example, methods which call operating

system library functions cannot be emulated by JPF’s instruction by instruction execution

of Java bytecode and may have consequential side effects on the application’s behavior. When

JPF encounters these methods, it will use an appropriate model class, many of which have

been implemented by the JPF team to accurately model libraries with the fidelity necessary

to support model checking. The model class may, in turn, invoke a method in a native peer

class to support its emulation. In the event that an application invokes a method that is not

supported by the suite of model classes, JPF must signal an error because it is impossible

for JPF to emulate and verify the program effects of such functions without a model class

implementation.

Requirement TOR-f..4: The tool shall exit with an error and clearly indicate to the user the

22

JPF-Core-X: Tool Operational Requirements (TOR)

source of error when it is invoked by JPF-Core-X test file that specifies a nonstandard Listener

library (i.e., one that has not been distributed with the qualified tool distribution).

Discussion

The requirement below addresses the maximum allowable number of threads. In actuality,

JPF-Core does not impose a limit on the number of threads. However, for a real tool

qualification, it is important to consider the size and complexity of the software that the

tool is expected to verify. Limiting the qualification scope of JPF-Core-X to a maximum

number of threads is one way to define a meaningful bound. The advantage of imposing

such a limit, in general, is that it provides some concrete bounds on the test cases and

procedures to be used to qualify the tool. A disadvantage, of course, is that it also limits

the applicability of the tool to programs that adhere to this thread limit.

For this exercise, we chose the maximum number of threads to be 8. This selection was

based on our own observations of how long it took JPF-Core to complete analysis of simple

models with varying numbers of threads. For a real qualification effort, the decision should

be based on the maximum number of threads in programs that the tool is expected to analyze

/ verify.

Requirement TOR-f..5: The tool shall exit with an error and clearly indicate to the user the

source of error when it determines that the number of threads in the SUT exceeds the maximum
allowable number of threads. The maximum allowable number of threads for this verification is 8.

g. User information

DO-330

“The applicable user information, such as a user manual and installation guide or a reference

to it, if not provided as part of the Tool Requirements data.” [DO330-10.3.1-g]

Discussion

An online wiki for JPF is maintained by the developers at NASA Ames. It provides an

introduction to JPF, a description of the installation process and separate guides for both

users and developers. The online wiki may be found here:

http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart.

It is important to point out that the wiki describes the full JPF tool, which includes JPF-Core

plus an optional set of add-on modules. The only required module is JPF-Core itself, which is

described here: http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-core. Because the

scope of this tool qualification is limited to JPF-Core, any discussion in the user’s guide

23

http://babelfish.arc.nasa.gov/trac/jpf/wiki/WikiStart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-core

JPF-Core-X: Tool Operational Requirements (TOR)

related to other, optional modules is not relevant.

h. Description of operational use

DO-330

“Description of the operational use of the tool (including selected options, parameters values,

command line, etc.).” [DO330-10.3.1-h]

JPF-Core-X may be run from the command line of a terminal window, or via the NetBeans

IDE. Both methods are described in the subsections below.

h.1. Execution from the Command Line

Open a terminal window and navigate to the root directory of the SUT. A JPF-Core-X properties

file with extension .jpf, specific to this SUT, should reside in this root directory. At the prompt,

execute the following:

$ PATH-TO-JPF-CORE/jpf SUT-PROPERTIES.jpf

where “SUT-PROPERTIES.jpf” is the JPF-Core-X properties file for the SUT.

h.2. Execution from the IDE

Open the SUT project in the NetBeans IDE, and in the “Projects” explorer tab, navigate to the

desired JPF-Core-X properties file. Control-click on the filename to bring up a context menu, and

select verify. A sample view taken from the JPF-Core set of examples is shown in Figure h.2..

i. Performance requirements

DO-330

“Performance requirements specifying the behavior of the tool output.” [DO330-10.3.1-i]

Discussion

The purpose of this section is to define requirements for how the tool should present infor-

mation to the user under all of the possible modes of operation. We discuss some representa-

tive requirements for JPF-Core-X, distinguishing between normal and abnormal operation

modes.

24

JPF-Core-X: Tool Operational Requirements (TOR)

Figure 4: Control-Click on a JPF-Core-X properties file from the NetBeans IDE to run JPF-

Core-X on your SUT.

Here, we list additional performance requirements associated with the output of JPF-Core-X

that have not already been addressed. We consider two general modes: normal operation, when

the tool is free from errors and able to function as intended, and abnormal operation, when some

type internal error or environmental issue prevents the tool from functioning properly.

i.1. Normal Operation

Several operational requirements are already listed for normal operation of JPF-Core-X in Sec-

tion e.1.2.. Those focus on reporting requirements that govern the output of the tool (either to the

console or to files) when a property violation is detected and when the tool completes its analysis.

During normal operation, JPF-Core-X should also provide status information to the user to

indicate that it is functioning normally, and to provide some information regarding the overall

progress of the search.

Discussion

The requirements listed below actually go beyond the built-in features of JPF Core. Some

limited status information is provided in the IDE console (log messages resulting from prop-

erty violations), but this does not serve as a useful status window. Given that typical searches

with JPF and other model checkers on complex programs could take several hours or even

days, it is important to provide useful status information to the user so that they can 1)

be certain it is still functioning properly and 2) maintain an awareness of how far it has

25

JPF-Core-X: Tool Operational Requirements (TOR)

progressed. The requirements outlined below aim to meet these objectives.

Requirement TOR-i..1: JPF-Core-X shall display a “search status window” to contain a

text-based summary of the current search.

Requirement TOR-i..2: JPF-Core-X shall display in the search status window: the name of

the SUT and the name (and path location) of the JPF configuration file being used.

Requirement TOR-i..3: JPF-Core-X shall display the number of threads in the SUT in the

search status window.

Requirement TOR-i..4: JPF-Core-X shall display one of the following messages at the top

of the search status window during normal operation: 1) “Currently Searching” when the search

method is actively running, 2) “Search Complete - Full State Space Searched” if the search method

exits after a complete search of the state space, 3) “Search Finished - Partial State Space Searched”

if the search method exits after an incomplete search of the state space.

Requirement TOR-i..5: JPF-Core-X shall display and update the time elapsed in the search

status window when the search method is actively running. It shall continue to display the last

updated time elapsed after the search method exits.

Requirement TOR-i..6: JPF-Core-X shall display and update the number of states searched

in the search status window when the search method is actively running. It shall continue to display

the last updated number after the search method exits.

Discussion

Displaying a progress bar or a percent completion would be desirable, but this would of

course require knowledge of the total number of states to search. This knowledge could be

obtained only if JPF-Core-X (or another tool) already performed a complete search of the

state space for the same SUT and counted the number of different states. If the tool is run

manually on a given SUT, then a separate manual step of importing that recorded total state

number would be required, which leaves room for human error. If, however, the tool is run

repeatedly on the same SUT (but perhaps with different configuration options), and if one

of the runs leads to a complete search, then the total number of states could be recorded

and used to display a progress bar or percentage in all subsequent runs.

Requirement TOR-i..7: JPF-Core-X shall display “Depth Limit Reached (1 time)” in the

search status window the first time that the depth limit is reached.

Requirement TOR-i..8: JPF-Core-X shall display “Depth Limit Reached (X times)” in the

search status window each time the depth limit is reached after the first occurrence, where X is

incremented by 1 each time the depth limit is reached.

26

JPF-Core-X: Tool Operational Requirements (TOR)

Requirement TOR-i..9: JPF-Core-X shall display “Memory Limit Reached” in the search

status window when the memory limit is reached.

i.2. Abnormal Operation

Discussion

Requirements for abnormal operation are aimed at the goal of JPF-Core-X providing graceful

degradation. Degrading gracefully essentially means that the tool must provide useful and

accurate information to the user even when it encounters errors that prevent it from contin-

uing to function. The most important aspect of these requirements is to ensure that a false

negative does not occur. In other words, JPF-Core-X should never give the false impression

that the SUT was found to be safe when an error prevented the tool from completing its

verification.

Requirements e..14 through e..17 describe the required outputs for JPF-Core-X when it encoun-

ters different types of errors. An additional requirement to help ensure graceful degradation is for

the search status window to indicate clearly that an error has occurred.

Requirement TOR-i..10: JPF-Core-X shall display “ERROR - JPF-Core-X internal error.

Search incomplete.” at the top of the search status window whenever JPF-Core-X encounters an
error.

Note that the message above will replace the message displayed under normal operating condi-

tions, as described in Req. i..4.

Detailed information describing the nature of the error will be provided in the report, as outlined

in the requirements from Section e.1.2..

Another possible error condition would arise if there is insufficient disk space to write the output

report files. If this were to occur, then the user should be alerted to this fact and the information

contained in the report should be made visible to the user before JPF-Core-X exits.

Requirement TOR-i..11: JPF-Core-X shall display “ERROR - Unable to write report output

files to disk.” if the operating system does not allow JPF-Core-X to write any of the report output

files.

Requirement TOR-i..12: JPF-Core-X shall make all of the reports visible within a console

window if the operating system does not allow JPF-Core-X to write any of the report output files.

27

JPF-Core-X: Tool Operational Requirements (TOR)

References

[1] S. P. Miller, A. C. Tribble, M. W. Whalen, and M. P. E. Heimdahl, “Proving the shalls: Early

validation of requirements through formal methods,” Int. J. Softw. Tools Technol. Transf., vol.

8, no. 4, pp. 303–319, 2006. doi:http://dx.doi.org/10.1007/s10009-004-0173-6.

28

	Description of context
	Functional Overview

	Description of operational environment
	Description of input files
	Java Application to Test
	JPF Properties

	Description of output
	Application Output
	JPF-Core-X Logs
	JPF-Core-X Reports
	JPF-Core-X Reporting System

	Requirements for tool functions
	JPF-Core-X External Interface Requirements
	JPF-Core-X Verification Operational Requirements

	Requirements to address abnormal activation modes
	User information
	Description of operational use
	Execution from the Command Line
	Execution from the IDE

	Performance requirements
	Normal Operation
	Abnormal Operation

