
JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

JPF-Core-X:

Tool Verification Cases and Procedures (TVCAP)

Contents

a. Review and Analysis Procedures 3

a.1. End-to-End Tests . 3

a.2. Unit Tests . 4

a.3. Test Suite Obligations . 4

b. Test Cases 6

b.1. End-to-End Tests . 6

b.1.1. Deadlock - Bounded Buffer 1 . 8

b.1.2. Deadlock - Bounded Buffer 2 . 10

b.1.3. NO Deadlock - Bounded Buffer 3 . 12

b.1.4. Deadlock - Remote Agent . 12

b.1.5. Race Condition - Racer . 14

b.1.6. Assertion . 14

b.1.7. Uncaught Exception . 14

b.2. Unit Tests . 14

b.2.1. Structure of Unit Tests . 15

b.2.2. Unit Tests for Initialization . 17

b.2.3. Unit Tests for Search . 17

b.2.4. Unit Tests for Reporting . 19

c. Test Procedures 20

c.1. End-to-End Tests . 20

c.2. Unit Tests . 21

1

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

Introduction

This document is one of a several exemplar documents prepared as part of a research Case Study

whose objective is to simulate a Formal Methods Tool qualification exercise under DO-330. The

specific tool considered in this case study is the core module of Java PathFinder (JPF-Core). As

with any tool qualification exercise, the qualification is done with respect to a specific version of

the tool. Therefore, throughout this document, we refer to our version of JPF-Core as “JPF-Core-

X”, as described in Section a of the Tool Qualification Plan. This particular document provides a

representative example of the “Tool Verification Cases and Procedures” (TVCAP) for JPF-Core-X,

and is written according to the guidelines in DO-330 Section 10.2.5.

Because this is a research study, in which there is no actual qualifying organization and accom-

panying context, and because the tool under consideration is a research implementation without

specific versions, release control, user documentation, or standard configurations, some of the sec-

tions of an actual TVCAP will not be relevant. This document is thus a Framework for an actual

TVCAP, organized according to the DO-330 enumeration of required contents. Accordingly, some

sections will represent content that is concrete enough to be part of an actual TVCAP; some will

discuss how a more concrete implementation of this tool might fulfill the required contents; and

some will not be applicable for the purposes of this research simulation.

The sections that follow are organized according to sub-parts a) through c) of Section 10.2.5 in

DO-330. In each section, we attempt to provide representative content of what should appear in

an actual TVCAP for a real qualification exercise. In addition, we offer supplemental meta-level

comments throughout the document.

Discussion

This is how a meta-level comment appears in the text. These comments are meant to provide

insight into our process of writing the document, and to suggest interesting or important

topics that relate to the qualification of formal methods tools.

Organization of the Document

Section 10.2.5 of the authoritative DO-330 states the following:

The Tool Verification Cases and Procedures detail how the tool verification process activities are

implemented. This data should include:

1. Review and analysis procedures: The scope and depth of the review or analysis methods to be

used, in addition to the description in the Tool Verification Plan.

2. Test cases: The purpose of each test case, set of inputs, conditions, expected results to achieve

the required coverage criteria, and the pass/fail criteria.

1

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

3. Test procedures: The step-by-step instructions for how each test case is to be set up and

executed, how the test results are evaluated, and the test environment to be used.

This document is organized according to the above outline. Section a. describes the scope

and depth of the analysis methods to be used; Section b. describes the test cases; and Section c.

describes the test procedures for each of our test categories.

2

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

a. Review and Analysis Procedures

The tool verification plan for JPF-Core-X involves running two different categories of tests.

1. Full end-to-end tests of JPF-Core-X to verify that it appropriately finds (or confirms the

absence of) certain property violations for specific examples of SUT’s. Each of these tests

support higher-level usage requirements that are listed in the TOR document, such as the

requirement to find and report all deadlocks.

2. A suite of low-level unit tests to verify correct implementation of distinct methods in JPF-

Core-X. Each of these tests support one or more lower-level functional requirements that are

identified in the TR document.

The purpose and scope of the end-to-end tests is to demonstrate that JPF-Core-X satisfies

the external interface requirements and the operational requirements that are listed in the Tool

Operational Requirements (TOR) document. These tests are particularly important because they

involve full execution of the entire tool. In other words, these tests call JPF-Core-X in the same

manner that an actual user would under normal circumstances.

Taken by themselves, however, the end-to-end tests do not provide sufficient evidence that

the tool is implemented correctly. The low-level unit tests verify the correct implementation of

JPF-Core-X with respect to the requirements in the TR.

a.1. End-to-End Tests

The purpose of the end-to-end test suite is to demonstrate that JPF-Core-X correctly exhibits the

required behavior as described in the Tool Operational Requirements (TOR) document. Successful

completion of each test will demonstrate that the external interface requirements and the verification

operational requirements listed in the TOR are satisfied for that test case.

The complete set of test cases is designed to capture the four outcome categories which, as

stated in Section e.1.2. of the TOR, must be readily apparent to the user:

• SUT passes, when JPF-Core-X completely explores the system state space without finding

any property violations;

• SUT failure, when JPF-Core-X discovers one or more property violations in the LLRs;

• JPF-Core-X error, when either inputs or internal fault cause JPF-Core-X to fail without

completing its exploration of the state space;

• JPF-Core-X interruption, when an external source (such as the operating system, a user, or

a test automation system) terminates JPF-Core-X before it has completed its run.

3

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

To show that SUT pass conditions are found and reported correctly, JPF-Core-X will be run on

example Java code programs that are known to have no property violations. Successful evaluation

of these tests will demonstrate that JPF-Core-X meets reporting requirements for the SUT pass

condition and, secondarily, will provide partial evidence that JPF-Core-X does not issue false

negatives.

To show that SUT failure conditions are found and reported correctly, JPF-Core-X will be

run on example Java code programs with known property violations. Successful evaluation of these

tests will demonstrate that JPF-Core-X meets reporting requirements for the SUT failure condition

and, secondarily, will provide partial evidence that JPF-Core-X does not issue false positives.

To show that SUT error conditions are dealt with correctly, JPF-Core-X will be run on example

Java code programs with properties that will cause the search method to reach a prescribed limit

on memory usage. This will cause JPF-Core-X to exit without completing its exploration of the

state space. Successful evaluation of these tests will demonstrate that JPF-Core-X meets reporting

requirements for the SUT error condition and, secondarily, will provide further partial evidence

that JPF-Core-X does not issue false positives.

To show that SUT interruption conditions are dealt with correctly, JPF-Core-X will be run on

example Java code programs in parallel with another “interrupter” process that will terminate JPF-

Core-X before it has completed its run. Successful evaluation of these tests will demonstrate that

JPF-Core-X meets reporting requirements for the SUT interruption condition and, secondarily,

will provide further partial evidence that JPF-Core-X does not issue false positives.

a.2. Unit Tests

The end-to-end tests discussed in the preceding section demonstrate JPF-Core-X running from

beginning to end, showing that it produces the correct results under a finite set of example test

cases. The purpose of the unit tests is to verify that each method used within JPF-Core-X (in the

processing of model-checking the SUT), is implemented correctly.

Each unit test verification is based upon the expectation that, for a given input, the method

being tested has a corresponding correct output. Tests pass when the output (or some part or

property of it) matches the expected output. The argument for correctness of the expected output

is provided in the comments attached to each unit test.

a.3. Test Suite Obligations

Developing the full test suite for JPF-Core-X involves selecting a finite set of test cases, where each

test case is unique from the others in one or more ways. The rationale for designing the individual

test cases is based on the following set of obligations for the entire test suite:

1. Each test case in the suite should provide direct evidence to support at least one requirement

4

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

in the TOR or TR. Similarly, every requirement in the TOR and TR should be covered by

at least one test case.

2. Test cases should be designed to test against state spaces of varying size and complexity, by

using SUTs with varying numbers of threads.

3. Test cases should be designed to test against state spaces of varying size and complexity, by

using SUTs with different underlying source code.

4. End-to-end test cases should be designed to demonstrate successful detection of all prop-

erty violations covered in this qualification (deadlocks, race conditions, assertions, uncaught

exceptions).

5. Additional end-to-end test cases should be designed to demonstrate that the tool does not

falsely detect property violations when there are none in the SUT.

Discussion

Note that item 5 identifies an obligation to include specific tests cases that show the absence

of false positives. Technically, this is not required for the tool to be qualified under DO-330,

because it does not impact soundness. We elect to include the obligation, though, beacuse it

is an important feature from a usability standpoint. A tool that reports false positives may

still be qualified, but if it reports too many of them, it may no longer provide value to the

verification process.

5

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

b. Test Cases

In this section, we describe the set of test cases that will be used to perform tool verification of JPF-

Core-X. Test cases are organized into two main categories: 1) full end-to-end tests of JPF-Core-X,

and 2) low-level unit tests of individual methods.

Discussion

When we began writing this document, we initially examined the existing JPF-Core examples

and regression tests, expecting to find a sufficient set of representative test cases to seed our

discussion. We found a small but useful set of examples, and have used a subset of those

as candidate “end-to-end” test cases to support our JPF-Core-X verification. We also found

that, while JPF-Core does include a regression test suite, it does not provide a comprehensive

set of unit tests. The methods that implement the most fundamental aspects of the tool’s

functionality, such as search, choice generation, and property violation detection, do not have

their own dedicated unit tests. Instead, most of the regression tests involve running the full

JPF-Core tool on a test class with assertions. Rather than write our own unit tests, which

is beyond the scope of the case study, we instead identify the actual methods in the source

code that support each requirement, and list a corresponding name for the unit test.

b.1. End-to-End Tests

The purpose of the end-to-end test suite is to demonstrate that JPF-Core-X correctly exhibits the

required behavior as described in the Tool Operational Requirements (TOR) document. Successful

completion of each test will demonstrate that the external interface requirements and the verification

operational requirements listed in the TOR are satisfied for that test case.

Each of the end-to-end test cases will consist of two main inputs: 1) a distinct set of Java source

code representing the SUT, and 2) a corresponding *.jpf property file. For each end-to-end test

case, we describe the purpose of the test, the set of inputs, the expected results to achieve the

required coverage criteria, and the pass/fail criteria.

Tracing to the TOR requirements is provided in the tables below. Note that, in the TOR, re-

quirements are organized into three general categories: 1) functional requirements, 2) requirements

for abnormal activation modes, and 3) performance requirements.

Discussion

In this case study document, only a small portion of the full required set of end-to-end test

cases are described. The tables below provide an organized trace of the end-to-end test cases

to TOR requirements. All test cases shown in italics are placeholders, indicating that one or

more test cases would be required.

6

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

Table 1: TOR Functional Requirements Trace

Requirement Categories

Test Case Inputs Outputs Properties Errors

Bounded Buffer 1 TOR-e..1. . . TOR-e..4 TOR-e..5. . . TOR-e..9 TOR-e..18. . . TOR-
e..20

n/a

Bounded Buffer 2 TOR-e..1. . . TOR-e..4 TOR-e..5. . . TOR-e..9 TOR-e..18. . . TOR-
e..20

n/a

Bounded Buffer 3 TOR-e..1. . . TOR-e..4 TOR-e..12 n/a n/a

RemoteAgent TOR-e..1. . . TOR-e..4 TOR-e..5. . . TOR-e..9 TOR-e..18. . . TOR-
e..20

n/a

Race Cond. Tests TOR-e..1. . . TOR-e..4 TOR-e..5. . . TOR-e..9 TOR-e..21 n/a

Assertion Tests TOR-e..1. . . TOR-e..4 TOR-e..5. . . TOR-e..9 TOR-e..22 n/a

XML Output Tests TOR-e..1. . . TOR-e..4 TOR-e..10. . . TOR-
e..11

n/a n/a

JPF Error Tests TOR-e..1. . . TOR-e..4 n/a n/a TOR-e..14. . . TOR-
e..15

Interruption Tests TOR-e..1. . . TOR-e..4 n/a n/a TOR-e..16. . . TOR-
e..17

Table 2: TOR Abnormal Activation Requirements Trace

Requirement Categories

Test Case Inputs Outputs Properties Errors

Syntax Error Test TOR-e..1. . . TOR-e..4 n/a n/a TOR-f..1

Missing Listener Test TOR-e..1. . . TOR-e..4 n/a n/a TOR-f..2

Java Class Error Test TOR-e..1. . . TOR-e..4 n/a n/a TOR-f..3

Non-Standard Listener Test TOR-e..1. . . TOR-e..4 n/a n/a TOR-f..4

Thread Error Test TOR-e..1. . . TOR-e..4 n/a n/a TOR-f..5

Table 3: TOR Performance Requirements Trace

Requirement Categories

Test Case Inputs Outputs Properties Errors

Normal Op. Tests TOR-e..1. . . TOR-e..4 TOR-i..1. . . TOR-i..6 n/a n/a

Depth Limit Tests TOR-e..1. . . TOR-e..4 TOR-i..7. . . TOR-i..8 n/a n/a

Memory Limit Tests TOR-e..1. . . TOR-e..4 TOR-i..9 n/a n/a

Abnormal Op. Tests TOR-e..1. . . TOR-e..4 TOR-i..10. . . TOR-i..12 n/a n/a

7

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

b.1.1. Deadlock - Bounded Buffer 1

Purpose The purpose of this test case is to verify that JPF-Core-X properly detects the presence

of a deadlock that is known to exist in the SUT.

The SUT includes a bounded buffer of size 1, 2 producer threads and 1 consumer thread. The

bounded buffer consists of a fixed number of slots; in this case the buffer size is 1. Producer

threads put an object into the buffer, and consumer threads remove an object from the buffer. The

deadlock depends on a notification choice between a consumer and a producer in a context where

only threads of the notifier type are still runnable. A deadlock results if the number of producer

or consumer threads is at least 2x the size of the buffer, which is true for this test case.

This particular test is adapted from “Concurrency: State Models & Java Programs”[2].

Inputs

• SUT: jpf-core/src/examples/BoundedBuffer.java

• JPF Properties: jpf-core/src/examples/BoundedBuffer1.jpf

The JPF properties file for this test specifies “BoundedBuffer” as the target, and defines the

following target arguments: target args = 1,2,1. This specifies buffer of size 1, 2 producer

threads, and 1 consumer thread.

Expected Results In this test, we expect a deadlock to be encountered. The printout to the

console should include an error message indicating the occurrence of a deadlock, a snapshot showing

the current status of each thread when the deadlock is found, and a summary results message.

The expected error message is:

1 == error #1

2 gov.nasa.jpf.jvm.NotDeadlockedProperty

3 deadlock encountered:

4 thread BoundedBuffer$Producer :{id:1,name:P1,status:WAITING ,priority:5,lockCount

:1, suspendCount :0}

5 thread BoundedBuffer$Producer :{id:2,name:P2,status:WAITING ,priority:5,lockCount

:1, suspendCount :0}

6 thread BoundedBuffer$Consumer :{id:3,name:C1,status:WAITING ,priority:5,lockCount

:1, suspendCount :0}

The expected snapshot message is:

1 == snapshot #1

2 thread BoundedBuffer$Producer :{id:1,name:P1,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

3 waiting on: BoundedBuffer@146

8

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

4 call stack:

5 at java.lang.Object.wait(Object.java)

6 at BoundedBuffer.put(BoundedBuffer.java :55)

7 at BoundedBuffer$Producer.run(BoundedBuffer.java :91)

8

9 thread BoundedBuffer$Producer :{id:2,name:P2,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

10 waiting on: BoundedBuffer@146

11 call stack:

12 at java.lang.Object.wait(Object.java)

13 at BoundedBuffer.put(BoundedBuffer.java :55)

14 at BoundedBuffer$Producer.run(BoundedBuffer.java :91)

15

16 thread BoundedBuffer$Consumer :{id:3,name:C1,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

17 waiting on: BoundedBuffer@146

18 call stack:

19 at java.lang.Object.wait(Object.java)

20 at BoundedBuffer.get(BoundedBuffer.java :66)

21 at BoundedBuffer$Consumer.run(BoundedBuffer.java :110)

The expected results message is:

1 == results

2 error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty "deadlock encountered: thread

BoundedBuffer$Produ ..."

Pass/Fail Criteria For this test to pass, all of the following must be true:

• The error message shows: “deadlock encountered:”.

• The error message lists all Producer threads and the Consumer thread. (Note that they may

be listed in any order.)

• The snapshot message displays the status of each thread.

• The status of each thread in the snapshot message displays “waiting on:”, with another thread

name listed after the colon.

• The results message shows “error”.

• The results message shows “error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty deadlock en-

countered: thread” followed by the name of any thread.

If any of the above conditions are not met, the test fails.

9

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

b.1.2. Deadlock - Bounded Buffer 2

This test case is based on the case in Section b.1.1., except that here the buffer size is 2, and the

number of producer threads is 4.

Discussion

This test case involves a SUT with twice as many threads as the previous test case. In every

other way, the SUTs in these two test cases are identical. Therefore, the only rationale for

including both tests (as opposed to just one) is to satisfy test suite obligation #2, using SUTs

with varying numbers of threads to test against state spaces of varying size and complexity.

Inputs

• SUT: jpf-core/src/examples/BoundedBuffer.java

• JPF Properties: jpf-core/src/examples/BoundedBuffer2.jpf

The JPF properties file for this test specifies “BoundedBuffer” as the target, and defines the

following target arguments: target args = 2,4,1. This specifies a buffer of size 2, 4 producer

threads, and 1 consumer thread.

Expected Results In this test, we expect a deadlock to be encountered. The printout to the

console should include an error message indicating the occurrence of a deadlock, a snapshot showing

the current status of each thread when the deadlock is found, and a summary results message.

The expected error message is:

1 == error #1

2 gov.nasa.jpf.jvm.NotDeadlockedProperty

3 deadlock encountered:

4 thread BoundedBuffer$Producer :{id:1,name:P1,status:WAITING ,priority:5,lockCount

:1, suspendCount :0}

5 thread BoundedBuffer$Producer :{id:2,name:P2,status:WAITING ,priority:5,lockCount

:1, suspendCount :0}

6 thread BoundedBuffer$Producer :{id:3,name:P3,status:WAITING ,priority:5,lockCount

:1, suspendCount :0}

7 thread BoundedBuffer$Producer :{id:4,name:P4,status:WAITING ,priority:5,lockCount

:1, suspendCount :0}

8 thread

9 BoundedBuffer$Consumer :{id:5,name:C1 ,status:WAITING ,priority:5, lockCount:1,

suspendCount :0}

The expected snapshot message is:

10

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

1 == snapshot #1

2 thread BoundedBuffer$Producer :{id:1,name:P1,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

3 waiting on: BoundedBuffer@146

4 call stack:

5 at java.lang.Object.wait(Object.java)

6 at BoundedBuffer.put(BoundedBuffer.java :55)

7 at BoundedBuffer$Producer.run(BoundedBuffer.java :91)

8

9 thread BoundedBuffer$Producer :{id:2,name:P2,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

10 waiting on: BoundedBuffer@146

11 call stack:

12 at java.lang.Object.wait(Object.java)

13 at BoundedBuffer.put(BoundedBuffer.java :55)

14 at BoundedBuffer$Producer.run(BoundedBuffer.java :91)

15

16 thread BoundedBuffer$Producer :{id:3,name:P3,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

17 waiting on: BoundedBuffer@146

18 call stack:

19 at java.lang.Object.wait(Object.java)

20 at BoundedBuffer.put(BoundedBuffer.java :55)

21 at BoundedBuffer$Producer.run(BoundedBuffer.java :91)

22

23 thread BoundedBuffer$Producer :{id:4,name:P4,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

24 waiting on: BoundedBuffer@146

25 call stack:

26 at java.lang.Object.wait(Object.java)

27 at BoundedBuffer.put(BoundedBuffer.java :55)

28 at BoundedBuffer$Producer.run(BoundedBuffer.java :91)

29

30 thread BoundedBuffer$Consumer :{id:5,name:C1,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

31 waiting on: BoundedBuffer@146

32 call stack:

33 at java.lang.Object.wait(Object.java)

34 at BoundedBuffer.get(BoundedBuffer.java :66)

35 at BoundedBuffer$Consumer.run(BoundedBuffer.java :110)

The expected results message is identical to that of Test b.1.1..

1 == results

2 error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty "deadlock encountered: thread

BoundedBuffer$Produ ..."

Pass/Fail Criteria The same pass/fail criteria for Test b.1.1. are used.

11

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

b.1.3. NO Deadlock - Bounded Buffer 3

This test case is intended to show JPF-Core-X running to completion without finding a property

violation. This test case is based on the bounded buffer cases above. However, in this case, we use

a smaller number of producer threads so that a deadlock cannot occur.

Discussion

This test case is designed to support test suite obligation #5, that end-to-end test cases

should demonstrate the tool does not falsely detect property violations.

Inputs

• SUT: jpf-core/src/examples/BoundedBuffer.java

• JPF Properties: jpf-core/src/examples/BoundedBuffer3.jpf

The JPF properties file for this test specifies “BoundedBuffer” as the target, and defines the

following target arguments: target args = 2,3,1. This specifies a buffer of size 2, 3 producer

threads, and 1 consumer thread.

For this SUT to result in a deadlock, the number of producer threads must be greater than or

equal to the size of the buffer. With a buffer size of 2 and only 3 producer threads, a deadlock

cannot occur.

Expected Results This test should run to completion without finding any property violations.

Pass/Fail Criteria This test passes if the following results message is printed to the console:

1 == results

2 no errors detected

b.1.4. Deadlock - Remote Agent

Discussion

This is another example of a deadlock. It is therefore similar in kind to the first two test

cases, but in this case we use a completely different SUT. In general, it is desired to establish

tests that operate on a diverse set of source code, as established in test suite obligation #3.

12

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

In this test case, a deadlock is caused as a result of a missed signal, where the wait() operation

happens after the corresponding notify(). This occurs because of a violated monitor encapsula-

tion. Specifically, the SUT directly accesses monitor internal data (‘Event.count’) from concurrent

clients. The requested operation of (’FirstTask’, ’SecondTask’) is performed without synchro-

nization with the corresponding monitor operations (’wait for-Event()’ and ’signalEvent()’).

Discussion

This problem is typical for unsafe optimizations, where local caches are used as an attempt

to avoid expensive blocking calls. This particular example was inspired by an actual defect

found in the “Remote Agent” spacecraft controller that flew on board of Deep Space 1 [1].

Inputs

• SUT: jpf-core/src/examples/oldclassic.java

• JPF Properties: jpf-core/src/examples/oldclassic-da.jpf

Expected Results The expected error message is:

1 == error #1

2 gov.nasa.jpf.jvm.NotDeadlockedProperty

3 deadlock encountered:

4 thread FirstTask :{id:1,name:Thread -1,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

5 thread SecondTask :{id:2,name:Thread -2,status:WAITING ,priority:5,lockCount :1,

suspendCount :0}

6

The expected results message is:

1 == results

2 error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty "deadlock encountered: thread

FirstTask :{id:1,nam..."

Pass/Fail Criteria The test passes if JPF-Core-X prints out both error and results messages

that match what the expected results (shown above).

13

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

b.1.5. Race Condition - Racer

Discussion

For this study, we focus our test case examples only on deadlocks. However, in a real

verification effort, additional end-to-end test cases should be provided to include cases where

other property violations (e.g. race conditions, assertions and exceptions) are reported when

present. Similarly, more cases would be required to show that JPF-Core-X runs to completion

without reporting these violations for SUT’s that are known to be free of error.

b.1.6. Assertion

Discussion

Test cases to demonstrate the proper detection and reporting of “assertion” property viola-

tions would be listed here.

b.1.7. Uncaught Exception

Discussion

Test cases to demonstrate the proper detection and reporting of “uncaught exception” prop-

erty violations would be listed here.

b.2. Unit Tests

The purpose of the unit test suite is to verify that all of the component methods used within

JPF-Core-X are implemented correctly. This is established by directly running each method with

a prescribed set of inputs and comparing the result to a corresponding set of expected (and demon-

strably correct) outputs.

In order to provide a clear mapping to the requirements established in the TR document, the

unit tests are organized according to the main steps of the execution process of JPF-Core-X, as

described in the TR. That execution process is repeated here for convenience.

1. Initialization.

(a) Load the JPF Properties file.

(b) Initialize all listener and reporter objects.

(c) Initialize the run-time object.

14

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

(d) Initialize the virtual machine object.

2. Search.

(a) Initialize the search method.

(b) Backtrack step.

(c) Forward step.

(d) Check property violations.

(e) Check search limits.

(f) Terminate.

3. Reporting.

(a) Report “Out of Memory” errors.

(b) Report property violations.

4. Exit.

b.2.1. Structure of Unit Tests

Discussion

The content of this section is adapted from the JPF user’s manual online at:

http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/jpf tests.

Each unit test consists of a test driver that is executed under JUnit. It starts JPF-Core-X

from within its Test annotated methods. In addition, each test includes a class that is executed by

JPF-Core-X in order to check the verification goals.

The main() method of TestJPF derived classes are uniform throughout, with the following

structure:

1 public static void main(String [] testMethods){

2 runTestsOfThisClass(testMethods);

3 }

Test classes consist of Test annotated JUnit test methods, which all share the following struc-

ture:

1 import org.junit.Test;

2

3 @Test public void testX () {

4 if (verifyNoPropertyViolation(JPF_ARGS){

5 .. code to verify by JPF

15

http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/jpf_tests

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

6 }

7 }

The host VM checks the results of the JPF-Core-X run, and accordingly throws an Assertion-

Error in case it does not correspond to the expected result. The most common goals are:

verifyNoPropertyViolation - JPF-Core-X is not supposed to find an error

verifyPropertyViolation - JPF-Core-X is supposed to find the specified property violation

verifyUnhandledException - JPF-Core-X is supposed to detect an unhandled exception of the spec-

ified type

verifyAssertionError - same for AssertionErrors

verifyDeadlock - JPF-Core-X is supposed to find a deadlock

Each of these methods delegate running JPF-Core-X to a corresponding method whose name

does not start with ’verify..’. These workhorse methods expect explicit specification of the argu-

ments (including SUT main class name and method names), but they return JPF-Core-X objects,

and therefore can be used for more sophisticated inspection (e.g. to find out about the number of

states).

TestJPF also provides the following methods that can be used within test methods to find out

which environment the code is executed from:

isJPFRun() - returns true if the code is executed under JPF-Core-X

isJUnitRun() - returns true if the code is executed under JUnit by the host VM

isRunTestRun() - returns true if the code is executed by RunTest.jar

A typical test method is shown in the example below.

1 @Test public void testIntFieldPerturbation () {

2

3 if (! isJPFRun ()){ // run this outside of JPF

4 Verify.resetCounter (0);

5 }

6

7 if (verifyNoPropertyViolation("+listener =. listener.Perturbator",

8 "+perturb.fields=data",

9 "+perturb.data.class=. perturb.IntOverUnder",...

10 "+perturb.data.delta=1")){

11 // run this under JPF

12 System.out.println("instance field perturbation test");

13

16

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

14 int d = data; // this should be perturbed

15 System.out.println("d = " + d);

16

17 Verify.incrementCounter (0);

18

19 } else { // run this outside of JPF

20 assert Verify.getCounter (0) == 3;

21 }

22 }

b.2.2. Unit Tests for Initialization

Discussion

In a complete test cases and procedures document, the unit tests that support the “Initial-

ization” step would be provided here. For our study, we instead focus on a representative

subset of the unit tests for the “Search” step. These are discussed in the next subsection.

b.2.3. Unit Tests for Search

Here, we list the unit tests that support the Search step of the JPF-Core-X execution process. All

methods are shown in the format: Class.method(). If no class is shown, the method belongs to

the DFSearch class. In some cases, we use < listener > (or < reporter >) for the class name,

indicating that the listed method of all listener (or reporter) objects is tested.

Discussion

For this case study, we only list the minimum set of tests required to directly verify each of

the search-related requirements that are described in Section d of the Tool Requirements

(TR) document. It is important to recognize, however, that many of these individual

requirements correspond to multiple nested methods in the JPF-Core-X source code. For a

complete verification, all methods that are needed to support a tool requirement must be

tested to verify their correct implementation.

It is also important to note that requirements coverage and code coverage are com-

plementary measures. If a set of tests covers all TRs without exercising all of the methods,

then the TRs must be incomplete. In other words, additional TRs would have to be added

so that the coverage of those new TRs would necessarily exercise all of the (previously

unexercised) methods.

Tests covering requirements for the “Initialize” step of the search method are listed below.

17

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

Initialize Search Method
Unit Test Method(s) Tested Requirement(s)

DFSearchInitTest search() TR-d..1.2

Tests covering requirements for the “Backtrack” step of the search method are listed below.

Backtrack Step
Unit Test Method(s) Tested Requirement(s)

BacktrackRequestTest checkAndResetBacktrackRequest() TR-d..1.3.1
requestBacktrack()
search()

IsNewStateTest JVM.isNewState() TR-d..1.3.2

IsEndStateTest JVM.isEndState() TR-d..1.3.3

IsIgnoredStateTest JVM.isIgnoredState() TR-d..1.3.4

BacktrackTest DefaultBacktracker.backtrack() TR-d..1.3.5

BacktrackSuccessTest notifyStateBacktracked() TR-d..1.3.6
< listener >.stateBacktracked()
< reporter >.stateBacktracked()

BacktrackTerminateTest DefaultBacktracker.backtrack() TR-d..1.3.7

Tests covering requirements for the “Forward” step of the search method are listed below.

Forward Step
Unit Test Method(s) Tested Requirement(s)

ForwardTest JVM.forward() TR-d..1.4

InitNextTransTest() SystemState.initializeNextTransition() (not provided in sample TR)

PushKernelStateTest() DefaultBackTracker.pushKernelState() (not provided in sample TR)

PathCacheTest() SystemState.getLast() (not provided in sample TR)

ExecuteNextTransTest() SystemState.executeNextTransition() (not provided in sample TR)

PushSystemStateTest() DefaultBackTracker.pushSystemState() (not provided in sample TR)

UpdatePathTest() JVM.updatePath() (not provided in sample TR)

GCTest() KernelState.gc() (not provided in sample TR)

ForwardFailureTest() notifyStateProcessed() TR-d..1.4.1

ForwardSuccessTest() notifyStateAdvanced() TR-d..1.4.2

Discussion

“Choice generation” refers to the process by which the next state in the search is selected.

This is an important component of the overall JPF design, and involves multiple different

methods implemented across several classes. In a complete TR, a full set of requirements

would be written to ensure that all aspects of choice generation are implemented correctly.

Additional tests covering requirements associated with “Choice Generation” are listed below.

Choice generation is used within the SystemState.initializeNextTransition() method.

Choice Generation
Unit Test Method(s) Tested Requirement(s)

NotifyCGSetTest SystemState.notifyChoiceGeneratorSet() (not provided in sample TR)
JVM.notifyChoiceGeneratorSet()

GetCascadedParentTest ChoiceGenerator.getCascadedParent() (not provided in sample TR)

AdvanceCurCGTest SystemState.advanceCurCg() (not provided in sample TR)

Tests covering requirements for the “Check Property Violations” step of the search method are

listed below.

18

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

Check Property Violations
Unit Test Method(s) Tested Requirement(s)

CheckPropertyViolationTest checkPropertyViolation() TR-d..1.5

NotifyPropertyViolatedTest notifyPropertyViolated() TR-d..1.5.1

NotDeadlockedPropertyTest NotDeadlockedProperty().check() TR-d..1.5.2

PreciseRaceDetectorTest PreciseRaceDetectorTest().check() TR-d..1.5.3

AssertionPropertyTest AssertionProperty().check() TR-d..1.5.4

NoUncaughtExcptionsTest NoUncaughtExcptions().check() TR-d..1.5.5

Tests covering requirements for the “Check Search Limits” step of the search method are listed

below.

Check Search Limits
Unit Test Method(s) Tested Requirement(s)

NotifySearchConstraintTest notifySearchConstraint() TR-d..1.6.1
< listener >.searchConstraintHit()
< reporter >.searchConstraintHit()

CheckStateSpaceLimitTest checkStateSpaceLimit() TR-d..1.6.2

b.2.4. Unit Tests for Reporting

Discussion

In a complete test cases and procedures document, the unit tests that support the “Report-

ing” step would be provided here. As mentioned earlier, however, for our study, we instead

focus on a subset of the unit tests for the “Search” step. These are discussed in the previous

subsection.

19

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

c. Test Procedures

In this section, we describe the procedures that will be used to verify the test cases that were

enumerated in the previous section. For each of our two test categories, we describe the step-by-

step instructions for how the test case is to be set up and executed, how the test results will be

evaluated, and the test environment to be used.

c.1. End-to-End Tests

All end-to-end tests will follow a common procedure. The steps below assume that JPF-Core-X

has already been installed and loaded as a project into the NetBeans IDE.

1. Open the NetBeans IDE.

2. In the “Projects” view, expand the “src/examples” folder.

3. Find the *.jpf properties file for the desired end-to-end test.

4. Right-click (or control-click) on the selected *.jpf properties file, and click on “Verify...”.

5. Visually inspect the JPF report information that is printed to the NetBeans console.

6. Compare the printed results to the expected results, according to the pass/fail criteria for

that test.

Each end-to-end test also produces an output log that contains the report printouts. These logs

can be used, along with a formal representation of the expected results and pass/fail criteria, to

perform automated testing of all end-to-end tests. However, such automated testing is beyond the

scope of this verification effort.

Discussion

The end-to-end tests described here are meant to be run one at a time, with a human user

starting the tool and inspecting the output, just as they would do when using the tool under

normal circumstances. The final step is to compare the printed output to expected results

according to the pass/fail criteria for each test. While some amount of human-in-the-loop

testing is important to verify usability and correct understanding of the tool results, it is

impractical to fully rely on this approach for large numbers of tests and/or tests that require

very long run times.

This need for test automation is not specific to formal methods tools, though; it applies to

all types of verification tools. Both the running of the end-to-end tests and the evaluation

of their results can be automated, which would enable a large number of teststo be run in

succession. It is important to note, however, that careful analysis and review of the test

harness itself should be made to ensure its correctness.

20

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

c.2. Unit Tests

All unit tests are implemented using the JUnit test framework. Execution of all unit tests will

follow a common procedure. The steps below assume that JPF-Core-X has already been installed

and loaded as a project into the NetBeans IDE.

Running Individual Tests JPF-Core-X is configured to run the full test suite either through

the IDE, or via the command line. To run through the IDE:

1. Open the NetBeans IDE.

2. Expand “src/tests” under JPF-Core-X in the Projects view.

3. Select the test to be run.

4. Right-click (or control-click) on the selected test and choose “Run”.

5. Review test results printed to the NetBeans console.

Alternatively, to run via the command line:

1. Open a terminal window.

2. Change directories to the JPF-Core-X root directory.

3. Enter the following command:
bin/test gov.nasa.jpf.test.<CONTAINER>.<TESTFILE>

4. Review test results printed to the terminal window.

If the unit test passes, the final line printed will be:
... tests: 1, failures: 0, errors: 0

If a unit test does not pass, then either “failures” or “errors” will be assigned a value of 1 (but

not both). A “failure” means the test ran to completion, the result was evaluated, but it did not

meet the pass/fail criteria. An “error” means that one of several possible errors occurred either

during the execution of the code being tested, or during execution of the test harness. The test

framework of JPF-Core-X provides descriptive error messages for any failures or errors that are

encountered, along with a backtrace of the stack.

Running the Full Test Suite JPF-Core-X is configured to run the full test suite only through

the IDE:

1. Open the NetBeans IDE

2. Right-click (or control-click) on the JPF-Core-X project and select “Test”.

21

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

Results from each test will be printed out to the console. Once all tests have completed, the

following will be printed:
... tests: T, failures: F, errors: E

where actual numbers would be printed in place of the T,E, F symbols. The full unit test suite

passes when E = F = 0.

22

JPF-Core-X: Tool Verification Cases and Procedures (TVCAP)

References

[1] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J. L. White, “Formal

Analysis of the Remote Agent Before and After Flight,” in Proc. of the 5th NASA Langley

Formal Methods Workshop, June 2000.

[2] J. Magee and J. Kramer, Concurrency: State Models and Java Programs, Wiley, 2006.

23

	Review and Analysis Procedures
	End-to-End Tests
	Unit Tests
	Test Suite Obligations

	Test Cases
	End-to-End Tests
	Deadlock - Bounded Buffer 1
	Deadlock - Bounded Buffer 2
	NO Deadlock - Bounded Buffer 3
	Deadlock - Remote Agent
	Race Condition - Racer
	Assertion
	Uncaught Exception

	Unit Tests
	Structure of Unit Tests
	Unit Tests for Initialization
	Unit Tests for Search
	Unit Tests for Reporting

	Test Procedures
	End-to-End Tests
	Unit Tests

