FORMAL METHODS TOOL QUALIFICATION

21 September 2015

Formal Methods Tool Qualification (FMTQ)
Frama-C Value Analysis plug-in Qualification Plan

Prepared for NASA
System-Wide Safety Assurance Technologies (SSAT)
Subtopic AFCS-1.3 Software Intensive Systems: Qualification of Formal Methods Tools
Contract NNL14AA06C

	Technical Point of Contact:		
Lucas Wagner
Rockwell Collins, Inc.
400 Collins Rd NE, MS 108-206
Cedar Rapids, IA 52498	
Telephone: (319) 295-5672
lucas.wagner@rockwellcollins.com
	Business Point of Contact:
Kelsy Rwayitare
Rockwell Collins, Inc.
400 Collins Rd. NE, MS 121-200
Cedar Rapids, IA 52498
Telephone: (319) 263-3101
kelsey.rwayitare@rockwellcollins.com

	
	

[image: RClogo_col_rgb]Rockwell Collins, Inc.
400 Collins Rd. NE
Cedar Rapids, Iowa 52498

[bookmark: h.30j0zll][image:]

Table of Contents
1	Scope and Purpose	4
2	Overview	5
3	Tool Usage in the Software Life Cycle Processes	7
3.1	DO-178C Objectives Satisfied	7
3.1.1	Objective A.5-3: Source code is verifiable	7
3.1.2	Source code conforms to standards	7
3.1.3	Objective A.5-6: Source code is accurate and consistent	8
3.2	Tool Qualification Level (TQL) Identification	8
3.3	Applicable Tool Qualification Objectives	9
3.4	DO-333 Considerations	10
4	Tool Qualification Objectives (TQOs)	11
4.1	Table T-0 Tool Operational Processes	11
4.1.1	Objective 1 – Determining the Tool Qualification Need	11
4.1.2	Objective 2 – Definition of the Tool Operational Requirements (TORs)	11
4.1.3	Objective 3 – Installation of the Tool Executable Object Code	14
4.1.4	Objective 5 – Tool Operation Complies with Tool Operational Requirements	15
4.1.5	Objective 6 – Tool Operational Requirements are sufficient and correct	18
4.1.6	Objective 7 – Software Life Cycle Process needs are met by tool.	18
4.2	Table T-8 Tool Configuration Management Process	18
4.3	Table T-9 Tool Qualify Assurance Process	18
4.4	Table T-10 Tool Qualification Liaison Process	18
4.4.1	Objective 1 – Communication and understanding is established	19
4.4.2	Objective 2 – Means of compliance is proposed and agreement is obtained	19
4.4.3	Objective 3 – Compliance substantiation is provided	20
4.4.4	Objective 4 – Impact of known problems and limitations is understood	20
5	Labor Estimates	21
6	References	23
Appendix A Frama-C Value Analysis Plug-in command line flags	25
Appendix B – Frama-C Installation Instructions	28
B.1	Prerequisites	28
B.2	Installation of Frama-C	28
B.3	Installation Results	31
Appendix C – Tool Operational Verification and Validation Test Cases	32
Appendix D – Frama-C Value Analysis Tool Operational Verification and Validation Results	36

[bookmark: _Toc447787205]Scope and Purpose
This document is a case study that describes a plan for the qualification of the Frama-C [1] Value Analysis [2] plug-in as a Tool Qualification Level 5 (TQL-5) tool. It follows the guidance provided DO-178C: Software Considerations in Airborne Systems and Equipment Certification [3] and DO-330: Software Tool Qualification Considerations [4]. It describes the activities necessary for tool qualification and seeks to provide insight into issues that are unique to the abstract interpretation, and formal methods in general.
This case study builds upon the work by Darren Cofer and Steven Miller entitled Formal Methods Case Studies for DO-333 [5]. In it, each class of formal methods is used to satisfy DO-178C Software Life Cycle Process objectives following the guidance provided in the DO-333: The Formal Methods Supplement to DO-178C and DO-278A [6]. In the work by Cofer and Miller, a case study for abstract interpretation establishes an approach to verify the Flight Control Law software of a Generic Avionics Product (GAP) avionics solution. This document focuses on the qualification of the Frama-C Value Analysis plug-in, an abstract interpretation tool, to claim credit for the objectives laid out in that case study.
Section 2 gives an overview of the Frama-C Value Analysis plug-in and how it is used in the Software Life Cycle processes. Section 3 establishes the need for tool qualification, identifies the DO-178C objectives the tool is used to satisfy and provides a comprehensive list of tool qualification objectives required for qualification of the Value Analysis plug-in. Section 3.4 identifies additional objectives that are required to be satisfied due to the use of formal methods, which the Value Analysis plug-in implements in the form of abstract interpretation. Section 4 provides an explanation of each objective, how it might be satisfied, and provides additional insight into concerns specific to abstract interpretation. Section 5 provides estimates on the labor hours required to complete each qualification objective. The remainder of the document references information relevant to the qualification activities, including a set of appendices that contain formal descriptions of the input and output of the Value Analysis plug-in, an installation guide, verification and validation test cases for the Value Analysis plug-in, and expected results from executing these test cases.
[bookmark: _Ref423419027][bookmark: _Ref423419497]

[bookmark: _Ref430591368][bookmark: _Ref430591410][bookmark: _Ref430591428][bookmark: _Toc447787206]Overview
Frama-C is a collection of tools dedicated to the analysis of C source code. While Frama-C utilizes many static analysis approaches, this qualification only considers the Value Analysis plug-in. The Value Analysis plug-in performs abstract interpretation, a static analysis method based on the theory of sound over-approximation of the semantics of computer programs. It reasons about the sets of values that each variable within a program can be assigned, and then checks to see if problematic values exist within the computed set for various program operations. For example, if the divisor of a division operation can be assigned to zero, the tool can flag division-by-zero as a potential run-time violation.
A key idea in abstract interpretation is to translate a program under analysis into a related program computing over an abstract domain. For example, in the interval domain, the value of a program variable is not just a single concrete value, as in ordinary computation, but instead, a set of values (the interval) in which the concrete value must lie. Abstraction allows sets of executions to be considered all at once; under certain conditions properties of the abstract program can be transferred back to the original. The abstract interpretation was introduced by the Cousots’ breakthrough paper of 1977 [7]; In particular, the original theoretical underpinnings have been developed and implemented in various powerful static analyzers. Tools based on abstract interpretation, such as Astr´ee [8] and PolySpace® [9] have been used to analyze industrial codebases.
The Value Analysis plug-in used to verify that the software that implements the Flight Control laws of the GAP solution is free of certain classes of runtime errors. The run-time errors that the Value Analysis plug-in can detect include:
· Division by zero
· Undefined logical shift
· Overflow in integer arithmetic
· Overflow in conversion from floating point to integer
· Overflow in floating point
· Uninitialized variables
· Dangling pointers to local variables
· Invalid memory accesses
· Undefined pointer comparison
· Undefined side effects in expressions
· Invalid function pointer access
Run-time errors can cause adverse effects when encountered during operation. Flight Control laws are a critical piece of airplane software, directly computing values for the actuators that control the aircraft during flight. Verifying that the source code is free of run-time errors is a part of the software verification process. Figure 1 illustrates how the Frama-C Value Analysis plug-in is used to verify aspects of the source code implementing the GAP’s Flight Control Laws.
[image:]
[bookmark: _Ref423419479]Figure 1- Verification Process Overview
[bookmark: _Ref423419031]

[bookmark: _Ref430591373][bookmark: _Ref430591415][bookmark: _Toc447787207]Tool Usage in the Software Life Cycle Processes
In this software development, the Frama-C Value Analysis plug-in is used to verify the outputs of the software coding and integration process. The Frama-C Value Analysis plug-in is used to establish the absence of run-time errors in the Flight Control Law software, thus detecting errors introduced during the software coding process.
[bookmark: _Ref447786732][bookmark: _Toc447787208]DO-178C Objectives Satisfied
The use of the Value Analysis plug-in as shown in Figure 1 can be used to satisfy objectives from DO-178C Table A.5. Table 1, below identifies the objectives that are satisfied through the use of the tool to be qualified, the Frama-C Value Analysis Plug-in. The rationale for claiming each objective is obtained by following the guidance provided in DO-333.
	Objective
	Description
	Reference
	Notes

	A.5-3
	Source code is verifiable.
	Section 3.1.1
	

	A.5-4
	Source code conforms to standards.
	Section 3.1.2
	Partially claimed because the standards enforced by the C99 standard may be a subset of overall Software Code Standards.

	A.5-6
	Source code is accurate and consistent.
	Section 3.1.3
	Partially claimed because the analysis may contain false alarms which may need to be discharged manually.

[bookmark: _Ref423353741][bookmark: _Ref423354539][bookmark: _Ref447618588]Table 1 - DO-178C Objectives Claimed through the use of the Frama-C Value Analysis plug-in
The ‘Objective’ in Table 1 identifies the DO-178C objective that the row is addressing. The next column provides a description of the objective under consideration. The ‘Discussion’column identifies the section of this document that fully discusses the rationale for why the Check-It tool satisfies the objective. The last column captures any notable information related to the objective.
[bookmark: _GoBack]When using formal methods, the guidance and objectives of DO-178C are modified by DO-333, the Formal Methods Supplement. Each objective is discussed in Sections 3.1.1 - 3.1.3. Each section captures the relevant DO-333 guidance and rationale for how Frama-C satisfies it.
[bookmark: _Ref447619307][bookmark: _Toc447787209]Objective A.5-3: Source code is verifiable
DO-333 Section FM.6.3.4.c: When Source Code has mathematically defined syntax and semantics and is consistent with the formal analysis defined in the Software Verification plan, then this objective is satisfied.
This objective is satisfied by demonstrating that the source code to be analyzed conforms to the C99 standard which is the accepted input of the Frama-C Value Analysis plug-in.
[bookmark: _Ref447624883][bookmark: _Toc447787210][bookmark: _Ref447619315]Source code conforms to standards
DO-333 Section FM.6.3.4.d: Source code with mathematically defined syntax and semantics can be checked for conformance to standards by using formal methods.
[bookmark: _Ref447624929]This objective is partially satisfied by demonstrating that the source code to be analyzed conforms to the C99 standard, which is the accepted input of the Frama-C Value Analysis plug-in. This can only be verified to the extent that the Software Code Standards can be enforced by the C99 standard.
[bookmark: _Toc447787211][bookmark: _Ref447788360][bookmark: _Ref464559864]Objective A.5-6: Source code is accurate and consistent
DO-333 Section FM.6.3.4.f: If mathematically defined syntax and semantics exist for the Source Code, then these characteristics can be checked using formal analysis. The mathematically defined syntax and semantics may need to take into account the programming language standards, compiler infomraiton (for example, default behavior, and configuration options), and characteristics of the target computer.
This objective is partially satisfied by using Frama-C to verify the absence of the run-time errors in the Source Code. Frama-C will identify potential run-time errors (as discussed in Section 2). False alarms generated by the tool must be justified through separate analysis or testing. Any portion of the code for which the tool provides an indeterminate result must be verified through other methods.
[bookmark: _Ref447786757][bookmark: _Toc447787212]Tool Qualification Level (TQL) Identification
Per DO-178C [3] Section 12.2.1, qualification of a tool is necessary when it is used to eliminate, reduce, or automate DO-178C processes without the outputs of the tool being verified. To obtain credit for these objectives without verifying the tool’s outputs, the Value Analysis plug-in must be qualified according to the guidelines set forth in DO-178C and DO-330 thus determining the need for qualification. In this software development process, the Value Analysis plug-in is used to identify errors introduced during the software coding process. In this capacity it:
· Cannot insert an error into the airborne software.
· Could fail to detect an error in the airborne software.
· Is not used to justify the elimination or reduction of:
· Verification processes other than those claimed in Table 1.
· Development processes that could have an impact on the airborne software.
Given this, Per DO-178C, Section 12.2.2 the Frama-C Value Analysis plug-in is designated as a Criteria 3 tool. DO-178C Table 12-1 outlines the appropriate Tool Qualification Level (TQL) for a given tool criteria and applicable software level (Level A being most critical to Level D being least critical). The Frama-C Value Analysis plug-in is identified as a Criteria 3 tool, therefore, it must be qualified as a TQL-5 tool.
Discussion: Sound abstract interpretation tools are able to prove the absence of certain classes of run-time errors in the software they are used to analyze. In this case, one could use the results of abstract interpretation to remove the use of defensive programming techniques (such as a protected division that prevents the occurrence of divide-by-zero run-time errors) as a result. In this case, the tool would become a Criteria 2 tool based on the fact that the tool’s output is used justify the reduction or elimination of software development processes.
Further, it is worth noting that if the tool has proven that division by zero cannot occur, any defensive programming that seeks to prevent division by zero is unexecuted code. However, this code is not considered dead code if the software development standards for the effort identify the use of defensive programming practices to improve the robustness of the code. This is discussed in DO-178C Section 4.5.
[bookmark: _Toc447787213]Applicable Tool Qualification Objectives
DO-330 Tables T-0 through T-10 outline the various activities necessary to qualify an arbitrary TQL software tool. Given the classification of TQL-5 for the Frama-C Value Analysis plug-in, Table 2 below shows all of the necessary objectives for qualification.
	DO-330 Table
	Objectives

	T-0 Tool Operational Processes (D0-330 p. 66)
	1,2,3,5,6,7

	T-8 Tool Configuration Management Process (DO-330 p. 74)
	1,4

	T-9 Tool Qualify Assurance Process (DO-330 p. 75)
	2,5

	T-10 Tool Qualification Liaison Process (DO-330 p. 76)
	1,2,3,4

[bookmark: _Ref423355885][bookmark: _Ref423355890]Table 2- DO-330 Objectives for TQL-5 Tools
Discussion: Table T-0 addresses the operation of the tool in the Software Life Cycle Processes. It is here where the tool’s intended usage is described, the tool’s operational environment is defined, and the tool operational requirements are defined. Further, it addresses how these requirements are verified and validated, as part of the tool qualification.
Tables T-1, T-2, T-3, T-4, T-5, T-6, and T-7 address issues regarding the development of the tool. The development of the tool is not relevant in a TQL-5 qualification effort. Tables T-8, T-9, and T-10 address configuration management, quality assurance, and aspects of the qualification liaison process.
[bookmark: _Ref427054473]

[bookmark: _Ref430591381][bookmark: _Toc447787214]DO-333 Considerations
The use of formal methods introduces additional objectives that are defined in DO-333 [6] the Formal Methods Supplement to DO-178C. These objectives are not satisfied through the use of the Frama-C Value Analysis plug-in, however, its use (a formal method implemented in a tool) does require that they be satisfied. The objectives for the Value Analysis plug-in in this case study are shown in Table 3.
	Objective
	Description
	A
	B
	C
	D
	Notes

	FM.A-5.10
	Formal analysis cases and procedures are correct.
	■
	■
	■
	
	Established partially by review, partially by tool qualification.

	FM.A-5.11
	Formal analysis results are correct and discrepancies explained.
	■
	■
	■
	
	Established by review.

	FM.A-5.12
	Requirements formalization is correct.
	■
	■
	■
	
	Established as part of tool qualification.

	FM.A-5.13
	Formal method is correctly defined, justified, and appropriate.
	■
	■
	■
	■
	Established by review.

[bookmark: _Ref427055511][bookmark: _Ref427073060]Table 3 - DO-33 Objectives Resulting from the use of Abstract Interpretation
[bookmark: _Ref427054465]Discussion: The Frama-C Value Analysis plug-in is used to satisfy DO-178C objectives. However, the use of formal methods to achieve certification credit requires additional objectives related to the trustworthiness of the formal model, formal requirements, and the formal analysis. It also requires that the applicant establish that the formal approach (model checking, theorem proving, or abstract interpretation) is suitable for satisfying the claimed objectives.
The Frama-C Value Analysis plug-in automatically infers a formal model and formal properties from the supplied source code. The generated model and properties are not made explicitly available, thus they cannot be reviewed. Part of Objective FM.A-5.10 is to demonstrate that the formal model is a correct and accurate representation of the source code. Since there no explicit artifact available to manually review, tool qualification is necessary to demonstrate that the model is correct. Objective FM.A-5.12 demonstrates that requirements are formalized correctly, but the tool does not produce explicit properties that are reviewable. Tool qualification is necessary to satisfy this objective.

[bookmark: _Ref430591389][bookmark: _Toc447787215]Tool Qualification Objectives (TQOs)
Table 2 outlines the comprehensive set of objectives outlined by DO-330 for qualifying a TQL-5 tool. TQL-5 tool qualifications do not address the processes used to develop the tool, instead focusing on the use of the tool in the intended operational environment. Essentially, the tool can be treated as a black box. It is only evaluated by how it achieves its stated Tool Operational Requirements; aspects of how the tool was designed, developed, and verified are ignored.
This section of the document addresses the relevant TQL-5 objectives and describe the activities necessary to meet each for the Frama-C Value Analysis plug-in.
[bookmark: _Toc447787216]Table T-0 Tool Operational Processes
Table T-0 of DO-330 addresses the Tool Operational Processes. The objectives in this table establish operational processes of the tool. The relevant objectives are shown below.
	Objective
	Description
	DO-330 Section
	Discussion

	T-0.1
	Tool qualification need is established.
	4.1
	4.1.1

	T-0.2
	Tool Operational Requirements (TORs) are defined.
	5.1.1a
	4.1.2

	T-0.3
	Tool Executable Object Code is installed in the tool operational environment
	5.3.1a
	4.1.3

	T-0.5
	Tool operation complies with the Tool Operational Requirements
	6.2.1.b
	4.1.4

	T-0.6
	Tool Operational Requirements are sufficient and correct
	6.2.1.aa
	4.1.5

	T-0.7
	Software life cycle process needs are met by the tool
	6.2.1.bb
	4.1.6

[bookmark: _Ref447786680]Table 4 - TQL-5 Objectives from Table T-0
[bookmark: _Ref447786863][bookmark: _Toc447787217]Objective 1 – Determining the Tool Qualification Need
This objective is satisfied in previous sections of this document. Section 2 provides an overview of the tool to be qualified, and how it is used to satisfy Software Life Cycle Processes. Section 3.1 identifies the DO-178C objectives satisfied by the use of the tool, and Section 3.2 identifies the appropriate Tool Qualification Level (TQL) for this qualification.
[bookmark: _Ref447786872][bookmark: _Toc447787218]Objective 2 – Definition of the Tool Operational Requirements (TORs)
This objective requires the applicant to define the Tool Operational Requirements. This includes:
· Description of the context of the tool use, including interfaces with other tools.
· Description of the tool operational environment.
· Description of input files, including format, language definition, etc.
· Description of output files, including format and contents.
· Requirements for all tool functions and technical features used to satisfy the software lifecycle processes.
· User information, such as a user manual and installation guide.
· Description of the operational use of the tool (including selection options, parameters values, command line, etc.)
· Performance requirements specifying the behavior of the tool output.
Sections 4.1.2.1 - 4.1.2.6 discuss all of the aspects necessary to satisfy this objective.
[bookmark: _Ref427047412]Tool Usage Context and Interface
The context of tool usage is described in Section 2 and illustrated in Figure 1. The Frama-C Value Analysis plug-in is used to analyze the C source code that implements the Flight Control Laws of the General Avionics Product. The Flight Control law source code is generated from a model constructed using the Mathworks Simulink® modeling tool. Since Frama-C accepts C source code as input, no additional work is necessary to analyze the Simulink-generated source code.
Tool Operational Environment
Frama-C is installed on an x86_64 machine architecture, on the Ubuntu 14.04.2 LTS operating system.
Tool Inputs and Outputs
Frama-C accepts C source code that follows the ISO/IEC 9899:1999 [10] standard. This standard has been revised by ISO/IEC 9899:2011, but the working papers that were to become the ISO/IEC 9899:1999 standard are referenced.
Given a valid C source file, the Frama-C Value Analysis plug-in will establish value intervals for variables within a C program. If those values contain problematic values for various operations (such as an interval containing 0 for a variable found in the divisor of a division expression) the tool will emit a warning identifying the offending line numbers. Consider the C source code found in Example 1.
	1
2
3
	int main(int x) {
	return 100 / x;
}

[bookmark: _Ref424560765][bookmark: _Ref424560773]Example 1- A simple C program that contains potential division by 0
If x is zero, which it clearly can be, then the Value Analysis plug-in emits a warning identifying that division by zero can happen on line 2. Figure 2 shows the output of analyzing Example 1 using the Value Analysis plug-in.
[image:]
[bookmark: _Ref424561307]Figure 2 - Frama-C Value Analysis plug-in output from Example 1
The tool only produces output to the standard output device and is not machine parseable. Results from executing analysis shall be captured by redirecting the output from the standard output device to a file.
Tool Operational Requirements (TORs)
	TOR-1
	The tool must accept input that conforms to the ISO/IEC 9899:1999 standard.

	TOR-2
	The tool must validate its inputs.

	TOR-3
	The tool must identify out of bounds array access.

	TOR-4
	The tool must report potential division by zero.

	TOR-5
	The tool must report undefined logical shift operations.

	TOR-6
	The tool must report overflow conditions in integer arithmetic.

	TOR-7
	The tool must report overflow conditions in floating point arithmetic.

	TOR-8
	The tool must report uninitialized variables.

	TOR-9
	The tool must report dangling pointers to local variables.

	TOR-10
	The tool must report invalid memory access operations.

	TOR-11
	The tool must report undefined pointer comparison operations.

[bookmark: _Ref423434887]Table 5 – Frama-C Value Analysis plug-in Tool Operational Requirements (TORs)
Discussion: This qualification plan does not provide a comprehensive list of Tool Operational Requirements. Instead, it aims to provide the user a sample of representative TORs. In an actual qualification effort, one would need to address not only the function of the tool but any additional constraints that are placed on its operations by the tool usage context. It should also address how the tool responds to abnormal inputs. In the case of Frama-C a good test to include is one in which the supplied source code violates the C99 standard, and corresponding test cases that demonstrates how the tool responds. Other test cases that might be of interest are source files that initialize unusually large numbers of local variables, or known areas of weakness in C compilers. Basically, the purpose of this is to demonstrate that the tool fails in a way that is predictable, not in a way that the user might believe its analysis completed successfully.
Operational Use of the Tool
The Frama-C Value Analysis plug-in can be run from a graphical user interface or the command line. In this qualification, we are only using the command-line version of the tool. The command-line version has many flags that the user can set to change its behavior, however for the purposes of the verification activities outlined in this document, the command line flags allowed to be modified by the user are restricted. The options that the user is allowed to modify are described in Table 6 below.
	Flag
	Argument Type
	Description

	val
	None
	This enables the Value Analysis plug-in and it is required.

	val-show-progress
	None
	Displays progress information during analysis runs

	plevel N
	Integer
	Uses the supplied argument as the precision level for evaluating array accesses. Array access is precise as long as the interval for the index contains less than N values. (Default 200)

	slevel N
	Integer
	Superpose up to N states when unrolling control flow. Larger values of N result in more precise and expensive analysis. (Defaults to 0)

	slevel-function F:N
	String, Integer
	Override slevel setting to N when evaluating function F.

	val-use-spec F1,…,FN
	String list
	Use the ACSL specification of a function instead of its function definition.

	wlevel N
	Integer
	Do N iterations before widening (Defaults to 3) loops.

[bookmark: _Ref423425537][bookmark: _Ref427048979]Table 6- Modifiable Frama-C Value Analysis plug-in parameters
To execute the Frama-C Value Analysis plug-in with the default values for command line options the following command is used:
	frama-c –val <filename.c>

[bookmark: _Ref427047420]Performance Requirements
There is single performance requirement for the Frama-C Value Analysis plug-in. It is:
· The Frama-C Value Analysis plug-in shall be able to analyze a given source file (of 1000 lines or less) in 5 minutes or less.
Discussion: Specifying performance requirements for abstract interpretation tools is difficult because the tool will require user interaction to successfully analyze larger, production code, which is likely to be the case when used to satisfy verification objectives of avionics software. Further, some problems will require the use of more precise abstract domains that are more computationally expensive than others. What the user will likely have to do in this scenario is understand how the tool will perform in their given environment and bound the analysis within reasonable expectations.
[bookmark: _Ref447786878][bookmark: _Toc447787219]Objective 3 – Installation of the Tool Executable Object Code
Identification of the specific versions of the tool and its dependencies, instructions of how to install the tool, and a record of actually installing the tool are required to meet this TQO.
Tool Executable Object Code
The version and configuration management ID of Frama-C (and the Value Analysis plug-in) being qualified in this effort are found in Table 7.
	Tool Name
	Version
	Configuration Management ID

	Frama-C
	Sodium-20150201
	111-1111-111

[bookmark: _Ref424804275]Table 7 - Tool Executable Object Code
Discussion: The configuration management ID is a unique identifier for that identifies how the tool executable object code can be identified in the configuration management process. Section 4.2 discusses the role of configuration management in this tool qualification plan.
Tool Installation Report
Instructions for installing the Frama-C Value framework (and thus the Value Analysis plug-in) can found in Appendix B of this document. The results from installing the tool should be captured as part of the qualification activities. These results should be recorded in Section B.3 of Appendix B.
[bookmark: _Ref447786885][bookmark: _Toc447787220]Objective 5 – Tool Operation Complies with Tool Operational Requirements
This TQO demonstrates that the tool complies with its stated TORs. This TQO is covered in three parts. First, the review and analysis procedures used to verify the TORs are stated. Secondly, we identify set of tests, referred to as the Tool Operational Test Cases and Procedures, that when executed, demonstrate that the Frama-C Value Analysis plug-in meets its TORs. Finally, the results of actually executing the TOTCPs within the Tool Operational Environment must be collected. This artifact is known as the Tool Operational Verification and Validation Results and is captured in Section 4.1.4.4.
[bookmark: _Ref423433400]Review and Analysis Procedures
No review and analysis procedures are used in this tool qualification.
[bookmark: _Ref423433404]Tool Operational Verification and Validation Test Cases
The test cases used to verify the Frama-C Value Analysis plug-in TORs are C source files that contain behaviors that the tool should flag as potential run-time errors. Test Case 1 demonstrates a test case in which an array may be indexed beyond its declared range.

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
	/*
 TEST NAME: Out Of Bounds Array Index #1

 DESCRIPTION:
 This is a simple program that declares a 10 element array and then
 sets each element of the array to the variable i.

 TEST PURPOSE:
 The last iteration of the for-loop in the below program will
 index the 11th element of a 10 element array.

 EXPECTED OUTCOME:
 The tool will flag that a potential out of bounds array index
 will occur on line 20.
*/
int i,t[10];

void main(void) {
 for (i=0; i<=10; i++) {
t[i]=i;
 }
}

[bookmark: _Ref423434516][bookmark: _Ref423434521][bookmark: _Ref424809008]Test Case 1 - Out of Bounds Array Index #1
Every test case must contain the following information (line numbers referencing each item’s occurrence in Test Case 1 is also provided):
· Test ID (2)
· Test Description (4-6)
· Test Purpose (8-10)
· Expected Test Outcome (12-18)
· C source code to be analyzed (16-21)
All of the test cases for verifying the TORs outlined in Table 5 are provided in Appendix C, excluding Test Case 1. Traceability between each test case and the TORs it addresses is provided below in Table 8.
	Test Case
	TORs Covered

	Test Case 1 - Out of Bounds Array Index #1
	TOR-1, TOR-2, TOR-3

	Test Case 2 - Division By Zero #1
	TOR-1, TOR-2, TOR-4

	Test Case 3 – Undefined Logical Shift
	TOR-1, TOR-2, TOR-5

	Test Case 4 - Integer Overflow #1
	TOR-1, TOR-2, TOR-6

	Test Case 5 - Floating Point Overflow #1
	TOR-1, TOR-2, TOR-7

	Test Case 6 - Uninitialized Variables #1
	TOR-1, TOR-2, TOR-8

	Test Case 7 - Dangling Pointers #1
	TOR-1, TOR-2, TOR-9

	Test Case 8 - Invalid Memory Access #1
	TOR-1, TOR-2, TOR-10

	Test Case 9 - Undefined Pointer Comparisons
	TOR-1, TOR-2, TOR-11

[bookmark: _Ref423442413]Table 8 - Test Case / TOR Traceability
Discussion: Capturing the Tool Operational Requirements and test cases to demonstrate that the tool satisfies them represents the majority of the work to be completed in a tool qualification effort. In this case study, we identify a subset of Tool Operational Requirements for the Frama-C Value Analysis plug-in and a subset of test cases that can be used to satisfy them. In practice, the Tool Operational Requirements should contain sufficient detail to establish that the tool meets the needs of the Software Life Cycle processes that the tool intends to serve. This may include requirements that demonstrate the robustness of the tool within the operating environment, that the tool validates its input, and that the tool responds appropriately under abnormal operating conditions.
[bookmark: _Ref423433406]Tool Operational Verification and Validation Test Procedures (TOVVTP)
A test procedure contains all of the information necessary to run a test case in the Tool Operational Environment (TOE).
In this qualification effort, every test case is executed by from the command line by executing the Frama-C Value Analysis plug-in and providing the proper flags and C source files as arguments. For Test Case 1 this is accomplished by running, from the directory in which the test case is contained, the following command:
	frama-c –val test_case_1.c

The results from executing Test Case 1 from the command lines are captured in the screenshot shown in Figure 3 and in Test Result 1 in Appendix D.
[image:]
[bookmark: _Ref423436052]Figure 3 - Analysis Results from analyzing Test Case 1
[bookmark: _Ref423436604]Tool Operational Verification and Validation Results
Table 9 shows the results from executing all of the Tool Operational Verification and Validation Test Cases.
	Test Case Name
	Pass/Fail

	Test Case 1
	Pass

	Test Case 2
	Pass

	Test Case 3
	Pass

	Test Case 4
	Pass

	Test Case 5
	Pass

	Test Case 6
	Pass

	Test Case 7
	Pass

	Test Case 8
	Pass

	Test Case 9
	Pass

	Test Case 10
	Pass

[bookmark: _Ref423442305]Table 9 - Tool Operational Verification and Validation Results
The tool output from executing each test case is found in Appendix D.
[bookmark: _Ref447786900][bookmark: _Toc447787221]Objective 6 – Tool Operational Requirements are sufficient and correct
This objective is satisfied by the development, execution, and recording the results of executing the Tool Operational Verification and Validation Test Cases and Procedures.
[bookmark: _Ref447786905][bookmark: _Toc447787222]Objective 7 – Software Life Cycle Process needs are met by the tool.
This objective is satisfied by the development, execution, and recording the results of executing the Tool Operational Verification and Validation Test Cases and Procedures.
[bookmark: _Ref423426456][bookmark: _Toc447787223]Table T-8 Tool Configuration Management Process
This table requires the applicant to demonstrate that configuration management processes are in place for archiving, retrieving, and releasing the tool are established. For a TQL-5 effort, Objectives 1 and 2 are applicable.
	Objective
	Description
	DO-330 Section

	T-8.1
	Configuration items are identified
	7.1.a

	T-8.4
	Archive, retrieval, and release are established
	7.1.g

Table 10 - TQL-5 Objectives from DO-330 Table T-8
Discussion: The objectives in this table represent no unique concerns for formal methods tools. In addition, the satisfaction of these objectives is accomplished by identifying the tool within the applicant’s configuration management processes and mechanisms, which may (and probably will) vary from organization to organization. As a result, this case study does not address the objectives from Table T-8.
[bookmark: _Toc447787224]Table T-9 Tool Qualify Assurance Process
This table requires the applicant to demonstrate that quality assurance processes were followed in the tool qualification effort. For a TQL-5 effort Objectives, 2 and 5 are applicable.
	Objective
	Description
	DO-330 Section

	T-9.2
	Assurance is obtained that tool processes comply with approved plans.
	8.1.b

	T-9.5
	Tool conformity review is conducted
	8.1.d

Table 11 - TQL-5 Objectives from Table T-9
Discussion: As in the previous section, the objectives in this table are not unique to the qualification of formal methods tools and are highly dependent on the quality assurance tools and processes available to the applicant. As a result, the objectives in Table T-9 are not addressed in this case study.
[bookmark: _Toc447787225]Table T-10 Tool Qualification Liaison Process
This table requires the applicant to demonstrate that the use of the tool in the Software Life Cycle Processes was communicated and discussed with the certification representatives, agreed upon as an acceptable means of compliance, with additional problems identified and analyzed. As stated in DO-330, this process is not performed alone, but within the framework of the certification liaison process of the software. As a result, the objectives in this table seek to define how the tool fits within the broader software development processes. For a TQL-5 effort all objectives, 1-4, are applicable.
	Objective
	Description
	DO-330 Section
	Discussion

	T-10.1
	Communication and understanding between the applicant and the certification authority is established.
	9.0
	4.4.1

	T-10.2
	The means of compliance is proposed and agreement is obtained.
	9.0
	4.4.2

	T-10.3
	Compliance substantiation is provided
	9.0
	4.4.3

	T-10.4
	Impact of known problems on the Tool Operational Requirements is identified and analyzed.
	9.0
	4.4.4

Table 12 - TQL-5 Objectives from Table T-10
Discussion: The objectives in this table focus on communication and understanding between the applicant and certification authority on the usage of the tool in the Software Life Cycle processes. The objectives in this table *do* introduce unique issues with regards to Formal Methods. In this case study, the use of the Frama-C Value Analysis plug-in introduces additional objectives required by the guidance provided in DO-333. These additional objectives should be documented and communicated to the certification authority in addition to the objectives satisfied by the tool itself.
[bookmark: _Ref447787050][bookmark: _Toc447787226]Objective 1 – Communication and understanding is established
Communication between the applicant and the certification authority must be established. This is accomplished through the identification of the Frama-C Value Analysis plug-in, the operational context in which it is used, and the objectives found in Table 1, in the Plan for Software Aspects of Certification (PSAC) document.
Discussion: The use of the Frama-C Value Analysis plug-in, a tool that implements abstract interpretation, requires additional objectives from DO-333 to be satisfied. In this case study, these additional objectives are identified in Table 3. The practitioner should be aware of, and ready to address, these additional objectives when formal methods (manually, or through the use of a tool) are used to satisfy DO-178C objectives.
[bookmark: _Ref447787056][bookmark: _Toc447787227]Objective 2 – Means of compliance is proposed and agreement is obtained
The rationale for why the use of the Frama-C Value Analysis plug-in meets the objectives found in Table 1, must also be included in the PSAC.
Discussion: In addition to the DO-178C objectives the tool satisfies, the rationale for how the additional objectives outlined in Table 3 are going to be satisfied must be identified in the PSAC as well.
[bookmark: _Ref447787061][bookmark: _Toc447787228]Objective 3 – Compliance substantiation is provided
This is established by including results from performing the tool qualification activities in the Software Accomplishments Summary (SAS).
[bookmark: _Ref447787066][bookmark: _Toc447787229]Objective 4 – Impact of known problems and limitations is understood
Any limitations of the tool or known issues that might prevent the tool from meeting its stated Tool Operational Requirements (found in Table 5) should be identified in the Software Accomplishments Summary (SAS) document.
The Frama-C Value Analysis plug-in uses non-relational abstract domains tend to be fast, and easy to implement, but often very imprecise. Non-relational domains do not track relationships between variables. As such, relationships, such as equivalence of two variables are not tracked in these types of domains. This means the Frama-C Value Analysis plug-in is likely to present the user with false positives that must be manually discharged. Certain classes of properties might result in numerous false positives.
The Frama-C bug tracking system [11] indicates 2 outstanding errors in the Value Analysis plug-in. They are:
· Bugs in the way the Realloc procedure is handled by Frama-C [12]
· Values inferred for 32-bit variables do not fit the 32-bit type [13]
These bugs must be considered when evaluating the results of the Value Analysis plug-in.
·

[bookmark: _Ref430334574][bookmark: _Toc447787230][bookmark: _Ref426976213][bookmark: _Ref426976192]Labor Estimates
Labor estimates are broken down by the tool qualification objectives outlined in Tables T-0 through T-10 of Annex A of DO-330. Where appropriate, an objective is broken down into sub-tasks to provide insight into the labor distribution for each task.
	
	Hours

	Table T-0
	

	T-0.1 - Determining Tool Qualification Need
	2

	
	

	T-0.2 - Definition of the Tool Operational Requirements
	

	Definition of Tool Usage Context and Interface
	2

	Definition of the Tool Operational Environment
	2

	Definition of Tool's Inputs and Outputs
	1

	Developing the Tool Operational Requirements
	8-12

	Defining the Tool Operational Use
	1

	Identifying Performance Requirements
	2

	
	

	T-0.3 - Installation of the Tool Object Code
	

	Identifying the Tool Executable Object Code
	2

	Developing Tool Installation Instructions
	4

	Performing the Tool Installation
	2

	
	

	T-0.5 - Tool Operation Complies with TORS
	

	Development of Review and Analysis Procedures1
	0

	Development of Tool Operational Verification and Validation Test Cases
	24-32

	Development of Tool Operational Verification and Validation Test Procedures
	8-16

	Execution of the Tool Operational Verification and Validation Test Cases
	4

	
	

	T-0.6 - Tool Operational Requirements are sufficient and correct2
	0

	T-0.7 - Tool meets Software Life Cycle Process needs2
	0

	
	

	Table T-8
	8

	T-8.1 - Configuration Items are Identified
	4

	T-8.4 - Archive, retrieval, and release are established
	4

	
	

	Table T-9
	8

	T-9.2 - Assurance is obtained that tool processes comply with approved plans
	4

	T-9.5 - Tool conformity review is conducted
	4

	
	

	Table T-10
	24

	T-10.1 - Communication and understanding is established
	8

	T-10.2 - Means of compliance is proposed and agreement is obtained
	4

	T-10.3 - Compliance substantiation is provided
	4

	T-10.4 - Impact of known problems and limitations is understood
	8

	
	

	Total Estimate
	148-172

	
	

	1review and analysis procedures were not used in this tool qualification
	

	2these objectives are satisfied by performing the activities of objective T-0.5
	

Table 13 - Labor estimates for the activities outlined in this Tool Qualification Plan

References

[1] 	Frama-C, "Frama-C product website," [Online]. Available: http://www.frama-c.com. [Accessed 23 January 2015].
[2] 	Frama-C, "Frama-C Value Analysis Plug-in," [Online]. Available: http://frama-c.com/value.html. [Accessed 09 July 2015].
[3] 	RTCA, "DO-178C Software Considerations in Airborne Systems and Equipment Certification," 15 June 2015. [Online]. Available: http://www.rtca.org/store_product.asp?prodid=803.
[4] 	RTCA, "DO-330 Software Tool Qualification Considerations," 15 June 2015. [Online]. Available: http://www.rtca.org/store_product.asp?prodid=792.
[5] 	D. Cofer and S. Miller, "Formal Methods Case Studies for DO-333," 2014.
[6] 	RTCA, "DO-333 Formal Methods Supplement to DO-178C and DO-278A," 15 June 2015. [Online]. Available: http://www.rtca.org/store_product.asp?prodid=859.
[7] 	P. Cousot and R. Cousot, "Abstract Interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints.," in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, New York, 1977.
[8] 	AbsInt Angewandte Informatik GmbH, "Astree Analyzer Product home page," [Online]. Available: http://www.absint.com/astree/index.htm. [Accessed 17 September 2015].
[9] 	Mathworks, "Polyspace product homepage," [Online]. Available: http://www.mathworks.com/products/polyspace/. [Accessed 17 September 2015].
[10] 	WG14 Working Committee, "ISO/IEC 9899:1999 C Standard," 7 September 2007. [Online]. Available: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf. [Accessed 21 July 2015].
[11] 	Frama-C Development Team, "Frama-C Bug Tracking system," [Online]. Available: https://bts.frama-c.com/view_all_bug_page.php. [Accessed 15 September 2015].
[12] 	Frama-C Development Team, "Frama-C Bug ID 0002070," [Online]. Available: https://bts.frama-c.com/view.php?id=2070. [Accessed 15 September 2015].
[13] 	Frama-C Development Team, "Frama-C Bug ID 0001968," [Online]. Available: https://bts.frama-c.com/view.php?id=1968. [Accessed 15 September 2015].
[14] 	L. de Moura and N. Bjorner, "Z3: An Efficient SMT Solver," in Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Budapest, 2008.

[bookmark: _Toc447787232]Frama-C Value Analysis Plug-in command line flags

	Plug-in name: value analysis
Plug-in shortname: value
Description:
automatically computes variation domains for the variables of the program

Most options of the form '-value-option-name' and without any parameter
have an opposite with the name '-value-no-option-name'.

Most options of the form '-option-name' and without any parameter
have an opposite with the name '-no-option-name'.

Options taking a string as argument should preferably be written
-option-name="argument".

***** LIST OF AVAILABLE OPTIONS:

-val compute values (opposite option is -no-val)

*** DETERMINISTIC PROGRAMS

-obviously-terminates undocumented. Among effects of this options are the
 same effects as -no-results (opposite option is
 -no-obviously-terminates)
-obviously-terminates-function <f> undocumented
-val-interpreter-mode Stop at first call to a library function, if main()
 has arguments, on undecided branches (opposite option is
 -no-val-interpreter-mode)
-val-stop-at-nth-alarm <n> undocumented

*** GETTING INFORMATION

-value-help help of plug-in value analysis
-value-h alias for option -value-help

*** INITIAL CONTEXT

-context-depth <n> use <n> as the depth of the default context for value
 analysis. (defaults to 2)
-context-valid-pointers only allocate valid pointers until context-depth,
 and then use NULL (defaults to false) (opposite option is
 -no-context-valid-pointers)
-context-width <n> use <n> as the width of the default context for value
 analysis. (defaults to 2)
-initialized-padding-globals Padding in global variables is initialized to
 zero (set by default, opposite option is
 -uninitialized-padding-globals)
-uninitialized-padding-globals opposite of option
 "-initialized-padding-globals"

*** OUTPUT MESSAGES

-val-print print results for option -val (set by default, opposite
 option is -no-val-print)
-val-print-callstacks When printing a message, also show the current call
 stack (opposite option is -no-val-print-callstacks)
-val-show-progress Show progression messages during analysis (set by
 default, opposite option is -no-val-show-progress)
-val-show-slevel <n> Period for showing consumption of the alloted slevel
 during analysis
-val-show-time <n> Prints the time spent analyzing function calls, when it
 exceeds <n> seconds
-value-debug <n> level of debug for plug-in value analysis (default to 0)
-value-msg-key <k1[,...,kn]> enables message display for categories
 <k1>,...,<kn>. Use -value-msg-key help to get a list of
 available categories, and * to enable all categories
-value-msg-key-unset <k1[,...,kn]> disables message display for categories
 <k1>,...,<kn>
-value-verbose <n> level of verbosity for plug-in value analysis (default to
 1)

*** PRECISION VS. TIME

-memexec-all (experimental) speed up analysis by not recomputing
 functions already analyzed in the same context.
 Incompatible with some plugins and callbacks (opposite
 option is -no-memexec-all)
-plevel <n> use <n> as the precision level for arrays accesses. Array
 accesses are precise as long as the interval for the
 index contains less than n values. (defaults to 200)
-remove-redundant-alarms after the analysis, try to remove redundant alarms,
 so that the user needs inspect fewer of them (opposite
 option is -no-remove-redundant-alarms)
-separate-n <n> undocumented
-separate-of <n> undocumented
-separate-stmts <n1,..,nk> undocumented
-slevel <n> superpose up to <n> states when unrolling control flow.
 The larger n, the more precise and expensive the analysis
 (defaults to 0)
-slevel-function <f:n> override slevel with <n> when analyzing <f>
-subdivide-float-var <n> use <n> as number of subdivisions allowed for float
 variables in expressions (experimental, defaults to 0)
-val-builtin <f:ffc> when analyzing function <f>, try to use Frama-C builtin
 <ffc> instead. Fall back to <f> if <ffc> cannot handle
 its arguments (experimental).
-val-ilevel <n> Sets of integers are represented as sets up to <n>
 elements. Above, intervals with congruence information
 are used (defaults to 8; experimental)
-val-split-return-auto Automatically split states at the end of functions,
 according to the function return code (opposite option is
 -no-val-split-return-auto)
-val-split-return-function <f:n> split return states of function <f>
 according to \result == n and \result != n
-val-use-spec <f1,..,fn> use the ACSL specification of the functions instead
 of their definitions
-wlevel <n> do <n> loop iterations before widening (defaults to 3)

*** PROPAGATION AND ALARMS

-all-rounding-modes Take more target FPU and compiler behaviors into account
 (opposite option is -no-all-rounding-modes)
-undefined-pointer-comparison-propagate-all if the target program appears to
 contain undefined pointer comparisons, propagate both
 outcomes {0; 1} in addition to the emission of an alarm
 (opposite option is
 -no-undefined-pointer-comparison-propagate-all)
-val-ignore-recursive-calls Pretend function calls that would be recursive
 do not happen. Causes unsoundness (opposite option is
 -no-val-ignore-recursive-calls)
-val-left-shift-negative-alarms Emit alarms when left shifting negative
 integers (set by default, opposite option is
 -no-val-left-shift-negative-alarms)

*** RESULTS MEMOIZATION VS. TIME

-memory-footprint <n> tell the analyzer to compromise towards speed or
 towards low memory use. 1 : small memory; 2 : medium
 (suitable for recent notebooks); 3 : big (suitable for
 workstations with 3Gb physical memory or more). Defaults
 to 2
-no-results do not record values for any of the statements of the
 program (opposite option is -val-store-results)
-no-results-function <f> do not record the values obtained for the
 statements of function f
-val-after-results record precisely the values obtained after the evaluation
 of each statement (opposite option is
 -no-val-after-results)
-val-callstack-results record precisely the values obtained for each
 callstack leading to each statement (opposite option is
 -no-val-callstack-results)
-val-store-results opposite of option "-no-results" (set by default)

[bookmark: _Ref423432694][bookmark: _Ref425261220]

[bookmark: _Ref430592908][bookmark: _Toc447787233]– Frama-C Installation Instructions
Frama-C must be built from source. For the purposes of this tool qualification, only the command-line version of Frama-C will be built.
[bookmark: _Toc447787234]Prerequisites
· Sudo access to the Linux machine the tool will be installed on.
· Ocaml 4.01.0 is installed and available to execute from the command line
· Frama-C Sodium source distribution tarball
[bookmark: _Toc447787235]Installation of Frama-C
The following steps show how to build, install, and test Frama-C Sodium. It should be noted that anything appearing in bold italics is a command to be executed within a Linux terminal session.
1. Unzip and untar the Frama-C source distribution tarball
a. gzip –dvr frama-c-Sodium-20150201.tar.gz
[image:]
b. tar xvf frama-c-Sodium-20150201.tar
[image:]
2. Change directory to the directory created by the previous step.
a. cd frama-c-Sodium-20150201
3. Run the autoconfigure script.
a. ./configure
[image:]
4. Compile Frama-C. Note this might take 30 minutes or more to complete depending on the hardware configuration of the machine it is being built on.
a. make
[image:]
5. Install Frama-C
a. sudo make install
[image:]
6. Test Frama-C
a. frama-c –val tests/metrics/unreachable.c
[image:]

[bookmark: _Ref424806147][bookmark: _Toc447787236]Installation Results
	Frama-C Installation Result: Pass/Fail
Date:
Printed Name:
Signature:
Notes:

[bookmark: _Ref423434925][bookmark: _Toc447787237]– Tool Operational Verification and Validation Test Cases

	/*
 TEST NAME: Division by Zero #1

 DESCRIPTION:
 This is a simple program that accepts inputs a and b and divides
 two constant values by a, and b respectively.

 TEST PURPOSE:
 This program contains potential divisions by zero, because
 each input a, and b can be zero.

 EXPECTED OUTCOME:
 The tool flags potential division by zero on line X and line Y.
*/
void main(int a, float b) {
 int x;
 float y;
 x = 50/a;
 y = 200.0/b;
}

[bookmark: _Ref427072356][bookmark: _Ref427071725]Test Case 2 - Division By Zero #1
	/*
 TEST NAME: Undefined Logical Shift

 DESCRIPTION:
 This is a simple program that performs a logical shift that is
 left undefined by the ISO/IEC 9899:1999 standard.

 TEST PURPOSE:
 This test demonstrates that the tool can detect logical shifts
 that are undefined by ISO/IEC 9899:1999 standard.

 EXPECTED OUTCOME:
 The tool will flag that a that an undefined logical shift can
 potentially occur on line 19.
*/
void main(int c) {
	int x;
	c = c ? 1 : 8 * sizeof(int);
	x = 1 << c;
}

[bookmark: _Ref423441429][bookmark: _Ref423439494][bookmark: _Ref424810290]Test Case 3 – Undefined Logical Shift
	/*
 TEST NAME: Integer Overflow #1

 DESCRIPTION:
 This is a simple program that declares two integer variables
 and increments one, and decrements the other, inside of an
 infinite while loop.

 TEST PURPOSE:
 This test demonstrates that the tool can flag potential
 overflow and underflow of integer variables.

 EXPECTED OUTCOME:
 The tool will flag that integer overflow can occur on line 21.
 The tool will flag that integer underflow can occur on line 22.
*/
void main(void) {
	int i=0;
	int j=0;
	while(1) {
		i++;
		j--;
	}
}

[bookmark: _Ref424809255][bookmark: _Ref424809220]Test Case 4 - Integer Overflow #1
	/*
 TEST NAME: Floating Point Overflow #1

 DESCRIPTION:
 This is a simple program that multiplies two input variables
 a and b and returns it.

 TEST PURPOSE:
 This test demonstrates that the tool can identify
 potential overflow in floating point representations.

 EXPECTED OUTCOME:
 The tool will flag potential overflow in floating
 point operations on line 18.
*/
float main(float a, float b) {
	return a * b;
}

[bookmark: _Ref427072450][bookmark: _Ref427133843]Test Case 5 - Floating Point Overflow #1
	/*
 TEST NAME: Uninitialized Variables #1

 DESCRIPTION:
 This is a simple program adds an input variable "c" to
 a local variable x (that has not been initialized) and
 returns it.

 TEST PURPOSE:
 This test demonstrates that the tool can identify
 accesses to uninitialized variables.

 EXPECTED OUTCOME:
 The tool will flag that variable X is uninitialized
 while accessed on line 19.
*/
int main(int c) {
	int x;
	return c + x;
}

[bookmark: _Ref427072585][bookmark: _Ref427133853]Test Case 6 - Uninitialized Variables #1
	/*
 TEST NAME: Dangling Pointers #1

 DESCRIPTION:
 This is a simple piece of code that has a main procedure, and
 a function "f" that is called by it. Function "f" returns a
 pointer to a local variable "r". This is known as a dangling
 pointer.

 TEST PURPOSE:
 This test demonstrates that the tool can identify
 dangling pointers to local variables.

 EXPECTED OUTCOME:
 The tool will flag that the value returned by the
 main procedure is a dangling pointer.
*/
int *f(int c) {
 int r;
 r = 2;
 return &r;
}

int main(int c) {
 int *p;
 p = f(c);
 return *p;
}

[bookmark: _Ref427159050][bookmark: _Ref427159094]Test Case 7 - Dangling Pointers #1
	/*
 TEST NAME: Invalid Memory Access #1

 DESCRIPTION:
 This is a simple piece of code that calls an unknown function
 that returns a boolean. The result of this function call feeds
 an if-statement that assigns the ith element of array t.

 The unknown function is called a 2nd time and it's output feeds
 an if-statement that assigns pointer p to to the 12th element of
 array t.

 TEST PURPOSE:
 This test demonstrates that the tool can identify invalid
 memory access operations.

 EXPECTED OUTCOME:
 The tool will flag invalid memory access on line 25 and line 30.
*/
int i, t[10], *p;

void main() {
 for (i=0; i<=10; i++) {
 if (unknownfun()) {
 t[i] = i;
 }
 }
 p = t + 12;
 if (unknownfun()) {
 *p = i;
 }
 p[-6] = i;
} if (unknownfun()) {
 *p = i;
 }
 p[-6] = i;
}

[bookmark: _Ref427220315][bookmark: _Ref427221673]Test Case 8 - Invalid Memory Access #1
	/*
 TEST NAME: Undefined Pointer Comparisons #1

 DESCRIPTION:
 This is a simple program that assigns pointer p to the address
 of global variable x and then continutes to increment pointer p
 while it is not equal to the address of variable y.

 TEST PURPOSE:
 This test demonstrates that the tool identifies pointer comparisons
 that might be handled differently from one compiler to another.

 EXPECTED OUTCOME:
 The tool will flag invalid memory access on line 20.
*/
int x,y,*p;

main() {
	p = &x;
	while (p++ != &y);
}

[bookmark: _Ref427222683][bookmark: _Ref427221682]Test Case 9 - Undefined Pointer Comparisons
	/*
 TEST NAME: Syntax Error #1

 DESCRIPTION:
 This is a simple program that contains syntax errors.

 TEST PURPOSE:
 The syntax errors found in this program will demonstrate
 that Frama-C validates its inputs.

 EXPECTED OUTCOME:
 The tool flags potential division by zero on line X and line Y.
*/
void main(integer a, real b) {
 int x;
 float y;
 x = 50/a;
 y = 200.0/b;
 return 0;
}

	

[bookmark: _Ref430262642]Test Case 10 - Syntax Error
[bookmark: _Ref423441643]

[bookmark: _Ref430592935][bookmark: _Ref430592947][bookmark: _Toc447787238]– Frama-C Value Analysis Tool Operational Verification and Validation Results

	[kernel] preprocessing with "gcc -C -E -I. division_by_zero.c"
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization
 A ∈ {0}
 B ∈ {0}
division_by_zero.c:3:[kernel] warning: signed overflow. assert -2147483648 ≤ x*y ≤ 2147483647;
division_by_zero.c:3:[kernel] warning: division by zero: assert (int)(x*y) ≢ 0;
division_by_zero.c:3:[value] assigning non deterministic value for the first time
division_by_zero.c:4:[kernel] warning: division by zero: assert x ≢ 0;
[value] Recording results for main
[value] done for function main
[value] ====== VALUES COMPUTED ======
[value] Values at end of function main:
 A ∈ [-100..100]
 B ∈ [0..333]

[bookmark: _Ref425260161]Test Result 1 - Frama-C output from Test Case 1
	[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing division_by_zero.c (with preprocessing)
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization

division_by_zero.c:18:[kernel] warning: division by zero: assert a ≢ 0;
division_by_zero.c:19:[kernel] warning: non-finite double value ([--..--]):
 assert \is_finite((double)(200.0/(double)b));
division_by_zero.c:19:[kernel] warning: non-finite float value ([-1.79769313486e+308 .. 1.79769313486e+308]):
 assert \is_finite((float)((double)(200.0/(double)b)));
[value] Recording results for main
[value] done for function main
[value] ====== VALUES COMPUTED ======
[value] Values at end of function main:
 x ∈ [-50..50]
 y ∈ [-3.40282346639e+38 .. 3.40282346639e+38]

Test Result 2 – Frama-C output from Test Case 2
	[kernel] preprocessing with "gcc -C -E -I. undefined_logical_shift.c"
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization
undefined_logical_shift.c:19:[kernel] warning: invalid RHS operand for shift. assert 0 ≤ c < 32;
[value] Recording results for main
[value] done for function main
[value] ====== VALUES COMPUTED ======
[value] Values at end of function main:
 c ∈ {1; 32}
 x ∈ {2}

Test Result 3 - Frama-C output from Test Case 3
	[kernel] preprocessing with "gcc -C -E -I. integer_overflow.c"
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization
integer_overflow.c:20:[value] entering loop for the first time
integer_overflow.c:21:[value] assigning non deterministic value for the first time
integer_overflow.c:22:[kernel] warning: signed overflow. assert -2147483648 ≤ j-1;
integer_overflow.c:21:[kernel] warning: signed overflow. assert i+1 ≤ 2147483647;
[value] Recording results for main
[value] done for function main
[value] ====== VALUES COMPUTED ======
[value] Values at end of function main:
 NON TERMINATING FUNCTION

Test Result 4 - Frama-C output from Test Case 4
	[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing floating_point_overflow.c (with preprocessing)
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization

floating_point_overflow.c:17:[kernel] warning: non-finite float value ([-1.15792075434e+77 .. 1.15792075434e+77]):
 assert \is_finite((float)(a*b));
[value] Recording results for main
[value] done for function main
[value] ====== VALUES COMPUTED ======
[value] Values at end of function main:
 __retres ∈ [-3.40282346639e+38 .. 3.40282346639e+38]

Test Result 5 – Frama-C output from Test Case 5
	[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing uninit_variables1.c (with preprocessing)
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization

uninit_variables1.c:19:[kernel] warning: accessing uninitialized left-value: assert \initialized(&x);
uninit_variables1.c:19:[kernel] warning: completely indeterminate value in x.
[value] Recording results for main
[value] done for function main
uninit_variables1.c:19:[value] Assertion 'Value,initialisation' got final status invalid.
[value] ====== VALUES COMPUTED ======
[value] Values at end of function main:
 NON TERMINATING FUNCTION

Test Result 6 – Frama-C output from Test Case 6
	[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing dangling_pointers.c (with preprocessing)
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization

[value] computing for function f <- main.
 Called from dangling_pointers.c:26.
dangling_pointers.c:21:[value] warning: locals {r} escaping the scope of f through \result
[value] Recording results for f
[value] Done for function f
dangling_pointers.c:27:[kernel] warning: accessing left-value that contains escaping addresses:
 assert ¬\dangling(&p);
dangling_pointers.c:27:[kernel] warning: completely indeterminate value in p.
[value] Recording results for main
[value] done for function main
dangling_pointers.c:27:[value] Assertion 'Value,dangling_pointer' got final status invalid.
[value] ====== VALUES COMPUTED ======
[value] Values at end of function f:
 r ∈ {2}
 __retres ∈ {{ &r }}
[value] Values at end of function main:
 NON TERMINATING FUNCTION

Test Result 7 - Frama-C output from Test Case 7
	[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing invalid_memory_access.c (with preprocessing)
invalid_memory_access.c:24:[kernel] warning: Calling undeclared function unknownfun. Old style K&R code?
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization
 i ∈ {0}
 t[0..9] ∈ {0}
 p ∈ {0}
invalid_memory_access.c:23:[value] entering loop for the first time
[value] computing for function unknownfun <- main.
 Called from invalid_memory_access.c:24.
invalid_memory_access.c:24:[kernel] warning: Neither code nor specification for function unknownfun, generating default assigns from the prototype
[value] using specification for function unknownfun
[value] Done for function unknownfun
[value] computing for function unknownfun <- main.
 Called from invalid_memory_access.c:24.
[value] Done for function unknownfun
[value] computing for function unknownfun <- main.
 Called from invalid_memory_access.c:24.
[value] Done for function unknownfun
[value] computing for function unknownfun <- main.
 Called from invalid_memory_access.c:24.
[value] Done for function unknownfun
[value] computing for function unknownfun <- main.
 Called from invalid_memory_access.c:24.
[value] Done for function unknownfun
[value] computing for function unknownfun <- main.
 Called from invalid_memory_access.c:24.
[value] Done for function unknownfun
[value] computing for function unknownfun <- main.
 Called from invalid_memory_access.c:24.
[value] Done for function unknownfun
invalid_memory_access.c:25:[kernel] warning: accessing out of bounds index [0..10]. assert i < 10;
[value] computing for function unknownfun <- main.
 Called from invalid_memory_access.c:29.
[value] Done for function unknownfun
invalid_memory_access.c:30:[kernel] warning: out of bounds write. assert \valid(p);
invalid_memory_access.c:30:[kernel] warning: all target addresses were invalid. This path is assumed to be dead.
[value] Recording results for main
[value] done for function main
invalid_memory_access.c:30:[value] Assertion 'Value,mem_access' got final status invalid.
[value] ====== VALUES COMPUTED ======
[value] Values at end of function main:
 i ∈ {11}
 t[0..5] ∈ [0..9]
 [6] ∈ {11}
 [7..9] ∈ [0..9]
 p ∈ {{ &t[12] }}

Test Result 8 - Frama-C output from Test Case 8
	[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing undefined_pointer.c (with preprocessing)
[value] Analyzing a complete application starting at main
[value] Computing initial state
[value] Initial state computed
[value] Values of globals at initialization
 x ∈ {0}
 y ∈ {0}
 p ∈ {0}
undefined_pointer.c:20:[value] entering loop for the first time
undefined_pointer.c:20:[kernel] warning: pointer comparison: assert \pointer_comparable(tmp, &y);
 (tmp from p++)
[value] Recording results for main
[value] done for function main
[value] ====== VALUES COMPUTED ======
[value] Values at end of function main:
 NON TERMINATING FUNCTION

Test Result 9 - Frama-C output from Test Case 9
	[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing c99_violation.c (with preprocessing)
c99_violation.c:14:[kernel] user error: syntax error
[kernel] user error: stopping on file "c99_violation.c" that has errors. Add '-kernel-msg-key pp'
 for preprocessing command.
[kernel] Frama-C aborted: invalid user input.

Test Result 10 - Frama-C output from Test Case 10

© Copyright 2015 Rockwell Collins, Inc. All rights reserved as provided by NASA Contract NNL14AA06C.

image1.jpeg

image2.jpg

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

