

SSAT DATCPI (FACTS)
Theoretical Soundness Issues

Report

Deliverable 2

for

Contract NNL14AA07C

September 30, 2015

Revised: November 18, 2015

Revised: October 18, 2016

	 	

 2

1.	Introduction	...	4	

2.	Theoretical	vs	Actual	Soundness	..	4	

3.	Soundness	Issues	for	Model	Checking	..	5	
3.1	Model	Checking	...	6	
3.1.1	Model	Checking	Properties	...	7	
3.1.2	Explicit-State	Model	Checking	...	8	
3.1.3	Abstraction	...	8	
3.1.4	Reductionist	Techniques	..	9	
3.1.5	Unsound	or	Incomplete	Approximations	...	10	
3.1.6	Compositional	Reasoning	...	10	
3.1.7	Symbolic	Model	Checking	...	11	
3.1.8	Execution	Exploration	..	11	
3.1.9	k-Induction	..	13	

3.2	Typical	Use	Cases	..	13	
3.2.1	“Safety”	Properties	...	13	
3.2.2	“Liveness”	Properties	..	14	

3.3	Java	PathFinder	and	Symbolic	PathFinder	...	14	
3.4	Potential	Sources	of	Errors	and	Errors	of	Interpretation	..	16	
3.4.1	Modeling	Errors	..	16	
3.4.2	Testing	Environment	..	16	
3.4.3	Property	Specification	Errors	...	17	
3.4.4	Incomplete	Results	and	Tool	Configuration	Errors	...	17	
3.4.5	Sub-Solver	Limitations	...	18	

3.5	Downstream	Impacts	...	18	

4.	Soundness	Issues	for	Static	Analysis	...	18	
4.1	Static	Analysis	...	18	
4.2	Abstract	Interpretation	...	19	
4.3	CodeHawk	Technology	...	20	
4.4	Typical	Use	Cases	..	21	
4.4.1	Memory	Safety	...	21	
4.4.2	Value	Flow	...	22	
4.4.3	Binary	Analysis	..	22	
4.4.4	Range	Bounds	for	Digital	Filters	...	23	

4.5	Potential	Sources	of	Errors	under	Use	Cases	..	23	
4.5.1	Memory	Safety	...	24	
4.5.2	Value	Flow	...	24	
4.5.3	Binary	Analysis	..	24	
4.5.4	Range	Bounds	for	Digital	Filters	...	25	

4.6	Implementation	and	Interpretation	Issues	..	25	
4.6.1	Interpretation	..	25	
4.6.2	Implementation	...	26	

4.7	Downstream	Error	Impact	..	27	
4.8	Characterization	of	Input	and	Output	Interpretations	...	28	

5.	Soundness	Issues	for	Intermediate	Representations	..	31	
5.1	What	are	Intermediate	Representations?	..	31	
5.2	Example:	Soundness	of	the	Model	under	Exploration	..	33	
5.3	Internal	Tool	Abstractions	for	Models	...	35	

 3

5.3.1	Example:	priority	inversion	in	Stateflow	semantics.	..	36	
5.3.2	Example:	Changes	in	Model	Semantics	due	to	Block-Library	Changes	37	

5.4	Intermediate	Artifacts:	Using	SMT	Solver	as	a	Back-End	Tool	..	38	
5.6	Completeness	of	the	Intermediate	Artifacts	..	39	
5.7	Completeness	in	the	Enumeration	of	Low-level	Properties	...	40	
5.8	Soundness	and	Completeness	of	Requirements-Based	Coverage	Metrics	40	
References	...	42	

Appendix	A	..	44	

 4

1. Introduction

From Exhibit A: Statement of Work, p 3:

4.1 Theoretical Soundness Issues

The Contractor shall compile use cases for different classes of formal methods
tools, identify the potential sources of errors in these tools, quantify these errors if
possible, characterize the implementation with respect to the fundamental
algorithms, and assess the impact of errors propagating downstream in the
lifecycle. Because the tools have input and output interfaces where ambiguity and
uncertainty may play a role in interpreting performance, the Contractor shall
characterize the input and output interpretations and both static and dynamic
metrics if reasonable. Where it is not reasonable or feasible to characterize
interpretations or metrics, the Contractor shall provide a rationale. The
Contractor shall deliver an informal report inclusive of the requirements of this
paragraph and subparagraphs 4.1.1, 4.1.2 and 4.1.3 (Del 2).

2. Theoretical vs Actual Soundness

In accordance with DO-333, the soundness criterion we will be examining in this report
is the following:

A characteristic of a logical argument or method that holds if and only if it is
impossible to reach a false conclusion from true statements. A sound method is
one that never permits a property to be declared true when it is not true. (p. 58)

Because they are formal artifacts with denotational semantics, and suitably small and
abstract, systems of logic can often be formally proven to be sound (or not). The
computer programs that implement formal analysis tools are also formal artifacts, but
they are very large and concrete instances of programming languages with imperative
semantics that may not be completely defined or predictable when compiled into a
particular machine architecture and operating system. For this reason, it is usually
infeasible to formally prove these tools sound. Instead, we must rely on informal proofs
by the authors of the algorithms used, and trust that the implementation process is faithful
to the description of the algorithms.

There is no way to conclusively verify these assumptions. Testing, by the implementers
or the users of these tools, can only refute presumptions of soundness, by exposing
concrete counter-examples. Because soundness is a property about what will always or
never happen, on any possible execution of the tool, positive test results will never be
conclusive. For this reason, vendor representations of soundness (with accompanying
informal arguments) are the only practical evidence of actual soundness. In general, this
is good evidence because vendors that make soundness claims will usually back their

 5

claims with formal arguments, and will have suitably formal reputations. Vendors
without such credentials will typically not make soundness claims.

Given the intervening human implementation process, it is unlikely that any such
“theoretically” sound formal analysis tool is actually sound (as unlikely as that any large
program has no bugs). So as a practical matter, it can be useful to rate analysis tools
relative to a more informal notion of soundness that comes in degrees. One tool can be
more sound than another if it yields fewer incorrect results. If there is some metric
available to quantify the analysis domain, such as total number of statements or total
number of memory references, then this relative notion of soundness could possibly be
assessed against maximum possible correctness. Even here, though, such a metric would
only be theoretical. To actually score an analysis tool, you would need an independent
assessment of what is true, independent of the findings of the tool. And there is no
practical way to obtain this except from another analysis tool.

Perhaps the best practical model for vetting the soundness of formal analysis tools comes
from our experience with compilers. Compilers are programs, typically written in
imperative languages, of similar size, complexity and architecture as analysis tools. They
are written by similarly formally inclined developers who draw on decades of published
research in formal language processing. Any given compiler probably has a few bugs, but
in general, once it has been used for some time for production programs, it is one of the
most trusted and reliable pieces of software out there. Only rookie programmers blame
the failure of their own programs on compiler bugs. Seasoned professionals learn early on
that this is the hypothesis of last resort. It is much more productive (and accurate) to
assume that the compiler is never wrong. It is feasible, though very expensive and time
consuming, to produce a provably correct compiler. The fact that no commercial
organization has been willing to foot the bill for such an effort speaks to the lack of a
market for such assurance (at such a cost). Compilers with good track records are judged
to be good enough. Consumers have confidence in the low likelihood of compilers
producing incorrect results. Formal analysis tools share this same formal provenance.
What they typically don’t share is the long track record of use on many millions of
programs.

3. Soundness Issues for Model Checking

In this section we provide an overview of model checking approaches, tools, and the
soundness issues that arise in using model checkers. The selection of model checker to
qualify for certification requires care as the uses to which one can put those tools are
limited by the underlying techniques employed. Therefore we begin in Section 3.1 with a
review of model checking concepts and approaches, and continue in Section 3.2 with a
discussion of typical properties that model checking is used to establish. While these
sections attempt to provide a concise overview of model checking, they are also rather
detailed owing to the breadth of model checking research and the many disparate model
checking techniques and tools. Section 3.3 gives an overview of Java Pathfinder, the
exemplar tool we are focusing on in the case-study portion of this effort. We then discuss
in Section 3.4 the many possible sources of error that arise when using model checkers.

 6

We conclude in Section 3.5 with a description of how these possible errors contribute to
the soundness issues for model checking, and we discuss their potential downstream
impact.

3.1 Model Checking

The concept of model checking as a method for automated verification has foundations in
temporal logic and theorem proving. Fundamentally, model checking is algorithmic
means of determining whether a (finite-state, abstract) model, typically representing a
hardware or software system design, satisfies a formal specification of a desired (often
temporal) property of behavior or state. Moreover, if the property is proven false (is
reachable), most model-checking algorithms can identify a counterexample that shows a
path of execution through the model to the error, often exposing the root of the problem.
Model checking algorithms do this by systematically checking whether this property
holds for that model by enumerating or symbolically executing all possible transition
sequences through states of the model. However, even early experiments with automated
model checkers showed that the number of states critically limited the scale of systems
that could be analyzed usefully – “the state explosion problem”. Moreover, Turing’s and
others work on the halting problem explains that we cannot have both sound and
complete algorithmic solutions for many interesting systems. Even so, early model
checking techniques, originally intended for verification of finite-state concurrent
software systems, were adapted in other domains. Some of first widely practicable uses
of model checking were applications in hardware verification. In hardware verification,
the finite state restriction comes naturally. Regardless of the state-space problems,
careful use of model checking techniques still provide tangible results in both hardware
and software verification.

Heavily influenced by complementary research areas, modern model checkers bear little
resemblance to the original concepts for verifying finite-state concurrent systems.
Contemporaneously developed, model checking is attributed largely to Clarke and
Emerson [1, 2], and Quielle and Sifakis [6], and their seminal work provided the
foundations upon which all model-checkers are built. Extended and adapted to different
domains over years of extensive research, software model checking use includes a
panoply of techniques to address the fundamental state explosion problem: symbolic
model checking, partial-order reduction, data abstraction, symmetry reduction, bounded
model checking and induction, compositional reasoning, and even direct or concolic
execution exploration. Individually, these techniques have found benefits in various
domains. Combinations of these techniques offer a wide variety of model-checkers tuned
for their specific domain, and expand the scope of automated techniques, both in terms of
the scale of programs handled as well as the complexity of properties that can be
checked. Additionally, more recent adaptations of “model checkers” include use of
abstract interpretation and decision procedures, especially in the form of Satisfiability
Modulo Theories (SMT) solvers. Taken as a whole, the field of Software Model
Checking is a very broad umbrella covering a wide variety of tools and techniques.

Developing out of the logic and theorem proving community, most model checkers aim
for both completeness and soundness, and excepting errors in design or implementation

 7

of the tools themselves, both aims are generally achieved, at least for simple models. As
the scale of the model increases, some tools and techniques compromise on soundness
but maintain completeness, and conversely, some focus more on sound execution of the
model and acquiesce on being able to explore the entire model. Additionally, different
model checkers address the state explosion problem differently, with some geared
towards property falsification (“bug-finding”) and others towards verification. In the case
of the former, a “positive” claim proves the existence of an error, often with a counter-
example, but proves nothing if no claim can be made; conversely, verification approaches
explore a superset of actual model executions, with positive claims about the model
holding for all actual expansions of the model, but a violation of the property proves
nothing about the original model. We will expand on different types of model-checkers
later in this section.

With these restrictions in mind, it should be clear that proper use of model checkers
requires not only a clear understanding of what questions one is trying to answer, but
also of how the choice of model-checking tool and techniques affects the interpretation of
the output of the model checker. This is especially true in the context of verification of
safety-critical systems, including those to be certified under DO-178 or related
guidelines. In all cases, the most obvious limitation in any claims that can be made from
the results of a model checker is the model itself. Excepting limited recent research in
binary-level model checkers, most tools which have roots in model checking do not
operate on either source code or binary artifacts, but on code-fragments, abstractions of
behavior, or design-level artifacts. Therefore as one applies model-checkers for
certification of safety-critical systems, one always has to consider not only errors in the
model itself, but also differences between the more abstract model being analyzed and the
code- or machine-level representation. Conversely, this ability to evaluate a partial or
abstract specification of the system behavior can sometimes be an advantage, helping to
alleviate the state explosion problem, most often when analyzing design-level artifacts
against requirements specifications.

While we cannot reasonably expect to cover even most interesting features of all model
checkers in this overview, we will attempt to outline the broad classes of model checkers,
typical use cases for model checking of software systems, as well as limitations of model
checking with special emphasis on the usefulness in the realm of certification of safety-
critical systems. As an exemplar, we will refer to Java PathFinder (JPF) and related
extensions to JPF. Briefly, JPF started as a (executable) software model checker for Java
bytecode, but unlike a normal Java VM, JPF identifies points in the bytecode from where
execution could proceed differently (i.e. branch points), then JPF systematically explores
all possible execution paths. Typical branching points include conditional (if-then)
branching, scheduling sequences, and random values, but JPF has been augmented with
different execution modes and extensions that include a variety of model-checking and
symbolic-execution modules.

3.1.1	Model	Checking	Properties		
The primary goal of any software model checker is to prove properties with respect to a
model of execution. The model may come from many sources, but is generally a finite-
state model refined from a higher-level design artifact or abstracted from lower-level

 8

(implementation or) executable representation. Properties are typically (a) simple
assertions, that state that a predicate over a finite-set of model variables holds whenever
the execution of the model reaches a particular location (e.g., “‘x <= y’ whenever in
model state ‘s’”), or (b) global invariants, where certain predicates will hold for all
reachable states (e.g., “mutex ‘m’ is never held by more than one thread
simultaneously”), or (c) reachability properties, that state that there exists some execution
trace that will eventually reach a given state (e.g., “for all possible inputs, eventually we
reach state ‘t’”). Model-checker properties are generally classified as either safety- or
liveness-properties. Informally, safety properties claim that “bad things” never happen
during any program execution, whereas liveness properties show that “good things”
always eventually occur. With both the model and property, the simplest form of
verification is performed by exhaustive state-space search of the combined model and
(negation of the) property specification. Thereby the verification problem becomes a
search problem, with the aim of finding reachability of any state satisfying the negated
property; if found, the resulting path forms a counter-example to the property. However,
other strategies exist, which we will elaborate upon in subsequent sections.

3.1.2	Explicit-State	Model	Checking	
The simplest forms of model checkers effectively search the program space or model
states and transitions, unified with a state-representation of the verification properties,
using various graph traversal techniques. This method effectively enumerates all possible
states and transitions of the program, thus the term explicit-state model checking is often
applied. Other terms such as enumerative or concrete are applied as well, both as
opposed to symbolic, with the latter manipulating sets of states simultaneously. Typical
explicit state model checkers construct the state-space on-the-fly, hashing the set of states
already visited for efficiency, and checking properties of interest after each state
transition. Such techniques exploit the fact that the set of reachable states (for given
inputs) is often much smaller than the entire state space of the model. Moreover, if a
violation of a property is found, essentially a “bug” in the model, many model checkers
will terminate immediately and produce a counter-example to the property. Notable
exemplars of explicit-state model checkers include SPIN [12] and MURPHI [9].

The most fundamental flaw in explicit-state model checkers is that the expanded state
space of a model can be exponentially larger than the description of that model. Known
as the state explosion problem, it is the most tangible problem barring practical
application of model checking. Given that most software is more dynamic and flexible
than more structured hardware, software verification poses particular problems for model
checking. Therefore, ameliorating state explosion has been a major direction of research
in model checking, yielding many techniques, each with its own advantages and
disadvantages.

3.1.3	Abstraction	
Abstraction is the most common and essential technique for making verification
assessments tractable, especially those that might otherwise contain unbounded data
types or infinite state spaces. In this way, (abstract) model checking is still a reachability
search problem, but the analysis is performed on an abstract domain that captures some,
but not all, of the behaviors or state representation of the ‘real’ system. A well-chosen

 9

abstraction is required to ensure that the abstract domain and semantics can be relied
upon to produce sound results. That is, that a proof (or violation) in the abstract domain
implies the verification (or bug) of the desired safety property in the original domain.

Abstractions are often made by observing the fact that design or specifications of systems
usually involve much simpler relationships among state variables than is theoretically
possible at the implementation level, and yet the most interesting cases for verification
occur at the design level; for example, verifying concurrent systems to ensure the absence
of deadlocks. Most abstractions are made to correspond to the design, using system
requirements as the properties of interest. Moreover, one can often exclude elements of
the design (or implementation) that are contextually irrelevant to the properties
(requirements) that one is seeking to verify. In other words the context of execution
matters a great deal for proving certain properties of models. In some situations,
abstractions might be realized by a mapping between data values in the implementation
and a smaller set of abstract data values that characterize the essence of the system in
question. By extending the mapping to states and transitions, it is possible to produce a
much smaller, abstract version of the models, rendering verification by model checking
tractable.

While abstractions remain the most widely used technique to overcome the state-space
problem for model checking, it can also be the largest source of errors. Specifically, as
noted earlier, it is imperative that the abstraction retains the necessary elements to
correctly represent the desired or eventual behavior. Moreover, any abstraction needs to
be made conservatively such that all possible behaviors in the lower-level artifact are
represented in the abstract domain, particularly if one is performing verification.
Conversely, if one is only interested in falsification to find bugs, then the abstraction
needs to retain sufficient resolution of the implementation details to render counter-
examples useful. Either way, soundness of the analysis is a primary concern when
utilizing abstractions, often with the burden falling to the human author of the model.

3.1.4	Reductionist	Techniques	
One of the most common uses of model checking is in the domain of concurrent software
systems, where parallel threads of execution operate largely independently of one
another. Errors in managing concurrency occur often in software systems, accounting for
a non-trivial number of bugs in implementation; finding errors in such systems was a
primary driver for the development of model checking itself. Reductionist techniques are
a particularly effective, largely automated means to increase the scale of model checking.

By exploiting the independence of potential state transitions over non-intersecting state
variables, partial-order reduction [7, 8] can ignore the order of these independent
transitions. For example, if two transitions t1 and t2 can be executed in parallel threads
and share no state variables, the final state reached after executing t1 then t2, is the same
as that reached after executing first t2 and then t1. Only when the state-transition matrix
overlaps in common variables does the order of execution matter. Partial-order reduction
techniques maintain soundness while significantly reducing the size of the completely
unrolled state-transition space.

 10

Symmetry reduction [3,9,10] is another technique that may be employed against the state
explosion problem. Similar to partial-order reduction, symmetry reduction is applicable
most often in finite state concurrent systems which often contain repeated (sub-)
components. Symmetry reduction finds the symmetries in the model and explores the
state space of only one example of each class. Often the syntax of the modeling language
can be used to determine the symmetries; e.g. one might define a model construct of an
identical network process, that is then explicitly replicated, each communicating with the
other. This sort of explicit symmetry can define an equivalence relation over the state
space that retains the transition graph of each component while again reducing the size of
the expanded state-space.

3.1.5	Unsound	or	Incomplete	Approximations	
Whereas most uses of reductionist techniques maintain completeness and soundness of
the analysis, some uses of model-checking for falsification give up on either soundness or
completeness of the search. Often this is achieved by placing artificial bounds on the
amount of time or memory dedicated to the search, or by bounding the depth of the
search. Bitstate hashing is a common technique in which the hash of each state is stored,
rather than the actual state itself. The hashing function and size of the hash table
determines the scale of the system the model checker can analyze, albeit unsoundly and
incompletely. Bitstate hashing is both unsound and incomplete because two distinct
states may hash to the same hash value (a hash collision). SPIN and other tools include
options to turn on bitstate hashing, with appropriate warnings about soundness issues.

Bounded model checking [17] is another technique applied in symbolic model checking
(see section 3.1.7) that trades completeness for effective checking of safety properties and
bug finding. In bounded model checking, a (Boolean) formula is checked for
satisfiability with respect to a finite-sequence of state transitions of length k. If
reachability (satisfiability) cannot be proven, the search is continued for a larger k. This
method remains symbolic in that a check for paths of length k covers all possible values
of the variables encoded in the underlying representation of the model. If a solution from
the solver is found, that assignment of values to the variables forms the basis for a
counter-example. Typical searching is completed in a breadth-first manner, thus the
counter example is guaranteed to be of minimal length.

3.1.6	Compositional	Reasoning	
Similarly to symmetry reduction, compositional reasoning exploits the ability to
decompose the problem thereby reducing the scale of the state-space explored during
verification of each of the subcomponents. In the case of compositional reasoning, we
reduce the verification problem by divide-and-conquer, decomposing the original larger
model into smaller sub-models such that the results of model checking sub-models can be
combined to prove properties about the original model. Simplistically, if each of the sub-
model properties are provable and the conjunction of those lower-level properties implies
a higher-level specification, then the complete system must also satisfy that higher-level
specification. Unfortunately, this simplistic reasoning may not be possible due to
interdependencies between the components. For example, when attempting a verification
of a property on one model, M1, it may depend upon correctness assumptions about
another model, M2, and vice-versa. To satisfy these situations, assume-guarantee

 11

reasoning [14,15,16] provides a framework in which, along with each model, M1 and M2,
assumptions and guarantees ({A1 , G1} and {A2 , G2}) about each model are provided such
that, globally, the (M1 U M2) is satisfies a global property (guarantee) G. This requires a
carefully defined assumption, A, about the environment of the M1 + M2 union such that
(A + G2 + M1) è A2 and similarly, (A + G1 + M2) è A1. Then, the global property G
can be shown to logically follow from (A, G1, and G2).

In theory these techniques may make tractable otherwise intractable model-checking
problems. However, in practice, both compositional and assume-guarantee reasoning
rely heavily upon a logical division of the larger model, as well as careful thought into
how the results of each lower-level model verification may be soundly combined, if at all.
While there is an active community of research into automatically generating or learning
assumptions, current research has not yet simplified the use of A-G reasoning sufficiently
to be regularly used in the context of safety critical systems for industry.

3.1.7	Symbolic	Model	Checking	
While explicit-state techniques are the archetype of software model checking, symbolic
model checking [21, 22], sometimes called implicit model checking, developed as an
alternative to address the state-space explosion problem. In symbolic model checking,
model-checkers manipulate representations of sets of states rather than individual states,
and perform the state-space search by the transformation of these symbolic
representations. Symbolic representations can be much more succinct than an explicit
enumeration of all states, and can represent an infinite state-space. Moreover, checking of
verification properties can often be done in polynomial time in the size of the BDD using
underlying constraint solvers.

One common representation technique employs Binary Decision Diagrams (BDDs), an
efficient means for representing and manipulating Boolean functions. BDDs are directed,
acyclic graph structures that compactly represent the truth table of a Boolean function.
BDDs may be a canonical form for representing a Boolean function given a fixed
ordering for the variables of the function, and BDDs may be efficiently combined by
Boolean operations into a new BDD. Moreover, transformation of the source model into
BDDs may be performed once, and subsequent multiple property checks may be
performed in constant time. However, building of the BDD becomes the bottleneck. It is
provably exponential both in terms of time required to build, as well as in the size of the
resulting BDD, both dependent on the number of variables to be represented, as well as
the ordering of the variables.

While the worst-case time and size issues of BDDs may be stumbling blocks, BDDs have
been key in scaling some model-checking problems, as well as representing infinite state
spaces. The canonical tool using BDDs for symbolic model checking is SMV.

3.1.8	Execution	Exploration	
As a special case of explicit-state verification, execution exploration uses the runtime
system of an executable to explore the state-space of the model. Java PathFinder is an
example in this category. In this case, the model is typically source code, virtual machine
byte code, or even (compiled) machine code. The execution environment is a specially

 12

built “runtime” for (a subset of) the source language, a modified virtual machine, or a
(modified) OS scheduler. In all cases, the non-determinism comes from two sources:
(user) inputs from the environment, and branch-points and scheduler context switches
from the code/model. In some cases the user inputs are held fixed (e.g. Verisoft [18]),
and only the scheduler choices need be considered. In others, the user/environmental
inputs may be considered symbolically (e.g. Java PathFinder [19, 20]), and a wider set of
possible execution paths may be considered.

One of the primary benefits of such an approach is that the semantics of the modeling
language are the semantics of the programming language itself; there is no translation
gap between the design and what is being executed in the form of code. Additionally,
when a counter-example is generated, a concrete execution demonstrating the failed
property (i.e. a bug) can be directly provided to the user. In some cases, the user may be
a developer of the code rather than a verification expert, thus bringing the power of
model checking to a wider audience.

However, because we are using the execution environment for state space exploration,
now the state of execution may necessarily include additional variables, such as machine
registers, the heap and stack, as well as other aspects of machine execution that can be
avoided when performing verification using a special purpose modeling language with
unique semantics.

Some tools (e.g. Verisoft) make a space-time tradeoff to avoid the overhead of storing
this additional state information by performing the execution in a stateless manner; that
is, they do not keep track of the set of visited states. Rather, each time a choice-point due
to branching or non-determinism is reached, a fixed scheduler is called to provide the
next value to be used to determine the path to be examined. Since the scheduler controls
all context switches, all non-determinism can be made deterministic in that the modified
scheduler can ensure that all possible choices are eventually explored. However, this can
come at the expense of re-executing the same path twice, thus taking more time in the
verification.

In contrast, Java PathFinder (JPF) stores visited states, which means it more closely
resembles an explicit-state model checker, and can take advantage of other reductionist-
based techniques to counter the state-space problem. Additionally adaptations built on
top of JPF allow one to perform symbolic execution to control the search to expand the
coverage, while others allow the driver to be specially crafted so that one may analyze
subsets of the code or code fragments.

In addition to Verisoft and Java PathFinder, other tools in this category include CMC,
MaceMC, and Chess. While the (modified) execution environment is usually considered
a sound implementation, except for the smallest of code samples, many tools of this
category are most often used in testing frameworks. Some tools in this category, JPF
included, include sufficient features to be used both for bug finding and verification.

 13

3.1.9	k-Induction	
Model checking by k-induction [23] seeks to establish that invariants or safety properties
hold for infinite transition systems. The idea is based upon the realization that all infinite
paths on finite state transition systems must eventually revisit a state (i.e., there is a loop).
If the model checker can establish that the property holds for each state along a k state
path and the k+1 state is already on the path, then the property will hold forever. Model
checkers using k-induction work by incrementing k until no further loop free k state paths
can be found. If the property holds for each loop free path of length k or less, then it is
guaranteed to hold forever. In this way, model checkers can prove safety for infinite
transition systems with a finite amount of search.

Like most other approaches to model checking, k-induction falls victim to the state
explosion problem, and can be incomplete. As k increases, there are more possible paths
of length k. If the model checker cannot increase k to the point where it identifies all
loop free paths, then it cannot establish the safety property for the system.

3.2 Typical Use Cases

The typical use case for model checking is to prove temporal properties about models of
system behavior. Most often applied to concurrent systems models, the properties of
interest frequently include detection of deadlocks, buffer overflows, data access or race
conditions, and termination or reachability properties. The input models are typically
refined from a higher-level design artifact, but can also be abstracted from lower-level
(implementation or) executable representation, and properties to be proven are usually
derived from the software system requirements.

All uses cases of model checking can be broken into two categories: invariant (“safety”)
and reachability (“liveness”) properties. These properties are typically represented via a
temporal logic expression. In addition to each model-checking tool having its own
unique language and semantics, the temporal logic specifications come in different
flavors as well. Most are based upon either Linear Temporal Logic (LTL) or
Computational Tree Logic (CTL), both of which have been shown to be a subset of
CTL*. LTL specifies properties of paths, CTL specifies properties that quantify over
paths, and CTL* combines the two. While there are some expressions that are not
representable in LTL but can be stated in CTL and vice-versa, in general LTL is easier
for less versed users to specify and understand. Regardless, most property specification
languages include the ability to specify propositional logical expressions augmented with
temporal operators including Globally/Always, Finally/Exists (eventually), Next-State,
Until, Weak-Until/Release. Some logics augment these with bounded-time operations,
probabilistic operators, or other operators.

	3.2.1	“Safety”	Properties	
Informally, safety properties prove that “nothing bad ever happens.” Concurrent systems
examples of safety properties include mutual exclusion (e.g., at most one process is
executing with a critical section), freedom from deadlocks (e.g., it is never the case that
all processes are waiting for each other to provide/release a resource), or a specified data-
state (e.g., it is never the case that the buffer is full, or the value of a variable is less than

 14

zero). All of these are invariants: they mean that in every state of the model, it should
always be the case that the property holds. Other forms of safety properties are not
invariants, and include causal or temporally causal relationships (e.g., the flow will
remain above “x” until the valve is closed).

Typically, model checkers require the property be specified in some form of temporal
logic. As stated earlier, most model checkers use a form of LTL or CTL to specify
properties. Simple example of LTL safety properties:

G (“x” >= 0) – it is always true that “x” remains positive.

G (~ s) – it never the case that we reach state “s”.

This temporal logic expressions are typically negated and merged with the model
specification, where reachability of the “property” state is sufficient to show that the
original property is violated, resulting in a direct counter example to the property.

	3.2.2	“Liveness”	Properties	
In contrast to safety properties, liveness properties require some progress, or reachability
of an (eventual) state, such as termination. Intuitively, they state that “something good”
will always, eventually happen in some future state of the model. Whereas safety
properties can be shown to be violated by finite traces (by a finite state counter-example),
liveness properties may be infinite. Eventual reachability is the standard example of a
liveness property (e.g.it is always the case that once a mutex is acquired, eventually it is
released), with execution termination reachability being a special case.

Other more troublesome liveness properties involve infinite or repeated executions (e.g.,
each process will acquire the mutex infinitely often) or fairness (e.g., eventually every
process will acquire the mutex). The difficulty with proving liveness properties with
model checkers comes when one is unable to reduce the (negation of) property
specification to (infinite) reachability of a ‘bad’ state from an initial state. However, in
practice some form of temporal logic can still represent most interesting liveness
properties, and is thereby used by the model checker to prove the property or to provide a
(infinite state, often recursive) counter example that shows the inability to make progress
or “reach” the desired state.

Two LTL-style properties that exemplify liveness properties include:

GF (t) – always we eventually terminate (reach state “t”).

G (x -> F y) – after reaching state “x”, we eventually reach state “y”.

3.3 Java PathFinder and Symbolic PathFinder

Before proceeding to potential sources of errors, we should briefly expand our earlier
description of our exemplar tool-set: Java PathFinder. Java PathFinder (JPF) is an
extensible framework for verification of Java bytecode. While JPF began as an explicit-
state model checker, it has evolved until it is now more of a framework within which

 15

multiple plug-ins exist to perform different forms of model-checking related analyses.
JPF-core is still an explicit-state model checker capable of automated detection of
deadlocks, data race conditions, and assertion violations (equivalent to safety properties).
The core also uses typical explicit-state scalability techniques including on-the-fly
exploration and partial order reductions. JPF has been extended to include a symbolic
execution plug-in, Symbolic PathFinder (SPF), that combines symbolic execution, model
checking and constraint solving to better handle dynamic inputs, loops, and recursion. In
addition, SPF has been used to generate test cases that can guarantee coverage of all
possible paths through the code relative to a set of (potentially symbolic) inputs. We
selected JPF as our exemplar because of the broad support for different model checking
techniques, independent of the JPF’s reliance on models written in Java. Even though
Java is not the language of choice for many safety-critical systems, the feature set of JPF
is broad enough to provide an overview of different model checking options.

Model checkers fall into a taxonomy that can be divided along several dimensions:

• System Model Type: JPF and many other model checkers implicitly represent the
model as a set of rules that can be applied to a system state to determine the next
state. Explicit state model checkers explicitly represent the model as a state
transition system. In comparison to explicit representations, implicit
representations require more reasoning to explore execution traces, but can be
more compact and easy to model. For example, JPF models are, arguably, easy to
create because they use a high-level programming language (Java) instead of a
explicit representation of each JVM state for a particular program. However, JPF
requires a JVM to generate the state transitions.

• Property Specification Type: Property specification types align with the major
languages, including linear temporal logic (LTL), and computation tree logic
(CTL). LTL encodes state sequence properties, and CTL encodes properties of
sets of state sequences. JPF natively supports a very simple LTL safety property
that no uncaught exception is thrown. However, JPF can be extended with
custom property listeners that will in principle support any LTL and CTL
properties. Another aspect of properties is whether they are over finite or infinite
state sequences. Many algorithms require finite properties, which can also
improve performance because the bound on the length of the state sequence limits
search. While JPF is not specifically limited to finite properties, its search uses a
depth limit and can only make completeness claims with respect to a finite
property.

• Model Checking Algorithm: Nearly all algorithms are search-based, but differ in
the format of their search space. Symbolic model checkers based upon SAT or
SMT typically search in the space of assignments to logical variables. BDD-
based model checkers perform breadth-first search in the space of symbolic states.
Explicit state and execution exploration model checkers (including JPF) search in
the space of states. SPF combines explicit state search with search over logical
variable assignments.

• Output Types: Most model checkers will state which properties are satisfied and
provide counter examples for violated properties. Model checkers vary in the

 16

depth of the reporting. Counter examples can range from a single raw trace to a
set of traces to a summarization of the traces as a regular expression or fault tree.
Local model checkers will report whether properties are satisfied for a single state
and global model checkers will report which of the states satisfy the property.
Model checkers can report just the output or explanations of how the algorithm or
parameters effect its soundness and completeness. They can also be anytime,
reporting counter-examples as they are found. JPF reports where properties are
violated in a program, along with stack traces (where applicable) and execution
traces. SPF creates unit tests and path conditions for the Java program that test
each path of execution.

3.4 Potential Sources of Errors and Errors of Interpretation

While model checking is typically slower but more precise than static analysis, the single
largest source of error in model checking are the model and properties themselves.
Regardless of the source of error, we can classify the types of errors into two camps:
False Negatives (real bugs in the model that are not reported) and False Positives
(reported bugs that do not actually exist). The latter are usually deemed somewhat
“acceptable” in that reporting of an error that does not exist encourages further
examination, often resulting in modification of the model or property to exclude false
behaviors. On the other hand, too many false positives and the tool may become useless.
In contrast, false negatives are the most important class of error in the use of a model
checker, in that they represent true errors in the model that are undetected and unreported.

Earlier in this text, we described potential sources of errors in the context of each type of
model checking technique. Below we briefly describe the most common sources of false
positives in model checking.

3.4.1	Modeling	Errors	
As stated earlier, the modeling language is often unique to the model checker, and these
languages have their own specification and semantics that are necessarily different from
machine-level specifications. Because the models are often written by hand, either
extracted from a lower-level representation (code) or higher-level (design) artifacts, one
may inadvertently exclude potential behaviors. The challenge is always to assure oneself
that the model being analyzed is a true and accurate representation of the desired system
behavior. However, since many analyses performed using model checkers are performed
on system design artifacts, the simplicity of the design relative to code is often sufficient
to render the models “correct by observation”. While JPF operates on Java bytecode, it is
still the case that the Java “model” under assessment is not usually the actual executable
code due to abstractions that must be made. Therefore it is subject to the same concerns
about “model” correctness. Model checking that is performed on the actual binary to be
executed can help avoid this error source. However, even then the model checker must
rely on a model of the underlying computational engine, which can itself be flawed.

3.4.2	Testing	Environment	
Closely related to errors of modeling, errors in the testing environment can result in false
negatives. Since the model itself may be a partial specification, it is often necessary to

 17

define a “test harness” or stubs for other behaviors. This is often required to provide
(partial) behavior for “code” that either does not exist in the model, or if it were included,
the model checker would be unable to complete exhaustive verification due to the
expanded state-space of the model. These stubs necessarily provide only partial
implementation of the true behavior of the eventual system. Therefore it may be possible
that not all paths through the model being analyzed are properly checked, again leading
to false negatives. In JPF, stubbed behaviors are often used in place of calls to system
and library functions. This is also a major challenge for SPF because it must somehow
represent the stubbed behavior as constraints (whereas the constraints needed to express
executed byte-code are already defined by SPF’s encoding of the byte code instruction
semantics).

3.4.3	Property	Specification	Errors	
While the modeling languages for most model checkers are usually fairly similar to other
programming languages, property specifications are much more complex, especially for
the naïve user of a model checker. Both LTL and CTL, common languages for property
specifications, require a great deal of care to ensure that properties written are both a
correct representation of the requirement being checked and not trivially true given the
model being analyzed. A very common error in use of temporal logic is to mistake logical
implication with causal implication; i.e. the propositional implies (à) is not a temporal
operator. Consider the simple p à q expression, which is logically equivalent to (~ p ||
q), which can be satisfied simply by never “reaching” state p. Clearly, this is unlikely to
be the intended behavior, and could lead to the tool reporting no errors when in fact one
may exist. Commonly used formalisms for temporal logic often challenge the human
analyst’s intuition, which can adversely impact the validity of verification efforts.

Many tools have default or “basic” properties pre-encoded (e.g. deadlock detection), and
others, JPF included, allow one to directly represent some classes of safety properties
directly into the model by means of much more intuitive assertion statements. However,
these can be insufficient to fully capture all potential behaviors of interest, so we must
still rely on more complicated temporal logic languages.

Finally, it is up to the user of the model checker to assure they have a comprehensive set
of requirements and that they have been faithfully represented in property specifications.
Failure to do so will again result in false-negatives and likely a false sense of correctness
of the model.

3.4.4	Incomplete	Results	and	Tool	Configuration	Errors	
While not strictly a case of false negatives, it is often the case that insufficient resources
are provided to the model checker to fully analyze the model. It may be impossible to
provide sufficient time or memory to exhaustively explore the entire space of the model.
In other cases, configuration of the tool may allow one to place arbitrary bounds on the
analysis (e.g., maximum search depth), or enable unsound abstractions (e.g., bitstate
hashing). For instance, JPF includes bounds on its search depth and program stack size.
SPF also requires bounds on each numeric program variable because it encodes and
solves the program path constraints with an SMT solver. In general, SPF is often limited
by the capabilities of its SMT solver. While most tools will often report when results are

 18

incomplete or unsound analysis options have been enabled, the potential lack of error
reports (false negatives) can lead to an incorrect belief that the model is correct.

3.4.5	Sub-Solver	Limitations	
Many model checkers use specialized sub-solvers as subroutines in their model checking
algorithms. It is frequently the case that the sub-solvers have limitations. For example,
as previously noted, SPF uses an SMT solver as part of symbolic execution. Depending
on the specific SMT solver, SPF is not capable of reasoning about non-linear branch
conditions, some string operations, or complex data types (e.g., trees, heaps, or queues).
When the sub-solver cannot deal with the full complexity of the model, common
approaches will either abstract or ignore these aspects the model. In other cases, the
model checker might use a more capable, but incomplete or unsound sub-solver and thus
inherit incompleteness and unsoundness.

3.5 Downstream Impacts

As described above, model checking is often an exercise in analysis of design-level
artifacts. Numerous studies have shown that errors found and corrected at design time
result in many fewer bugs and less rework when it comes to implementation.
Unfortunately, model checking is not a silver bullet in this regard as the model and
properties are as subject to “bugs” as the eventual implementation. Automated model
extraction or using a model checker that operates on a low-level implementation can
reduce the risk of errors in modeling. Similarly, providing pre-defined properties or tools
that assist the analyst in specifying (temporal) properties can reduce that source of errors
as well. Finally, overcoming the state-space problem via abstractions and test harnesses
is a common source of errors.

Secondarily, the choice of model checker tool and which features to enable in the tool are
highly contextual to the analysis to be performed. The old adage, “a fool with a tool is
still a fool” is no less apt in this regard. Misinterpretation of the lack of an error report
(false negative) with a misconfigured tool is common.

While modeling and property specifications are somewhat challenging, model checking
is still one of the best automated techniques for finding errors, especially those involving
concurrency and inter-process communications.

4. Soundness Issues for Static Analysis

4.1 Static Analysis

The term static analysis is often used to classify analyzers in contrast to dynamic
analysis. Informally, dynamic analyzers examine the runtime behavior of a program as it
is executing (typically with instrumentation). Statics analyzers, it is said, don’t execute
the program, but rather infer properties of interest from the syntactic form of the program
alone. This is perhaps not the best choice of terms because some static analyzers, e.g.,

 19

model checkers and abstract interpreters, achieve their results by symbolic execution or
interpretation. For these tools, it is not a static/dynamic distinction (execute/don’t
execute), but an abstract/concrete distinction in how the execution is performed. A more
inclusive criterion for static analyzers would be that they analyze programs in the absence
of actual inputs. Such analyzers necessarily must consider all execution paths.

The vast majority of static analysis tools do not claim to be sound, because their analyses
are based on recognition of syntactic patterns in the program that are correlated with
errors. This is somewhat like statistical studies in science that find significant correlations
between two classes of events. The correlation doesn’t establish that either event is the
cause of the other, only that they are likely to co-occur. One class of events can be seen
as a “risk factor” for the other. And because the underlying mechanism of cause is not
known, diagnoses based on these factors can be expected to yield some incorrect results.
This is not a flaw in the technique; it is level of precision that is known not to be
obtainable. These can still be useful diagnoses, on average, depending on the strength of
the correlation, even though the method is known not to be sound.

Formal methods analyzers, by contract, usually base their conclusions on the formal
semantics of a program – a rigorous theory of the underlying causes – and reach their
conclusions using some form of formal proof over these semantics. This is where the
confidence for a claim of soundness originates. There is, in general, no practical
ambiguity in the expectation of soundness. The authors of the tools know whether or not
they have a formal basis for a soundness claim. Mistakes can be made in implementation,
but no one supposes a tool might be sound without some upstream proof of this. There is
no such thing as lucky.

We will be concerned with static analyzers in this last category, the ones with a credible
claim of soundness. Sound analyzers are of particular value to developers of safety
critical systems because they can definitively establish that some event will or will not
occur under any possible execution of the system. If evaluators could truly rely on this
soundness, they would not bother testing for these events. It would be unnecessary,
redundant. But because theoretically sound analyzers are fallibly implemented by
humans, and play only point roles in an otherwise unsound lifecycle of development and
verification, this report examines issues that evaluators should be aware of in the practical
application of these tools, even if we grant their theoretically soundness.

4.2 Abstract Interpretation

Perhaps the best-known category of sound static analysis is abstract interpretation. The
theory was originally developed by Patrick and Radia Cousot in the 1970s [4]. This
method attempts to get around the infeasibility of proving properties over all possible
(potentially infinite) executions of a program by finding a suitably abstract, over-
approximation of all program behaviors (that is feasible to compute) over which the
property also holds. Since the over-approximation of behaviors contains all actual
behaviors as a subset, the proof extends to all actual behaviors.

 20

The over-approximation is necessarily imprecise, so for some abstract results, a property
that holds for all actual behaviors may not hold for the over-approximation. There is
typically a trade-off between precision and computing resources. More precision (better
chance of containing proofs) requires more resources. The trick is to find an abstraction
precise enough for a proof that it is still feasible to compute.

Instead of using actual input values, the method interprets the program over sets of its
possible input values. Abstract data value domains are used to constrain the possible
values in these sets. So a program that takes integers as inputs, for examples, might be
interpreted over the domain of integer intervals instead. Each instruction in the program
that operates on integers will be abstracted to one that operates on intervals. A subtraction
instruction (A := B – C), for instance, would yield A = [-4,4] if B = [1,7] and C = [3,5].
The interpreter walks the braches in the program’s control flow graph breadth-first,
propagating all data flows in parallel. Predicates on conditional branches narrow the
population of the abstract data sets by constraining the possible values that flow through
to their true and false branches. Cross edges and back edges that join multiple paths
widen these abstract sets by forming the union of sets of the incoming branches. Loops
must be iterated to a fixpoint, which typically widens the sets due to back edges.

The aim is to use an abstract domain that is precise enough to prove the property of
interest. After the interpretation is finished, each <variable, location> pair of interest will
have an abstract invariant expressing an over-approximation of the actual values at that
point (for all executions). If the goal is to prove that an array reference can never be out
of bounds, for instance, we will attempt to prove that the interval invariant on the index
variable is contained within the declared upper and lower bounds of the array. It doesn’t
matter that the invariant may contain values that will never occur, as long as they are all
contained within the bounds.

4.3 CodeHawk Technology

We will be using Kestrel Technology’s CodeHawk abstract interpretation technology as
our reference model for this study. At present, CodeHawk is a technology, not a
particular tool. The core of the technology consists of a number of abstract domains and
iterators that can be plugged into a graph propagation engine. It operates on an abstract
program defined in CHIF, a customizable intermediate representation of typical
imperative programming language operators. The general technology has a modular
architecture that is designed to be specialized to a particular concrete programming
language, a particular set of conjectures to be proved, and a set of domains over which to
attempt the proofs. It becomes a particular tool by adding a front-end translator from a
concrete programming language into CHIF, a specialized translator for embedding the
conjectures to be proved into the CHIF translation, and the selection of domains and
interpretation strategies.

Kestrel currently has front-ends for C, Java, and x86 binary. We have built several
specializations of these language-specific analyzers to solve problems in formal methods
research contracts. It may take some initial experimentation to find the best mix of
precision and computing resources to solve a particular problem. For example, we

 21

typically start with very coarse-grained domains such as arithmetic intervals, which are
inexpensive to compute, to see how many of the proof obligations can be discharged at
low cost. If these are too imprecise to discharge some proofs of interest, we move up to
more expensive, precise domains. Sometimes very computationally expensive domains
that are not feasible to be run on the entire program can be brought to bear on just the
specific parts of the program that require more precision.

4.4 Typical Use Cases

The generic use case for abstract interpretation is to prove a conjecture about whether a
module of software will never, will always, or may execute some behavior of interest.
This can be a conjecture about behavior or intermediate data values at specific program
locations, or about all possible locations. The typical use cases for CodeHawk, so far,
have revolved around verifying cyber security properties of software.

4.4.1	Memory	Safety	
Our most substantial use case for the C version of CodeHawk, so far, has been a DHS
project for proving the memory safety of C applications. This was a comprehensive study
covering every location in the software at which an undefined memory access is possible
according to the C language standard. Undefined memory access covers all of the
categories of overflow, underflow, array bounds, null pointers, undefined pointers, string
buffer overlaps – for reading and writing. Since the C compiler cannot guarantee such
accesses will not occur for certain types of references, C programs with such exposures
are potentially vulnerable to exploitation and attack.

Abstract interpretation is used, in the first instance, to attempt to prove that a program has
no such vulnerabilities, by attempting to prove that the computed abstract invariants on
data values, at every reference in the program, satisfy all declared bounds and
initialization preconditions. Using computationally efficient, yet reasonably precise
domains, it is typically possible to automatically prove around 80% of these conjectures –
i.e., the computed over-approximation is proved safe, so the actual values must be as
well. In a large portion of the remaining cases, the unsafe ranges in the over-
approximation are not contained in the subset of actual behaviors, but the approximation
is too imprecise to determine this. By adding lemmas, and using more precise domains
selectively, a human analyst can usually prove that the remaining 20% of references are
definitely safe or definitely vulnerable.

Because of the human requirement, the cost of proving this last 20% is relatively high.
The goal of the DHS project, called Gold Standard, was to create an objective benchmark
against which to score arbitrary C static analyzers by performing this exhaustive, human
assisted analysis on 6 large, open source C applications that represent a cross-section of
styles, features, and architectures. Since these 6 exhaustive analyses would contain no
false positives and no false negatives, other analyzers could be objectively scored by
comparing their results on the 6 applications against the standard results, for both
soundness and completeness.

 22

Proving memory safety in C programs is a perhaps the most typical use case for all C
abstract interpreters. The Gold Standard project illustrates two variations on this theme:
automatically proving safety conjectures, at low cost, for large portions of many
programs (a large gain in coverage and confidence over other verification methods); and
exhaustively proving these conjectures, at great expense, over a few programs (achieving
soundness and completeness for a reference standard).

4.4.2	Value	Flow	
A use case for the Java version of CodeHawk is illustrated by its role in the DARPA
Stone Soup program. In this case, it was paired with a dynamic analyzer for finding and
fixing exposures in Java programs to SQL injection attacks. The ‘taint’ domain was used
to exhaustively trace the dataflow from external sources (sources of possibly tainted, or
malicious, SQL strings) to internal SQL calls. Such call locations whose abstract input
invariants include the taint value need to be remediated by editing or type checking
guards to ensure that SQL will not be called with pernicious strings.

In this case, the taint domain represents any binary domain (taint, no-taint; A, not A), so
the abstract interpreter is just exploiting its breadth first propagation of values, rather than
its abstract computation of derived abstract values (as would be the case with numeric
intervals, for instance). Taint never narrows to no-taint. The only abstract value
derivation is widening no-taint to taint upon convergence of at least one tainted path.

4.4.3	Binary	Analysis	
Use cases for the binary (x86) version of CodeHawk are interestingly different than those
for higher-level languages. In 3GLs, like C and Java, variables are defined and referenced
symbolically, as are program locations that are the targets of control flow constructs
(such as do and goto). This allows the compilers for these languages to restrict
programmer access to the actual binary addresses of the resulting machine-language
program (for reading, writing and branching). The compiler provides a reasonable
guarantee that the translated binary-level accesses will conform to the symbolic
declarations of the input program. For this reason, the front-ends that translate 3GL
programs into CodeHawk’s abstract CHIF form can rely on the symbolic indirection of
the programming language semantics to produce an equivalent abstract program (modulo
abstraction). A reasonably well-defined concrete program is translated into an
equivalently well-defined abstract one.

In the case of binary programs, all bets are off. Variables and non-contiguous control
transfers may have been implemented or changed by programmers, even if first compiled.
The CHIF front-end must first discover variables and branch targets and distinguish
between bytes that implement instructions vs. data vs. padding. For this reason, the first,
essential use case for binary abstract interpretation is reverse engineering – discovering
the semblance of a concrete program with stack and heap variables in addition to the
registers, that can be turned into an abstract one. So the CHIF translation process itself is
an iterated series of abstract interpretations that progressively discover the location
addresses of variables and branch targets, by propagating address and offset constants
through the known variables and targets from the previous iteration. When this process

 23

converges, we are in a position to do something like the memory vulnerability analyses of
the higher-level languages.

An important caveat, however, is that proof is almost always unattainable. This is
because we are rarely in a position where all data and control addresses have been
resolved to constant locations. If the resulting CHIF program has just one unknown read,
write or transfer target remaining, this could possibly be any location in the program (or
out of the program). So we are always dealing with an approximation of a program rather
than an actual one. For this to be a safe approximation, we would have to assume the
worst case (that these unknown targets could be all possible addresses), which would
make all of the computed abstract invariants too coarse-grained to be useful. To get
meaningful vulnerability results, we have to make unprovable assumptions, so this use of
the abstract interpreter cannot be sound.

4.4.4	Range	Bounds	for	Digital	Filters	
A use case of CodeHawk that is directly relevant to the aerospace domain is its role in a
AFRL project to verify the output range bounds of digital filters. A specialized version of
the C CodeHawk analyzer has been implemented to analyze C functions implementing
such filters, given some additional constraints about the filter implementation and
intended numerical constraints on its inputs. These input assumptions, and the C filter
code, are generated from formal models of the filters by Honeywell’s HiLiTE tools. A
custom integration pathway allows these input constraints, and desired conjectures from
the model about the filter’s output ranges, to be piped directly into CodeHawk. A new
domain of reals specialized to their floating point implementations has been added to
CodeHawk so that floating-point rounding effects can be accounted for in the analysis.
CodeHawk then computes abstract invariants over the output values and attempts to
prove the output range conjectures.

This is a typical case where the generic CodeHawk technology is specialized to a
particular analysis problem, but represents an atypical implementation. Usually, the
conjectures to be proven, the abstract domains and iteration strategies to be used, and any
custom assertions about the input programs are hard coded into a new CodeHawk front-
end by Kestrel. In this case, we parameterized a more generic front-end to take custom
constraints and conjectures from Honeywell in a special language for the filter domain,
implemented as a JSON input file.

4.5 Potential Sources of Errors under Use Cases

With the exception of the reverse engineering of binaries use case, CodeHawk performs a
(theoretically) sound analysis, which means we expect no errors in the reported results.
But since each use case specializes the CodeHawk framework to a specific analysis
problem, tool users are not always aware of the assumptions and boundaries of the
specific analysis. This can lead to erroneous assumptions and expectations about the
results.

 24

4.5.1	Memory	Safety	
In the memory safety use case for C programs, all program locations involving memory
access are subjected to a proof of memory safety using the computed (abstract) invariants
at each location. Because the analysis is sound, all locations proved safe, are safe. The
remaining locations, however, are not necessarily unsafe. Many of them may be safe as
well. They just cannot be proven to be safe with the precision of the abstract domains
used for analysis. If this unproven class of locations is large, it can create the erroneous
expectation that the analyzed program has lots of bugs that must be fixed. This can lead
to a lot of unproductive human attention. Such a large class may be due to usage by the
program of characteristics that require more precise domains. A more productive
approach might be to focus the analyzer on just the remaining cases using a more
expensive, precise domain. The unproven locations are not incorrect results; they are
simply unknowns, reflecting the incompleteness of the analyzer with respect to safety.

From the converse perspective, the analyzer will be complete with respect to unsafe
locations (all unsafe locations are included in the set of unproven locations). A user of the
analyzer can rely on its soundness to exclude all the safe locations from further scrutiny
for safe memory access. But failure to appreciate how the class of safe memory access is
related to all possible classes of program errors can lead to overconfidence in the results –
assuming that no errors (of any kind) remain in the safe memory locations.

4.5.2	Value	Flow	
In this use case, the abstract interpreter has been paired with a separate, dynamic analysis
tool to identify and remediate all vulnerabilities to SQL injection attacks in a program.
The dynamic analyzer determines the possible sources and sinks for such attacks within
the program. The abstract interpreter statically computes the flow of taint from source
locations to sink locations. The dynamic tool then remediates the sink locations that may
receive tainted data flow. The soundness of the abstract interpretation analysis does not
carry over to the dynamic analyzer, so the original source and sink candidates may
possibly have been over-estimated or under-estimated. Under-estimation will result in not
all vulnerabilities being fixed. Over-estimation will lead to some non-vulnerable
locations being fixed. The abstract interpreter can also contribute to the over-estimation
problem because the taint domain is essentially Boolean (tainted, not-tainted). Widening
at joining branched in the control graph will always take the union of the abstract values
on its incoming branches. So taint and no-taint widen to taint. This safe approximation is
always vulnerable to worst-case results.

4.5.3	Binary	Analysis	
In the analysis of binary programs use case, there is always an exposure to unsound
results due to the front-end translation of the binary program. Sound analysis is
predicated on a well-defined input program, but an initial disassembly of a binary
program can only approximate these semantics. Even in well behaved programs, a given
binary machine word can be interpreted as either data or an instruction. A first
approximation of this difference must be used to refine subsequent interpretations. So the
abstract interpretation may ultimately be carried out over an abstract program that does
not fully correspond to the input program.

 25

4.5.4	Range	Bounds	for	Digital	Filters	
The specialized CodeHawk analyzer for digital filters is an atypical use case in that it
uses assumptions from an external formal tool (Honeywell’s HiLiTE) as an essential part
of the abstract interpretation process. Filters are a class of numerical algorithms for which
the normal widening process of abstract interpretation is not particularly useful. Generic,
conservative bounds used in widening will generally yield bounds on the filter’s output
that are much wider than known analytic results that can be derived mathematically from
the formal specification of the filter’s class (the recurrence relation and coefficients).
Accordingly, the analysis is specialized to particular classes of filters, and exploits the
known analytic results for the class during the widening and convergence process.

A sound analysis, in this case, is thus predicated on correct information being supplied
from the outside. The collection of filter class characteristics are provided only once, and
become part of the implementation when the analyzer is built, so these are generally well
vetted. At runtime, however, the call to analyze a particular filter instance will be
accompanied by instance-specific filter parameters (including its algorithmic class) and
presumed bounds on the inputs to the filter. CodeHawk will assume these values to be
true, and the correctness of the computed (abstract) output bounds on the filter will be
conditional on this correctness assumption. Since, in this particular use case, the input
bounds and parameters are automatically generated by the upstream HiLiTE tool, the
chance of these being incorrect is acceptably low.

A more pervasive source of error in the abstract interpretation of numerical algorithms
comes from the analyses typically being performed over the mathematically ideal
domains of real or rational numbers. The C code that implements the algorithms will be
employing floating-point numbers, which will have the capacity for precision and round-
off errors not present in the reals. So analytic results computed over the reals may not
always hold for their corresponding floats. To cover this possibility, this particular project
also does an abstract interpretation of the filters over an abstract domain of floating-point
intervals. The computed bounds from the real analysis are then compared to those for the
floating-point analysis to expose possible error bounds.

4.6 Implementation and Interpretation Issues

4.6.1	Interpretation	
As we have described above, CodeHawk is an abstract interpretation technology rather
than a specific analysis tool. The core technology is agnostic about the language of the
programs it analyzes and the sorts of conjectures one attempts to prove. It accepts an
abstract program, and computes abstract invariants over variables at every program
location requested. To use this technology to prove particular program properties, the
technology must have a front-end translator to parse the program’s language and abstract
relevant executable statements into CodeHawk’s internal operations (CHIF) that expose
the variables of the conjectured property, a specification of iterators and domains to be
used, and a back-end module that attempts to prove the conjectured property using the
computed invariants. The soundness of the over-approximation of the variables’
invariants that abstract interpretation provides is separate from the soundness of the front-
end translator and the back-end prover.

 26

Parts of the front and back ends can be implemented once and reused -- for instance, the
parser for each programming language, and the general-purpose proof procedures. These
modules can contain errors, but because they implement known, standard algorithms, and
are used (and thus tested) many times, confidence in their soundness is high. But other
portions of these surrounding modules are custom-written for each analysis problem.
These are the portions that interpret the parsed input program to choose the parts that are
relevant for abstract interpretation and set up the properties to be proved. The soundness
of these interpretations is a function of the skill of the analyst who programs the
particular analysis. Flaws in this interpretation, e.g. incorrect assumptions about
operational language semantics, omitting portions of the program that bear on the
invariants, incorrect design of custom abstract operations, can produce an incorrect result,
even if the implementation of the more permanent portions of the analyzer are sound.

4.6.2	Implementation	
A CodeHawk-derived analyzer, like any computer program, is originally written by
humans, and thus subject to the standard exposure to implementation errors – either
errors that cause it produce incorrect results, or errors that cause the analyzer to
abnormally terminate or fail. Its exposure to such implementation errors, however, is
minimized by several characteristics. CodeHawk is written in Ocaml, a very high level,
strongly typed, functional language that minimizes the conceptual distance between
algorithm specification and executable code. The central abstract interpretation engine,
and the permanent parts of the front and back ends, are implemented according to well-
known algorithms from the literature. These algorithms generally have their own proofs
of correctness, so the remaining exposure is to flaws in their representation as Ocaml
programs.

The literature on abstract interpretation, in particular, is very formal, and has been vetted
over several decades by the research community. Its fundamental algorithm is to interpret
a program over an abstract domain of variables that is precise enough to prove
conjectures of interest (such as numeric intervals, or linear equalities). The concrete
program is projected onto an abstract program that preserves only the operations on
variables that affect the conjecture, and translates them to operations on corresponding
abstract values from the abstract domain. Abstract values are then iteratively propagated
over all paths in the flow graph until a fixpoint is reached. Paths that pass through branch
predicates and computations narrow the set of values that variables can hold by adopting
the constraints implied by the predicates and computations. Paths that converge to a
common point widen the set of possible values by taking the union of the sets on each of
the convergent branches. The sets of values for variables that remain at each program
location after propagation reaches a fixpoint represent invariants on the variables at those
locations – each set contains all actual values that a variable could possibly have on all
paths reaching that point. These sets will usually be supersets of the actual values,
representing safe, over-approximations of those values. The precision of the over-
approximation varies with the precision of the abstract domain, and the precision of the
abstract domain varies inversely with the cost to compute it.

As with the exposure to interpretation errors in the writing of the non-permanent parts of
a complete analyzer detailed above, these non-permanent parts are also more exposed to

 27

implementation errors, both because they are custom designed (not following published
algorithms), and because they get less exposure to use and testing due to their ad hoc
nature.

4.7 Downstream Error Impact

Internal implementation errors that may cause abstract interpreters, such as CodeHawk,
to fail at runtime, or to fail to terminate at runtime, have no specific effects on other tools
downstream in the software lifecycle. In these cases, there is no analysis result produced.
So there is no result about which to be wrong. The situation is the same as if the tool had
not been run at all. Internal implementation errors that may compromise the abstract
interpreter’s soundness, however, can be expected to have a downstream impact. One
runs an abstract interpreter to prove that a program has certain properties, or the absence
of certain properties. The claim of soundness can lead tool users to place extraordinary
trust in the results, and thus more likely to omit other downstream verification steps that
would be theoretically redundant.

Perhaps the greatest downstream exposure to soundness errors is faced by testing. It
would be rare (and unwise) to find an organization so trusting of soundness claims that
they forego testing of safety-critical software after a favorable analysis result. If the
analyzer were sound, then a later test for the same property just proved would be
redundant. But the defeasible nature of tool implementations should qualify this
confidence. An organization may, however, perform less testing of non safety-critical
software, or allocate limited testing resources to other properties and programs, in the
wake of a favorable upstream result from abstract interpretation. These are reasonable,
practical choices that nevertheless expose an organization to the possibility of
unsoundness.

Another downstream exposure to unsound abstract interpretation can result from
removing runtime checking code from a performance-sensitive application because such
checks are deemed unnecessary. Code that checks every reference to an array index, for
example, to ensure that the index is within the declared bounds of the array may add an
unacceptable performance degradation to an application. The runtime checks may be
used during development and testing to catch possible out-of-bounds references when the
performance overhead is not relevant. But a result from an unsound abstract interpreter
that “proves” every index reference to be within the declared bounds may be used as
justification for removing the runtime checks from the production code.

A different kind of downstream error impact can result not from analyzer errors per se,
but from an abstraction gap between real (or rational) numbers and their implementation
as floating-point numbers. Abstract interpretation is often performed on real or rational
numbered domains that effectively have infinite precision. Computer approximations of
reals and rationals as floating-point numbers necessarily have a machine-word imposed,
finite precision, and thus will eventually produce round-off errors when this precision is
exceeded. So the abstract interpretation may be sound, producing an error-free result over
the reals/rationals that does not carryover to the floats. In certain cases, the production
application may accumulate these undiagnosed round-off errors in such a way that affects

 28

the application’s function. When this is a possibility, either downstream testers need to
stress-test for critical round-off error accumulation, or the abstract interpreter must
perform an analysis using an abstract floating-point domain which is sensitive to the
round-off error.

Because it deals in over-approximations, upstream use of abstract interpretation can lead
to downstream interpretation errors, even though the upstream analysis is sound. If the
abstract interpretation is overly coarse-grained, catching many acceptable program
behaviors in its safe approximation, unnecessary testing and code reviews may be
deemed necessary downstream to probe this over-exposure. With a customizable abstract
interpretation technology, such as CodeHawk, where an analysis can be run on different
combinations of abstract domains, it is usually advisable to revisit what appear to be too
large over-approximations using more precise domains. There is always a trade-off, of
course, between the precision of the domains and the performance of the analyzer, so an
organization needs to tailor the computationally expensive runs to the (parts of)
applications where there is more safety risk for runtime errors. A good general strategy is
to do an initial analysis of all applications with coarse-grained, inexpensive domains, then
re-analyze those with large over-approximations, or exceptional safety risks, with more
expensive domains.

4.8 Characterization of Input and Output Interpretations

As noted above, CodeHawk is an abstract interpretation technology rather than a
particular tool. It becomes a specific tool when specialized to a language, a set of
conjectures to be proved, and a set of abstract domains over which to perform the
analysis. To date, it has been used exclusively in research contracts, which determine the
languages, conjectures and domains of interest. Because of this, it does not have standard
inputs and outputs at the analyst level and has, as yet, no end-user documentation. To
provide an example characterization of its possible input and output interpretations in this
section, we will reference a series of questions that have been posed about these
interpretations in a recent project to productize the C memory-safety analyzer from the
DHS Gold Standard project.

When CodeHawk uses library function templates as input, what is implied by the use of
these templates (why not just provide the source code?)

A typical C application references many library functions, both from system libraries
used by the compiler/linker system, and from user or open source libraries. The C source
for these functions is typically not part of the application, and the functions are linked in
from their pre-compiled, binary form. Some of these library functions may have been
compiled or assembled from languages other than C. To follow the dataflow through the
entire application, CodeHawk needs some sort of characterization of the semantics of
these library functions. If C source code for all of the library functions were available
(unlikely), there would be no need to distinguish between them and the normal
application functions. But beside the fact that the sources typically aren’t available (or not
in C), there is an advantage in treating library functions differently. Such functions,
typically from the system libraries (such as strcmp), are known to have well-tested,

 29

stable implementations. They typically have some form of semi-formal documentation,
defining the preconditions that the functions expect when called, and the post conditions
that will hold on return from the call (if the preconditions are true at entry). These
conditions could, in principle, be discovered by pre-analyzing the source code with
CodeHawk, but often the conditions provided by the compiler developers are
significantly stronger than what CodeHawk could easily infer with generic domains. So
the CodeHawk strategy is to use formal “summaries” of these functions, pre-written by
the CodeHawk developers from the formal documentation, as black-box analyses
available at their application call sites. If the formal preconditions to such a library
function can be satisfied by CodeHawk’s computed abstract invariants on the C code at
function entry, the formal post conditions can be assumed true at function return. From
CodeHawk’s point of view, these function calls are treated as single instructions (such as
assignments) whose dataflow semantics are predefined by the language standard.

When CodeHawk indicates there are N verification conditions in a function, what does
that mean?

The verification conditions are formal proof obligations (conjectures needing to be
proved) that CodeHawk inserts at various places in the code to establish that the
properties of interest hold. The number and placement of these depends on what
CodeHawk is attempting to prove. In the case of C memory safety, the conditions
represent conjectures that must be true for safe memory access that cannot be guaranteed
by the C language standard at compile time. Every instruction in the C program being
analyzed is vetted at translation time by CodeHawk for memory safety. Those that are
guaranteed safe by the C syntax alone, either because they use an inherently safe access
method that can be enforced by the compiler, or because they don’t access memory at all,
need no conditions. All others accrue the additional conditions that must be true for their
memory access to be safe. After CodeHawk computes the abstract invariants at every
location, these will be used to attempt to discharge the remaining proof obligations.

How can the analyst determine what properties CH examined for a particular output
report?

This depends, of course, on the particular tool specialization. The Gold Standard analyzer
is looking to prove the safety of every memory reference. The meaning of this generic
“memory safety” property is given by the C language standard itself, and represents
approximately 37 CWEs in the MITRE Common Weakness Enumeration taxonomy. So
in this case, the final guarantee of memory safety comes from both the proof obligations
successfully discharged during analysis, and from the front-end translator’s formal
interpretation of the C language standard.

What does the buffer underflow result status=‘safe’ [|’error’|’warning’] imply?

‘safe’ implies either that the compiler can guarantee, or CodeHawk was able to prove,
that the buffer operation cannot access an address below the buffer’s lower bound. ‘error’
implies that at least one execution path in the program can access below the lower bound.
‘warning’ implies that the compiler cannot guarantee, and CodeHawk cannot prove, that

 30

the buffer won’t be accessed below the lower bound. There may be no actual execution
path that accesses memory below the bound, but the abstract domains used for analysis
were not precise enough for CodeHawk to prove this. The over-approximation of the
access range includes addresses below the bound.

How can we associate an output product with the input set that generated that product?

In the case of Gold Standard CodeHawk, the output product is always an assessment of
memory safety for the entire call graph rooted in some function. Typically this is the
main function, in which case the call graph encompasses the entire application. The unit
of input is essentially a C compilation unit, and libraries will be searched to find all of the
referenced modules by the same processed used to build (compile and link) the
application. Individual assessments of memory safety in the output will reference
corresponding line numbers from the input source files.

When CH reports an error on a particular line, how can we back out the evidence for the
proof?

The evidence for a proof, or a failed proof, is not generally visible to the end user. Proof
obligations are generated at the front-end according to what cannot be guaranteed by the
C language standard. The general strategy for this generation is documented in a formal
paper, by the CodeHawk developers, that describes the method. The abstract invariants
used to prove (or that failed to prove) a given memory safety conjecture can be viewed by
line number in some implementation of CodeHawk.

What proof method does the tool use?

CodeHawk uses general purpose, first-order logic methods to discharge proof obligations.
These generally involve the simplification of expressions. The proof methods are local to
CodeHawk and are neither complete, nor as strong as one might obtain from a dedicated
theorem prover. So a memory safety proof may fail either because the computed
invariants aren’t sufficiently precise, or because the proof method is too weak.

Which analysis domain?

Gold Standard CodeHawk uses the intervals, value-sets, and linear equalities domains by
default.

Is that the only possible evidence?

No, it is the default evidence that is easy to automate. In the Gold Standard project, these
default methods were able to discharge as much as 80% of the proof obligations
automatically. Discharging the remaining 20% required human intervention by adding in
safe preconditions for functions and data structure invariants.

What are the limitations and assumptions behind the analysis domain (e.g. does the
implementation of the polygon domain have any limitations?)

 31

Abstract domains have two forms of limitations. The primary one is precision. The more
coarse-grained a domain (more imprecise), the fewer computing resources it takes to
compute it. The intervals and value-set domains are relatively inexpensive to compute,
and are useful in assessing memory access bounds. Linear equalities can capture
(equality) relations between variables, which can support more bounds proofs. Linear
inequalities can prove more precise relations, but are relatively expensive (in memory
size) to use in the default case. In general, as the precision of relational domains
increases, the memory requirements become exponential. The other limitation of abstract
domains is a “theory vs practice” one. By default, real and rational numbers are used.
These have infinite arithmetic precision, which may not precisely model the actual
imprecision of their machine-limited, floating-point implementations.

When the CH run log reports errors or warnings occurred during the analysis (e.g. it
reports an unknown library function), does this affect the trustworthiness of the results?

CodeHawk analysis is sound. What it proves -- memory safety in the case of the Gold
Strandard-derived CodeHawk – is correct. The warnings relate to instances where it is
unable to prove things. For instance, the presence of an unknown library function means
that CodeHawk was not able to follow the data flow through this function. This will
typically result in a widening of the return values to some safe approximation of what is
known. This makes the final invariants more imprecise. This may make it impossible to
prove the safety of some actually safe operation. But it will never lead to a proof that an
unsafe operation is safe.

Some selected samples of input and output forms from this version of CodeHawk are
presented below in Appendix A.

5. Soundness Issues for Intermediate Representations

5.1 What are Intermediate Representations?

A tool is used within the context of a system development to automate verification
objectives as per the guidance provided in DO-178C. Figure 1 illustrates a typical system
development process that starts with system requirements, generates intermediate
development artifacts including software high-level requirements low-level requirements
(e.g., design models), to finally produce executable object code that runs on the target
processors in the airborne system.

The verification objectives typically include the following types of verification:

• system development artifacts are complete, consistent, and accurate
• successive development artifacts comply with previous ones
• there is absence of anomalous behavior

Tools are used in the verification process to automate parts of verification activities. The
intermediate representations are models and other representations (tool inputs/outputs,
configuration) derived/created from the development artifacts, as required by the tool.

 32

The DO-333 soundness criteria apply to all interactions of intermediate results and
abstract models among a chain of integrated tools including inputs/outputs interactions
with human analysts and interpretation of results. This implies that sound (conservative)
abstractions must be employed in the underlying notations of these representations with
respect to the property being proven by the tool – one never permits a property (relating
to the target system) to be declared true when it is not true. This includes limitations with
respect to input models and transformations, limitations for language constructs or
properties to be proven, scalability, usage errors, internal tool errors, and non-graceful
response to abnormal inputs.

Figure 1. System Development Process and Verification Objectives

Model checking technology is often used to formally verify liveness and safety properties
of safety relevant system algorithms. However, often model checking technology and
related tooling are developed by university and research groups that may lack experience
with formal design assurance development methods, such as the guidelines of DO-178C.
Thus, a model checker documentation and usage examples may not explicitly state how
the tool fits in the certification process: specifically which parts of DO-178C objectives
are automated by the tool and what intermediate representation considerations the user
must adhere to when relating tool inputs/output to the development artifacts of the
airborne software. Figure 2 depicts the use of a model checker for automating parts of
DO-178C objective (A-4.1) that low-level requirements (e.g., design model) comply with
high-level requirements. All the artifacts shown in the green color in this figure are
intermediate representations. Thus, in addition to the soundness of the core model
checker tool implementation, the soundness of the intermediate artifacts is also a concern.

Design
Model

Software
High-Level
Requirements
(HLR)Architecture

Model
Arch.

Elements ...

System
Requirements

Arch.
Elements

Low-Level
Requirements

(LLR)
Source
Code

...
Library Components

System Development Process
Target
Processors

Object Code

Model /
Representation

Verification Objectives

Model /
Representation

Model /
Representation

Model /
Representation

 33

Figure 2. Example of Intermediate Representations when using a Model Checking Tool

The following subsections provide several examples of theoretical soundness issues
relating to intermediate representations.

5.2 Example: Soundness of the Model under Exploration

When using a model checking tool, in addition to the soundness of the core model
checker implementation, the soundness of the model under exploration with respects to
the tool’s abstraction is also an essential concern. In many usages, the “model” provided
to the tool is created from development artifacts by a combination of automated/manual
transformations. If errors in the modeled system abstraction can impact the model-
checker’s state exploration, invalid proofs may be indicated.

The following example shows that a mistake in the typing enabled an invalid proof by k-
induction. The tools output is shown below for this example.

 34

In this instance the erroneous proof was quite problematic. Prior to the proof, the model
checker had correctly identified counter examples over a period of a few weeks, which
led the tool users erroneously to increase their trust of the tool’s performance. The actual
mistake in the model was relatively simple. It related to the declaration of the data type
on line 58

DATA:	TYPE	=	[1	..	9];	

With the erroneous assignment of 0 to the data filed in line 356

out[i]	=	(#	data	:=	0,	integrity	:=	false,	present	:=	false	
#)	

Interestingly, the model passed the model-checker’s well-formed checks as indicated
below.

sal-inf-bmc	brain_invalid{6}	brain_strong_validity	-v	1	-d	0	
-i	-ice	
importing	context	"brain_invalid"...	
parsing	SAL	file	"brain_invalid.sal"...	
creating	abstract	syntax	tree	for	context	"brain_invalid"...	
type	checking	context	"brain_invalid"...	
flattening	modules	in	the	assertion	located	at	[Context:	
scratch,	line(1),	column(1)]	
simplifying	abstract	syntax	tree...	
expanding	function	applications...	
unfolding	quantifiers...	
eliminating	common	subexpressions	in	an	assertion...	
eliminating	common	subexpressions	in	a	flat	module...	
flattening	data	structure	in	flat	module...	
flattening	data	structures	in	the	property...	
simplifying	abstract	syntax	tree...	
substituting	simple	definitions...	
simplifying	abstract	syntax	tree...	
number	of	system	variables:	320,	number	of	auxiliary	
variables:	0	
executing	BMC	from	depth	0	to	0...	
executing	k-induction	with	k=0	
proved.	
total	execution	time:	0.96	secs	
	

 35

In other technologies, such as PVS, Type-Correctness Conditions (or TCCs) are
generated as part of the proof strategy. These require the soundness of the types to be
proven before the proof Integrating such technology with the model checking
technology may be an interesting direction to address this soundness vulnerability above.
Extending and linking these proofs using an Evidential Tool Bus [5], may also be a
valuable direction, providing a mechanism for such proofs to be linked, audited and
replayed as necessary.

5.3 Internal Tool Abstractions for Models

Tools that directly read the actual development artifacts, such as source code and the
design models from which the code is generated, would seem to avoid the problems
mentioned in the previous example with the transformation of abstractions. In practice,
however, the same issues remain; they are just hidden within the tool internals or the
interpretation of model semantics. This applies not only to the internals of verification
tools but also the internal representations in modeling and code generation tools used in
the development process.

For exploration of these issues, we use model analysis, test generation, and source code
verification tools used with models created using MATLAB Simulink/Stateflow
modeling tools. Figure 3 shows the modeling and verification tool set where a model
represents low-level requirements. Note that MATLAB Simulink/Stateflow tool suite
does not define formal semantics or a single underlying notation for the model
specification. Thus the model is considered to be the in-memory representation within the
tool that is influenced by the contents of the .mdl file, MATLAB
environment/configuration, workspace parameters, and defaults. Each of the SCV and
HiLiTE verification tools must recreate the model semantics within the tool by either
directly reading all the artifacts that impact the model or by querying the in-memory
representation within MATLAB. This internal view of semantics in the verification tool
must be accurate with respect to the MATLAB internal semantics view as well as the
behavior semantics of the object code on the target processor.

sal-wfc	brain_invalid.sal		-v	2	
importing	context	"brain_invalid"...	
parsing	SAL	file	"brain_invalid.sal"...	
creating	abstract	syntax	tree	for	context	
"brain_invalid"...	
		ast	generation	time:	0.0	secs	
type	checking	context	"brain_invalid"...	
		type-checker	time:	0.02	secs	
Ok.	
total	execution	time:	0.02	secs	

 36

Figure 3. Example of Internal Representation of Model, in the Context of Simulink/Stateflow

The Honeywell Integrated Lifecycle Tools and Environment (HiLiTE) takes
Simulink/Stateflow design models as an input, analyzes them, and generates tests for
them. The detailed semantics of the models are independently defined/recreated within
HiLiTE, based upon the MATLAB user manuals. That addresses common mode failure
concerns, but opens the door to the possibility that the HiLiTE semantics are not
consistent with MATLAB, especially given that the semantics defined in MATLAB user
manuals are incomplete and may be unsound in certain places.

5.3.1	Example:	priority	inversion	in	Stateflow	semantics.	
HiLiTE’s origins date back far enough that there have actually been changes to those
model semantics (or the documentation thereof) that impact the interpretation of models
and translations to other abstract intermediate representations for use by analysis tools.
The HiLiTE Stateflow test generator has run into multiple kinds of priority inversion:

• Older versions of Stateflow used a clockwise order of priority of transition arcs
emanating from a state. When a state had multiple outgoing transitions, they were
evaluated starting at the 12:00 position going around the state in the clockwise
direction (with the exception that an unguarded transition is evaluated last).
Subsequent versions of Stateflow made the execution order explicit. The default
order was set with clockwise priority, but users may override. This created a
order of execution violation of the model semantics that could impact expected
results during test generation.

Simulink/Stateflow

in-memory
representation

of	model

environment,
tool	configuration

workspace/
parameters

.mdl file

Target
Processors

Object Code

Code
Generator

defaults
C	- Code

os
HiLiTE

• Model static analysis
• Test Generation:

object code
complies with model

Source Code
Verifier (SCV)

Verify that C- Code
complies with model

tool	configuration

tool	inputs	/
commands

Test
Vectors

 37

• The model of the execution of actions around a transition inverted the priority of
exit and condition actions. This could have allowed a code generation or
compilation error escape the testing process.

• At the time we started the Stateflow test generation capability, there was an error
in the MATLAB documentation. Since Stateflow overloads the ‘^’ operator to
mean either exponent or bitwise XOR based on the “Enable C-bit operations”
checkbox. The precedence table explicitly listed the power operation as having
the same precedence as bitwise XOR—much lower than one would expect. It
turns out that, since the code generator used the power function (e.g., pow(x,	
y)	+	z), the generated code actually places the power operator at highest
precedence. MathWorks ultimately corrected the documentation, rendering
HiLiTE’s semantics incorrect. HiLiTE has since raised the priority of the ‘^’
exponent operator, and it is no longer qualified to support bitwise-XOR.

To make sure such errors in internal semantics do not escape qualification, tests were
developed that are deliberately dependent on execution order. If HiLiTE is not executing
actions, or evaluating expressions, in precisely the correct order, the qualification tests
will fail.

5.3.2	Example:	Changes	in	Model	Semantics	due	to	Block-Library	Changes	
It is a common practice to create a library of higher-level building blocks (e.g., timers,
digital filters) out of low-level primitive operators provided by a modeling tool like
Simulink. Specific behavior semantics abstractions are associated with these library
blocks, with the expectation that certain analyses and results provided by the formal
methods tools are in terms of these abstractions – e.g., the range bounds at the outputs of
a filter are within limits across time, given the transfer function of the filter. Such higher-

1
st

2
nd

2
nd

1
st

Explicit	
order

 38

level behavior abstractions must be translated through intermediate representations to the
abstractions provided by a formal methods analysis tool. Our observations over several
certification programs have been that the library block semantics can change during the
lifecycle due to desired improvements or bug fixes; for example the semantics of the
timer blocks in Honeywell’s HAM block library was corrected to provide a deterministic
behavior in face of floating-point representation errors across different processing
platforms. Consequently, tool changes were required over the lifecycle of individual
certification programs and even more changes have been required over the lifecycle of
the HiLiTE tool. From the tool qualification perspective, it is necessary to make the
soundness criteria explicit for all such higher-level behavior abstractions and the
corresponding properties that a tool analyzes. Qualification tests are then designed around
these criteria to provide confidence in the tool implementation.

Automatic code verification tools likewise take the development model as an input to
compare against the generated code. Because these tools must account for every model
block and every expression in the code, any error in the tool’s interpretation of the design
model should be easily exposed during qualification. As a third tool with a presumably
independent implementation of the semantics, this is an opportunity to use diversity to
strengthen the case for soundness of the overall process.

5.4 Intermediate Artifacts: Using SMT Solver as a Back-End Tool

The success of HiLiTE to generate over 90 percent of low-level requirements tests for
Simulink design models has left only the most challenging model constructs beyond
reach. To address those, Honeywell has turned to using a SMT solver as a back-end tool
for HiLiTE. For test generation, this involves generating constraints from model
subgraphs that are difficult to resolve usually because of complex relationships between
the signals. If the SMT solver is able to find a solution to the constraints, HiLiTE can
automatically verify the solution by simulating it. Therefore the SMT solver and the
generation of SMT constraints need not be qualified independently because we have
already qualified HiLiTE’s capability to generate and evaluate tests for correctness and
requirements coverage. However, the input model (in SMT language) for the SMT Solver
is an intermediate artifact that is generated by HiLiTE, excerpting it from the complete
model. The soundness of abstraction transformation must be maintained across the
intermediate artifacts; the qualification testing must define the exact subset of the SMT
construct used (as part of tool requirements) and develop qualification tests to the verify
correct abstraction transformation for this subset.

5.5 Tool Independence

Every advancement in software engineering has involved raising the level of abstraction
to leave out details that do not require the attention of the system developer. Whether it
was processor instruction codes, register selection, or loop un-rolling, we have let our
compilers and assemblers make decisions that are rooted in the specifics of the target
processor architecture instead of the system being implemented. With model-based
development, this includes fully specifying the order of operations, resolving data types,
or even determining vector dimensions. The verification process therefore is about

 39

establishing that the implementation is among the set of correct implementations of the
rules defined during design. Given the requirements have been determined to be
complete, all the implementations of a design that satisfy all requirements must be valid.

Simulink models establish the data flow for a system. Technically this amounts to a
partial ordering; where a happens before b and c before d, but the relative ordering of a
and c do not matter. The generated code selects an ordering based on arbitrary rules that
may change from one version to the next.

Additionally many blocks in a Simulink model do not specify a data type. They “inherit”
the type of the input signal. This is convenient so the blocks do not all have to be altered
when a signal’s data type is changed. In this case there is an algorithm to derive each data
type given an input data type to ground the analysis.

Likewise, the signals may be scalars or vectors of unspecified dimension for most blocks.
The semantics of the blocks define the output signal dimensions relative to the input
dimensions; so these can also be computed given starting dimensions of input signals.

It has been argued that the simulation semantics and in-memory representation constitute
the low-level requirements; therefore the complete ordering, data types, and dimensions
should be read from the model environment rather than computed from the incomplete
model specification file. That would suggest that these details that have been abstracted
out are salient and must be defined by the developer, not the modeling tool. The
information specified by the developer and read during model reviews must be sufficient
to define a correct implementation; thus all implementations that conform to the
specification (e.g., all complete orderings that satisfy the partial ordering) are correct.

5.6 Completeness of the Intermediate Artifacts

In order for an assurance argument to be repeatable, all the data that informs the behavior
of a model must be controlled. In effect “verification” is a mapping of specific artifacts
with verification results such as test cases or formal proofs guaranteed for those artifacts.
Real world development models are often not contained in a single file or even a single
type of file, the complete behavior of the simulation and the full content of generated
code depend on data from outside the model file. For example workspace parameters may
be referenced by a model, but the values of those parameters are loaded separately to
support reuse of the model. Direct integration with the model development environment
to verify against the in-memory representation conflates all this information, and it can be
impossible to positively determine that all data incorporated into that verification has
been properly controlled.

It is standard practice that artifacts that haven’t changed need not be re-verified.
However, if the simulation behavior of a model is based on uncontrolled parameter
values, then reusing a model with its source and object code, and their certification
artifacts could result in an escape. An independent tool that reads all the data files can
verify that all the data is present and controlled, and further ensure that nothing is
assigned multiple values.

 40

5.7 Completeness in the Enumeration of Low-level Properties

An important aspect of intermediate representations is the completeness of the properties
being verified using a tool with respect to the actual system. This is especially important
when a tool, such as static analysis using abstract interpretation, verifies several low-level
properties of the system design or source code. An essential part of the intermediate
representation of the system is the complete enumeration of all relevant properties that
are present in the actual system. For example, if a tool detects “division-by-zero”, it is
essential that the tool's representation of the properties it checks includes not only the
explicit division operations in the design or source code, but all possible mathematical
operations that can result in a division by zero such as reciprocals, negative exponent,
trigonometric or transcendental operations such as tangent. Several currently available
static analysis tools report only the “division-by-zero” instances the tool could find; it
remains unclear whether the tool enumerated all possible explicit and implicit cases and
analyzed each one. Our general recommendation in this area is that such a tool should
attempt to prove a safety property such as “absence of overflow” and as part of the
analysis/proof, produce a list of all instances of “overflow” enumerated by the tool so that
another tool in the chain can check the list for completeness. In addition, as part of the
tool qualification, the Tool Requirements should specifically list all types of overflow
instances enumerated by the tool so that a determination of completeness with respect to
the actual system can be made. If there is an intermediate abstraction in between the
system design/code and the tool analysis, the completeness of the intermediate
abstraction should be assessed against the actual system.

5.8 Soundness and Completeness of Requirements-Based Coverage
Metrics

In the DO-178C certification process, there are certain verification objectives where
coverage metrics are computed on the design or code elements with respect to higher
level requirements. The specific objectives seek to analyze which elements of a design
model or source code are exercised by requirements-based tests. This analysis serves the
purpose to rule out unintended functionality (in the design models or code) as well as
provide a metric of the efficacy of requirements-based tests. In some certification
arguments, the coverage metrics are even used to solely define the entire criteria of
completeness of the requirements-based tests, and thus skip other downstream testing
objectives. A common method is to execute requirements-based tests on the model or
code and use a tool to measure coverage achieved on the model or code elements by these
tests. Therefore, tool qualification must address the soundness and completeness of the
coverage metrics reported by the tool.

Two major issues have been observed with the current tools and approaches for
computation of test coverage metrics. The first is the issue of observability : namely if the
unique impact of the computation of a model or code element is not observable in the
forward path to an output value being tested in a requirement-based test, then the
coverage of that element cannot be claimed. The CAST-6 paper [24] mentions this as a
fundamental underlying concept of testing in the following paragraph quoted below:

 41

“Do	the	requirements-based	test	cases	adequately	exercise	the	structure	of	the	source	code?	
Two	factors	in	exercising	any	structural	element	of	the	source	code	are:	(a)	the	ability	to	test	
that	element	by	setting	the	values	of	the	element’s	inputs	(this	is	the	concept	of	
controllability),	and	(b)	the	ability	to	propagate	the	output	of	that	element	to	some	
observable	point	(this	is	the	concept	of	observability).	Controllability	and	observability	are	
fundamental	concepts	used	in	testing	logic	circuits,	and	also	apply	well	to	testing	software.”	

Note that even though the CAST-6 paper mentions “source code” elements, the same
criteria are applicable to test cases on model elements. Figure 4 shows a simple example
of a MATLAB Simulink model and a requirement-based test case where the input and
output values of the test case are shown in green color. The value of the test case at the
3rd input (control) of the switch block selects the path of the 1st input of the switch to the
measured output. Therefore the blocks in gray, even though they may be “executed” in
the simulation, are not covered by the test case because their results are not observable at
the measured output. In general, the observability criterion applies to various types of
blocks (and their computation) that are in the forward path to the output.

Figure 4. Example of Model Coverage Soundness Criterion

A recent paper in the 2015 NASA Formal Methods (NFM) conference [25] illustrated via
case studies that if a coverage tool doesn’t implement observability, there can be a
significant over reporting (up to a factor of 5) of the coverage by the tool over coverage
truly achieved by the tests. It is important for a tool, that claims any credit against these
objectives, to describe the mathematical basis for how it determines observability in
claiming coverage.

switch

and1 Output (a) [1]

C
c=double(3)

Input5 (f, 0, L) [5]

Input4 (f, 0, L) [4]

Input3 (b, 0, L) [3]

Input2 (b, 0, L) [2]

sum1

+

+

+

+

a

b
a>b

GT1

and2

Input1 (b, 0, L) [2]

Input7 (b, 0, L) [3]

Input6 (b, 0, L) [2]

and3

1

1

1

0

0

1

10

3

1
0

0

0

6

1

0

0

value blocked in forward
path; doesn’t impact
measured output by the
requirements-based test case

Requirements Based Test Case

X

Requirements-Based Test Coverage cannot be claimed for these blocks
even though these blocks may be “executed” in the simulation environment.

measured

 42

The second problem is: Does a coverage tool completely enumerate the test coverage
requirements (behavior equivalence classes) for all computational elements in the model?
For example, the Model Coverage Analysis activity of DO-331 requires a computation of
coverage achieved on the model elements identified as low-level requirements (LLR) in
terms of numeric, Boolean, and time-dependent function equivalence classes. As part of
the intermediate abstraction, a coverage analysis tool must completely enumerate all such
equivalence classes and then report coverage of which ones were exercised by the tests.
Many available model coverage analysis tools, however, do not do such complete
enumeration. These tools require the user to place specific “instrumentation” constructs
in the model and report coverage only on those instrumentation constructs; thus a tool can
report 100% model coverage even if the user forgot to put instrumentation in the model
and only ½ of the model element are actually covered by the tests. A tool vendor can
argue that this is the user’s and not the tool’s responsibility. But the fact remains that the
lack on completeness on the tool’s part introduces opportunities for errors in the process
of verification of DO-178C objectives; the tool’s report of “100% coverage achieved”
can give a false sense of completeness. In such cases, tools should indicate the coverage
is over the user-defined test requirements not all LLR. The qualification plan should also
indicate at best partial credit for the objective with additional activity to verify
completeness of the test requirements supplied to the tool. In the use of tools in DO-178C
verification, the entire process of humans and tools to achieve a DO-178C objective must
be shown to be sound and complete. The tool qualification needs to ensure that the
intermediate representations and the tool results are sound and complete as part of this
process.

References

1. Clarke, Edmund M., and E. Allen Emerson. “Design and synthesis of
synchronization skeletons using branching time temporal logic.” Springer Berlin
Heidelberg, 1982.

2. Clarke, Edmund M., E. Allen Emerson, and A. Prasad Sistla. “Automatic
verification of finite-state concurrent systems using temporal logic
specifications.” ACM Transactions on Programming Languages and Systems
(TOPLAS) 8.2 (1986): 244-263.

3. Clarke, Edmund M., et al. “Exploiting symmetry in temporal logic model
checking.” Formal Methods in System Design 9.1-2 (1996): 77-104.

4. Cousot, Patrick and Cousot, Radhia. “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints.” POPL (1977) , 238-252.

5. Cruanes, Simon, et al. “Tool integration with the evidential tool bus”, in
Verification, Model Checking, and Abstract Interpretation. Springer Berlin
Heidelberg, 2013.

6. Queille, Jean-Pierre, and Joseph Sifakis. “Specification and verification of
concurrent systems in CESAR.” International Symposium on Programming.
Springer Berlin Heidelberg, 1982.

 43

7. Katz, Shmuel, and Doron Peled. “Verification of distributed programs using
representative interleaving sequences.” Distributed Computing 6.2 (1992): 107-
120.

8. Godefroid, Patrice, et al. “Partial-order methods for the verification of concurrent
systems: an approach to the state-explosion problem.” Vol. 1032. Heidelberg:
Springer, 1996.

9. Dill, David L. “The Murphi Verification System.” Computer Aided Verification.
Springer Berlin Heidelberg, 1996.

10. Emerson, E. Allen, and A. Prasad Sistla. “Symmetry and model checking.” Formal
methods in System Design 9.1-2 (1996): 105-131.

11. Ip, C. Norris, and David L. Dill. “Better verification through symmetry.” Formal
methods in system design 9.1-2 (1996): 41-75.

12. Holzmann, Gerard J. “The Model Checker SPIN.” IEEE Transactions on software
engineering 5 (1997): 279-295.

13. Havelund, Klaus, and Thomas Pressburger. “Model Checking Java Programs
using Java PathFinder.” International Journal on Software Tools for Technology
Transfer 2.4 (2000): 366-381.

14. Misra, Jayadev, and K. Mani Chandy. “Proofs of networks of processes.”
Software Engineering, IEEE Transactions on 4 (1981): 417-426.

15. Jones, Cliff B. “Tentative steps toward a development method for interfering
programs.” ACM Transactions on Programming Languages and Systems
(TOPLAS) 5.4 (1983): 596-619.

16. Grumberg, Orna, and David E. Long. “Model checking and modular verification.”
ACM Transactions on Programming Languages and Systems (TOPLAS) 16.3
(1994): 843-871.

17. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Yhu.
“Symbolic Model Checking without BDDs”. Volume 1579 of LNCS, pages 193–
207, March 1999.

18. Godefroid, Patrice. “Model checking for programming languages using VeriSoft.”
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 1997.

19. Havelund, Klaus, and Thomas Pressburger. “Model checking Java programs
using Java PathFinder.” International Journal on Software Tools for Technology
Transfer 2.4 (2000): 366-381.

20. Visser, Willem, et al. “Model checking programs.” Automated Software
Engineering 10.2 (2003): 203-232.

21. Burch, Jerry R., et al. “Symbolic model checking: 10^20 states and beyond.”
Logic in Computer Science, 1990. LICS'90, Proceedings., Fifth Annual IEEE
Symposium on e. IEEE, 1990.

22. K. L. McMillan. “Symbolic Model Checking: An Approach to the State Explosion
Problem”. Kluwer Academic Publishers, 1993.

23. L. Pike. “Real-Time System Verification by k-Induction”, NASA/TM-2005-
213751, 2005.

24. Certification Authorities Software Team (CAST), “Rationale for Accepting
Masking MC/DC in Certification Projects.” Position Paper CAST-6, August
2001.

 44

25. Murugesan, Anitha, et al. “Are We There Yet? Determining the Adequacy of
Formalized Requirements and Test Suites.” Proceedings of the 2015 NASA
Formal Methods Conference, 2015.

Appendix A

This version of CodeHawk attempts to prove safe memory access (according to the C
standard) for every statement in a program. It does this by first placing a series of proof
obligations, at every location in the program, which must be true for safe access to be
guaranteed by the compiler. It then computes abstract invariants (the abstract
interpretation, proper) about the values of variables at every such location. Finally, it uses
these computed invariants as lemmas to attempt to discharge all of the proof obligations.
A memory reference, at a given location, is guaranteed safe under all possible execution
paths if all of the proof obligations assigned to that reference can be discharged. If one or
more proof obligations remain open, the memory access may still be safe, but that fact
cannot be proven with the current precision of the abstract domains used.

Below are some samples of discharged (proved safe) and open (don’t know) proof
obligations from the function activeExpireCycle() in the open source in-memory database
application Redis. In the source listing of this function (from the source file redis.c) we
have highlighted two lines, one in green (line 771) for which all obligations were
discharged, and one in yellow (line 814) for which some proof obligations remain open.
The raw CodeHawk output is produced as XML files, which will be interpreted by the
user interface in which the CodeHawk analysis engine is embedded according to its own
custom format.

void activeExpireCycle(int type) {
 /* This function has some global state in order to continue the work
 * incrementally across calls. */
 static unsigned int current_db = 0; /* Last DB tested. */
 static int timelimit_exit = 0; /* Time limit hit in previous call? */
 static long long last_fast_cycle = 0; /* When last fast cycle ran. */

 int j, iteration = 0;
 int dbs_per_call = REDIS_DBCRON_DBS_PER_CALL;
 long long start = ustime(), timelimit;

 if (type == ACTIVE_EXPIRE_CYCLE_FAST) {
 /* Don't start a fast cycle if the previous cycle did not exited
 * for time limt. Also don't repeat a fast cycle for the same period
 * as the fast cycle total duration itself. */
 if (!timelimit_exit) return;
 if (start < last_fast_cycle + ACTIVE_EXPIRE_CYCLE_FAST_DURATION*2)
 return;
 last_fast_cycle = start;
 }

 /* We usually should test REDIS_DBCRON_DBS_PER_CALL per iteration, with

 45

 * two exceptions:
 *
 * 1) Don't test more DBs than we have.
 * 2) If last time we hit the time limit, we want to scan all DBs
 * in this iteration, as there is work to do in some DB and we don't want
 * expired keys to use memory for too much time. */
 if (dbs_per_call > server.dbnum || timelimit_exit)
 dbs_per_call = server.dbnum;

 /* We can use at max ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC percentage of CPU
 time
 * per iteration. Since this function gets called with a frequency of
 * server.hz times per second, the following is the max amount of
 * microseconds we can spend in this function. */
 timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;
 timelimit_exit = 0;
 if (timelimit <= 0) timelimit = 1;

 if (type == ACTIVE_EXPIRE_CYCLE_FAST)
 timelimit = ACTIVE_EXPIRE_CYCLE_FAST_DURATION; /* in microseconds. */

 for (j = 0; j < dbs_per_call; j++) {
 int expired;
 redisDb *db = server.db+(current_db % server.dbnum);

 /* Increment the DB now so we are sure if we run out of time
 * in the current DB we'll restart from the next. This allows to
 * distribute the time evenly across DBs. */
 current_db++;

 /* Continue to expire if at the end of the cycle more than 25%
 * of the keys were expired. */
 do {
 unsigned long num, slots;
 long long now, ttl_sum;
 int ttl_samples;

 /* If there is nothing to expire try next DB ASAP. */
 if ((num = dictSize(db->expires)) == 0) {
 db->avg_ttl = 0;
 break;
 }
 slots = dictSlots(db->expires);
 now = mstime();

 /* When there are less than 1% filled slots getting random
 * keys is expensive, so stop here waiting for better times...
 * The dictionary will be resized asap. */
 if (num && slots > DICT_HT_INITIAL_SIZE &&
 (num*100/slots < 1)) break;

 /* The main collection cycle. Sample random keys among keys
 * with an expire set, checking for expired ones. */
 expired = 0;
 ttl_sum = 0;
 ttl_samples = 0;

 if (num > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP)
 num = ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP;

 while (num--) {

 46

 dictEntry *de;
 long long ttl;

 if ((de = dictGetRandomKey(db->expires)) == NULL) break;
 ttl = dictGetSignedIntegerVal(de)-now;
 if (activeExpireCycleTryExpire(db,de,now)) expired++;
 if (ttl < 0) ttl = 0;
 ttl_sum += ttl;
 ttl_samples++;
 }

 /* Update the average TTL stats for this database. */
 if (ttl_samples) {
 long long avg_ttl = ttl_sum/ttl_samples;

 if (db->avg_ttl == 0) db->avg_ttl = avg_ttl;
 /* Smooth the value averaging with the previous one. */
 db->avg_ttl = (db->avg_ttl+avg_ttl)/2;
 }

 /* We can't block forever here even if there are many keys to
 * expire. So after a given amount of milliseconds return to the
 * caller waiting for the other active expire cycle. */
 iteration++;
 if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
 long long elapsed = ustime()-start;

 latencyAddSampleIfNeeded("expire-cycle",elapsed/1000);
 if (elapsed > timelimit) timelimit_exit = 1;
 }
 if (timelimit_exit) return;
 /* We don't repeat the cycle if there are less than 25% of keys
 * found expired in the current DB. */
 } while (expired > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP/4);
 }
}

This is a section from the XML file containing the final results:

<?xml version="1.0" encoding="UTF-8"?>
 <codehawk-c-analysis>
 <log>
 <log-entry time="11/06/2014 22:22:55"/>
 <log-entry time="11/06/2014 22:02:45"/>
 <log-entry time="11/06/2014 21:43:43"/>
 <log-entry time="11/06/2014 21:27:08"/>
 <log-entry delta-checkvalid="59" delta-invariant="60" delta-lifted="15"
time="11/06/2014 21:04:00"/>
 </log>
 <function name="activeExpireCycle">
 <statistics checkvalid="59" invariant="60" invariant_with_api="15"
total="223" total-proven="134"/>
 <open-proof-obligations>
 .
 .
 .
 <open id="68" line="814" predicate="not-null"/>
 <open id="69" line="814" predicate="valid-mem"/>
 <open id="70" line="814" predicate="lower-bound"/>

 47

 <open id="71" line="814" predicate="upper-bound"/>
 .
 .
 .
 </open-proof-obligations>
 <proof-obligations-discharged>
 .
 .
 .
 <discharged domain="symbolic sets" id="4" method="invariants"
time="11/06/2014 21:04:00" type="initialized">
 <evidence comment="assignedAt#764"/>
 </discharged>
 <discharged id="5" method="check-valid" time="11/06/2014 21:04:00"
type="initialized">
 <evidence comment="last_fast_cycle is global"/>
 </discharged>
 <discharged id="6" method="check-valid" time="11/06/2014 21:04:00"
type="integer-underflow">
 <evidence comment="add non-negative number: value is 2000"/>
 </discharged>
 <discharged domain="none" id="7" method="invariants" time="11/06/2014
21:04:00" type="int-overflow">
 <evidence comment="predicate depends on global variables last_fast_cycle,
which is delegated to global analysis"/>
 <assumptions>
 <uses a-id="11" a-type="global"/>
 </assumptions>
 </discharged>
 .
 .
 .
 </proof-obligations-discharged>
 </function>
 <header time="11/06/2014 22:22:55">
 <application file="src/redis.xml" name="application"/>
 </header>
 </codehawk-c-analysis>

This is the xml (from a separate file) for one of the discharged proof obligation (id=”6”)
above:

 <proof-obligation c-complexity="1" id="6" origin="prim-op" p-
complexity="2">
 <location byte="281641" file="src/redis.c" line="771"/>
 <predicate op="plusa" size="ilonglong" tag="int-underflow">
 <exp1 etag="lval">
 <lval>
 <lhost>
 <var vid="10255" vname="last_fast_cycle"/>
 </lhost>
 </lval>
 </exp1>
 <exp2 etag="const">
 <constant ctag="cint64" ikind="ilonglong" intValue="2000"/>
 </exp2>
 </predicate>
 <context>

 48

 <cfg-context>
 <node name="if-expr"/>
 <node name="stmt" num="153"/>
 <node name="if-then"/>
 <node name="stmt" num="150"/>
 </cfg-context>
 <exp-context>
 <node name="2op" num="2"/>
 </exp-context>
 </context>
 </proof-obligation>

and this for one of the open obligations (id=”68”):

 </proof-obligation>
 <proof-obligation c-complexity="11" id="68" origin="prim-lval" p-
complexity="1">
 <location byte="282363" file="src/redis.c" line="814"/>
 <predicate tag="not-null">
 <exp etag="lval">
 <lval>
 <lhost>
 <var vid="10263" vname="db"/>
 </lhost>
 </lval>
 </exp>
 </predicate>
 <context>
 <cfg-context>
 <node name="instr" num="0"/>
 <node name="stmt" num="173"/>
 <node name="if-then"/>
 <node name="stmt" num="172"/>
 <node name="loop"/>
 <node name="stmt" num="170"/>
 <node name="loop"/>
 <node name="stmt" num="166"/>
 </cfg-context>
 <exp-context>
 <node name="mem"/>
 <node name="lhs"/>
 </exp-context>
 </context>
 </proof-obligation>

