
Declarations and Types in the
PVS Specification Language

Ben Di Vito

NASA Langley Research Center
Formal Methods Team

b.divito@nasa.gov

NASA Langley – NIA Short Course on PVS

9–12 October 2012

Declarations

Named entities are introduced in PVS by means of declarations.

• User-defined language units such as constants, variables, types, and
functions are introduced through a series of declarations.

• Examples:

seconds_per_hour: nat = 3600

minute: TYPE = {m: nat | m < 60}

before, after: VAR minute

• Collections of related declarations are grouped together into PVS theories.

• A set of predefined theories called the prelude is available as the user’s
starting point.

Declarations and Types Oct 2012 — 1 / 27

Declarations (Cont’d)

• Named items used in a declaration must have already been declared
previously.

– No forward references

– Note the order in the example above

• A declared entity is visible throughout the rest of the theory in which it is
declared.

– It may also be exported to other theories (variables excepted).

– Variables can be introduced using local bindings, with much more
limited scope.

Declarations and Types Oct 2012 — 2 / 27

Kinds of Declarations

PVS specification language allows a variety of top-level declarations.

• Type declarations

• Variable declarations

• Constant declarations

• Recursive definitions

• Macros

• Inductive/coinductive definitions

• Formula declarations

• Judgements

• Conversions

• Library declarations

• Auto-rewrite declarations

There are also importing directives.

Declarations and Types Oct 2012 — 3 / 27

Theories

Specifications are modularized in PVS by organizing them into theories.

• Declarations within a theory may freely use earlier declarations within that
same theory.

• Declarations from other theories may be used when properly imported.

IMPORTING sqrt, real_sets[nonneg_real]

– Default rule: all declared entities (other than variables) are exportable.

• Theories may be parameterized so that specialized instances can be
created.

– Theory parameters include constants and types.

– Constitutes a powerful mechanism for creating generic theories that are
readily reused.

• Named items imported from different theories may clash, requiring name
resolution.

Declarations and Types Oct 2012 — 4 / 27

Theories (Cont’d)

General form for theories:

My_Theory [<parameters>]: THEORY

BEGIN

<assuming part>

<declaration>

.

.

.

<declaration>

END My_Theory

• PVS allows multiple theories per file.

• In normal usage, we recommend only one theory per file.

Declarations and Types Oct 2012 — 5 / 27

Variables

Logical variables in PVS are used to express other declared entities.

• Basic form of a variable declaration:

name_1,...,name_n: VAR <data type>

• Scope extends to end of theory.

• Variables in PVS are not the same concept as programming language
variables.

– PVS variables are logical or mathematical variables.

– They range over a (possibly infinite) set of values.

– No notion of program state is inherent in these variables.

• Variables are not exportable outside of their containing theories.

– Each theory declares its own variables.

Declarations and Types Oct 2012 — 6 / 27

Local Bindings

Local variables are also possible in PVS.

• Local bindings are embedded within declarations for larger containing units:

delta_time(current: system_time,

previous: system_time): system_time = . . .

• The scope of such local variables is limited to the containing unit.

• Local bindings can shadow previous bindings or declarations in the
containing scope.

• Local variables or bindings may be used in several PVS constructs:

– Quantifiers

– LAMBDA expressions

– LET and WHERE expressions

– Type expressions

Declarations and Types Oct 2012 — 7 / 27

Constants

Named constants may be introduced as needed for use in other declarations.

• Basic forms of a constant declaration:

name: <type> = <value>

name: <type>

• A constant may be either:

– Interpreted (having a definite value) or

– Uninterpreted (value left unspecified)

• Practical consequences of this choice:

– When the value is specified, it is available for use in proofs.

– If unspecified, anything proved using the constant will be true for any
legitimate value it could have.

Declarations and Types Oct 2012 — 8 / 27

Constants (Cont’d)

• Declaring a constant requires that its type be nonempty.

• Like variables, constants are not the same concept as programming
language constants.

• Function declarations are special cases of constant declarations.

– A function declaration is a constant having a function type in the
higher-order logic framework of PVS.

Declarations and Types Oct 2012 — 9 / 27

Type Concepts

PVS provides a rich set of type capabilities.

• A type is considered to be a (possibly infinite) set of values.

• Types may be declared in one of several ways:

– As uninterpreted types with no assumed characteristics

– As instances of predefined or user-defined types

– Through mechanisms for creating types for structured data objects

– Through a mechanism for creating subtypes

– Through a mechanism for creating abstract data types

• Higher-order logic plays a big role in the type system.

– Function types are used to model common concepts such as arrays.

• Interpreted types are declared using type expressions.

• PVS uses structural equivalence not name equivalence.

Declarations and Types Oct 2012 — 10 / 27

Predefined Types

PVS provides some basic predefined types for use in declarations.

• Boolean values: bool

– Includes the constants true and false

– Accompanied by the usual boolean operations

• Integers: int and nat

– int includes the full set of integers from negative to positive infinity.

– nat includes the nonnegative subset of int.

– Accompanied by the usual constants and operations.

– int and nat also have various subtypes declared in the prelude:

posnat, posint, negint, ...

– Can also specify subranges of nat, e.g.:

below(8) : 0, ..., 7 upto(8) : 0, ..., 8

above(8) : 9, 10, ... upfrom(8) : 8, 9, ...

Declarations and Types Oct 2012 — 11 / 27

Predefined Types (Cont’d)

• Rational numbers: rational

– Axiomatizes the true mathematical concept of rationals.

– Rational constants are sometimes used to approximate real constants.

• Real numbers: real

– Axiomatizes the true mathematical concept of reals.

– Different from the programming notion of floating point numbers.

– Axioms for real number field taken from Royden.

• All axioms and derived properties for the predefined types are extensively
enumerated and documented in the prelude.

– The prelude itself is written in PVS notation.

– Prelude extensions are also possible.

Declarations and Types Oct 2012 — 12 / 27

Uninterpreted Types

Types may be named and left unspecified.

• Basic form of an uninterpreted type declaration:

name: TYPE

– Identifies a named type without assuming anything about the values.

– Only operation allowed on objects of this type is comparison for equality.

• Alternate form of uninterpreted type:

name: NONEMPTY_TYPE or name: TYPE+

– Difference is the assumption of nonemptiness.

• One uninterpreted type may be a subtype of another:

name_2: FROM NONEMPTY_TYPE name_1

– Some subset of name_1’s values may be used in the new type.

Declarations and Types Oct 2012 — 13 / 27

Predicate Subtypes

Often we need to derive types as subsets of other types.

• PVS allows predicate subtypes to be declared directly:

posint: TYPE = {n: int | n > 0}

index: TYPE = {n: int | 1 <= n AND n <= num_units}

CONTAINING 1

fraction: TYPE = {x: real | -1 < x AND x < 1}

oddint: TYPE = {n: int | odd?(n)}

• All properties of the parent type are inherited by the subtype.

• A constraining predicate is provided to identify which elements are
contained in the subset.

• A CONTAINING clause may be added to show nonemptiness.

• Type correctness conditions (TCCs) may be generated to impose a
nonemptiness requirement.

Declarations and Types Oct 2012 — 14 / 27

Enumeration Types

The familiar concept of enumeration type is available in PVS.

• Basic declarations:

color: TYPE = {red, white, blue}

flight_mode: TYPE = {going_up, going_down}

• Value identifiers become constants of the type.

– The constants are considered distinct.

– Axioms are generated that state these inequalities.

– Example: red /= white

– An inclusion axiom states that the explicit constants exhaust the type.

• Constant identifiers may be used in expressions.

Declarations and Types Oct 2012 — 15 / 27

Function Types

A key feature of PVS and its style of formalization is the function-type
capability.

• Functions types are declared using explicit domain and range types:

status: TYPE = [LRU_id -> bool]

operator: TYPE = [int, int -> int]

operator: TYPE = FUNCTION[int, int -> int]

control_bank: TYPE = ARRAY[LRU_id -> control_block]

• Reserved words FUNCTION and ARRAY provide alternate forms with
equivalent meaning.

• A value of a function type is a mathematical object: any legitimate
function having the required signature.

– Values may be constructed using LAMBDA expressions.

– This feature is fully higher order: domain and range types may
themselves be function types.

Declarations and Types Oct 2012 — 16 / 27

Function Types (Cont’d)

Function types make the language very expressive and allow some rather
sophisticated mathematics to be formalized directly.

• Functions types are also the primary means in PVS of modeling structured
data objects such as vectors and arrays.

• Consider an array type in a procedural programming language notation:

memory: ARRAY address OF word

• This would be represented in PVS with a function type:

memory: [address -> word]

• Array access in a programming language is typically denoted M[a]

– In PVS we use function application: M(a)

Declarations and Types Oct 2012 — 17 / 27

More on Predicates and Types

Certain types involving predicates are treated as special cases.

• A predicate type can be declared explicitly or using a shorthand:

nat_pred: TYPE = [nat -> bool]

nat_pred: TYPE = pred[nat]

nat_pred: TYPE = setof[nat]

• Predicate subtypes also can be specified using a shorthand:

prime?(n: nat): bool = ...

primes: TYPE = {n: nat | prime?(n)}

primes: TYPE = (prime?)

• Personal taste dictates which way to declare types.

– Explicit method for novices vs. shorthand for experts.

– Shorthand notations pop up a lot, however.

– Need to be able to recognize them.

Declarations and Types Oct 2012 — 18 / 27

Tuple Types

Structured data objects in the form of tuples can be modeled using tuple
types.

• Declarations include types for each element:

pair: TYPE = [int, int]

position: TYPE = [real, real, real]

two_bits: TYPE = [bool, bool]

• Instances are easily specified:

(1, 2, 3)

• Tuple elements are organized positionally.

(1, 2) 6= (2, 1)

• Elements are extracted using special notation or predefined projection
functions.

Declarations and Types Oct 2012 — 19 / 27

Record Types

Similarly structured data objects can be modeled using record types.

• Declarations include types for each element:

pair: TYPE = [# left: int, right: int #]

vector: TYPE = [# x: real, y: real, z: real #]

ctl_block: TYPE =

[# active: bool, timestamp: TOD, status: op_mode #]

• Instances are easily specified:

(# x := 1, y := 2, z := 3 #)

• Record elements are organized by keyword.

(# left := 1, right := 2 #) =

(# right := 2, left := 1 #)

• Elements are extracted using special notation or function application based
on the element names.

Declarations and Types Oct 2012 — 20 / 27

Other Type Concepts

Two additional typing mechanisms are available in PVS.

• Abstract data types are introduced by giving a scheme for defining
constructors and access functions.

list[base: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: base, cdr: list) : cons?

END list

• This declaration causes axioms and derived functions to be generated
based on the DATATYPE scheme.

– Example: induction axiom usable within the prover.

• CODATATYPE is also available for coalgebraic formalization.

Declarations and Types Oct 2012 — 21 / 27

Other Type Concepts (Cont’d)
• Dependent types offer another powerful typing concept:

date1: TYPE = [yr: year, mon: month,

{d: posnat | d <= days(mon, yr)}]

date2: TYPE = [# yr: year, mon: month,

day: {d: posnat | d <= days(mon, yr)} #]

• These declarations introduce a tuple and a record structure where the type
of component day depends on the values of month and year that precede
it in the structure.

• Allows complex data type dependencies to be modeled, obviating the
messy specifications that would be necessary without this feature.

• Can also be used in other contexts such as function arguments.

ratio(x, y: real, z: {z: real | z /= x}): real =

(x - y) / (x - z)

• TCCs are generated as needed to ensure well-formed values.

Declarations and Types Oct 2012 — 22 / 27

Lexical Rules

PVS has a conventional lexical structure.

• Comments begin with ‘%’ and go to the end of the line.

• Identifiers are composed of letters, digits, ‘?’, and ‘ ’.

– They must begin with a letter.

– They are case sensitive.

• Integers are composed of digits only.

• Rationals can be written as ratios or with decimal notation.

– 2.718 is equivalent to 2718/1000

– Leading zeros are required: 0.866

– No floating point formats

Declarations and Types Oct 2012 — 23 / 27

Lexical Rules (Cont’d)

• Strings are enclosed in double quotes.

• Reserved words are not case sensitive.

– Examples: FORALL exists BEGIN end

• Many special symbols

– Examples: [# #] -> (: :) >=

Declarations and Types Oct 2012 — 24 / 27

Examples of Declarations

major_mode_code: TYPE = nat

mission_time: TYPE = real

GPS_id: TYPE = {n: nat | 1 <= n & n <= 3}

receiver_mode: TYPE = {init, test, nav, blank}

AIF_flag: TYPE = {auto, inhibit, force}

M50_axis: TYPE = {Xm, Ym, Zm}

IMPORTING vectors[M50_axis]

M50_vector: TYPE = vector[M50_axis]

position_vector: TYPE = M50_vector

velocity_vector: TYPE = M50_vector

GPS_predicate: TYPE = [GPS_id -> bool]

GPS_positions: TYPE = [GPS_id -> position_vector]

GPS_velocities: TYPE = [GPS_id -> velocity_vector]

GPS_times: TYPE = [GPS_id -> mission_time]

Declarations and Types Oct 2012 — 25 / 27

Sample Declarations (Cont’d)

vectors [index_type: TYPE]: THEORY

BEGIN

vector: TYPE = [index_type -> real]

i,j,k: VAR index_type

a,b,c: VAR real

U,V: VAR vector

zero_vector: vector = LAMBDA i: 0

vector_sum(U, V): vector = LAMBDA i: U(i) + V(i)

vector_diff(U, V): vector = LAMBDA i: U(i) - V(i)

scalar_mult(a, V): vector = LAMBDA i: a * V(i)

. . .

END vectors

Declarations and Types Oct 2012 — 26 / 27

Sample Declarations (Cont’d)

matrices [row_type, col_type: TYPE]: THEORY

BEGIN

vector: TYPE = [col_type -> real]

matrix: TYPE = [row_type -> vector]

vector_2: TYPE = [row_type -> real]

matrix_2: TYPE = [col_type -> vector_2]

i: VAR row_type

j: VAR col_type

a,b,c: VAR real

U,V: VAR vector

M,N: VAR matrix

. . .

END matrices

Declarations and Types Oct 2012 — 27 / 27

