
Computational Reflection:
Automatically Proving Difficult Things

Anthony Narkawicz

NASA Langley Formal Methods Group

anthony.narkawicz@nasa.gov

October 2012

Computational Reflection

Suppose we are proving the correctness of some system,

Part way through the proof, we must show:

|-

{1} EXISTS (x:real): 3 x^2 -5*x+2 = 0

Computational Reflection

A little while later, we have to prove:

|-

{1} EXISTS (x:real): 2 x^2 -3*x+1 = 0

And later,

|-

{1} EXISTS (x:real): 12 x^2 -10*x+2 = 0

In each case, we prove this by instantiating formula 1 with a real
number x that makes the equality true.

But we don’t need to know the exact solutions to these equations
to know that they are true.

Computational Reflection

By the quadratic formula, the equation

ax2 + bx + c = 0

has a solution if and only if b2 − 4ac ≥ 0.

In PVS, we can define a function on a, b, and c that returns a
boolean:

D(a,b,c:real): bool = b^2 - 4*a*c >= 0

We can then prove the following lemma in PVS

quadratic_solvable : LEMMA

FORALL (a,b,c:real):

(EXISTS (x:real): a x^2 -b*x+c = 0)

IFF

D(a,b,c)

Computational Reflection
Now we can solve all of those lemmas by just evaluating D.

The next time we have to prove something like

|-

{1} EXISTS (x:real): 2 x^2 -3*x+1 = 0

we can just type

(lemma ‘‘quandratic_solvable’’)

(inst?)

(assert)

(hide

(-1 -2))

which turns the sequent into

|-

{1} D(2,-3,1)

This proves with

(grind)

What if we tried to prove something that is false???

Part way through the proof, we must show:
|-

{1} EXISTS (x:real): 10 x^2 -2*x+1 = 0

This FAILS:

(lemma ‘‘quandratic_solvable’’)

(inst?)

(assert)

(hide (-1 -2))

(grind)

Computational Reflection

Proving that a quadratic has a root:

Computational reflection is similar:

Computational Reflection

Computational reflection:

I We have some type T (e.g. quadratics)

I We often want to prove a property of P(p) for some p ∈ T

I The property P(p) can not be evaluated

I Q(p) is equivalent to P(p)

I Q(p) can be evaluated!

Computational Reflection

Computational reflection:

I Q(p) is equivalent to P(p) and can be evaluated

Sometimes (grind) can be inefficient.

Let’s prove

|-

{1} EXISTS (x:real): 2^400 * x^2 +2^600*x+2^100 = 0

The same proof works as before. The sequent is reduced to proving

|-

{1} D(2^400,2^600,2^100)

This proves with (grind)

Computational Reflection

|-

{1} D(2^400,2^600,2^100)

This proves with (grind)...

but it takes more than a minute.

I What if we have to prove many results like this?

I What if the function D were significantly more complicated?

(grind) is not very efficient for evaluating complicated expressions

PVS is not really a programming language. We’d like to evaluate
this expression as fast as we could in a programming language.

Computational Reflection

We can evaluate

|-

{1} D(2^400,2^600,2^100)

using

(eval-formula)

THIS is computational reflection

Computational Reflection

I The property Q(p) is equivalent to P(p) and can be evaluated

Why is it Called Reflection?

I PVS is built on top of LISP

I The problem is reflected down to LISP

I ... and computed there

Ground Terms

To compute Q(p) in LISP using (eval-formula), all of the atoms
involved must be ground terms

That is, it has to be something that the programming language
can compute

For instance, if a ∈ R, it can’t compute

IF a2 ≥ 0 THEN 1 ELSE 0 ENDIF

which is equal to 1, because a2 is not ground.

However, it can compute

IF 22 ≥ 0 THEN 1 ELSE 0 ENDIF

Example: Conflict Detection

Conflicts

I Minimum Horizontal Distance D

I Minimum Vertical Distance H

The Protected Zone: A Cylinder

2H

D

Example: Conflict Detection

The Problem: Detect Conflicts Within a Lookahead Time T
Conflict: Exists a time t ∈ [0,T] such that the red plane is inside
the cylinder at time t.

Not Conflict
T T

Conflict

Example: Conflict Detection

Aircraft Position Velocity

ownship so vo
intruder si vi

relative s = so − si v = vo − vi

conflict?(D,H, s, v) ≡ ∃t ≥ 0 : ‖s + tv‖ < D and |sz + tvz | < H

This is not computable

Example: Conflict Detection

Project: Take 10K examples of near-conflicts and prove that none
of them are actual conflicts.

Problem: Analyzing them individually would be very slow since
conflict?(D,H, s, v) can’t be evaluated.

Solution: Replace conflict?(D,H, s, v) with something equivalent
that can be evaluated (computational reflection)

Example: Conflict Detection
cd3d is an algorithm that computes whether conflict?(D,H, s, v)
holds.

cd3d_correct : LEMMA

FORALL (s,v:Vect3,D,H:posreal):

conflict?(D,H,s,v)

IFF

cd3d(D,H,s,v)

Example: Conflict Detection

Given 10K lemmas of the form

not_conflict_8741: LEMMA

D = 5 AND

H = 1000 AND

s = (21,-5,-100) AND

v = (-551,-1,300)

IMPLIES

NOT conflict?(D,H,s,v)

... the proofs are all the same and do not involve the actual
numbers.

conflict? is replaced by cd3d , which is then evaluated using
(eval-formula).

Example: Conflict Detection

{-1} conflict?(D,H,s,v)

{-2} D = 5

{-3} H = 1000

{-4} s = (21,-5,-100)

{-5} v = (-551,-1,300)

|-

(replaces -2)

(replaces -2)

(replaces -2)

(replaces -2)

(lemma "cd3d_correct")

(inst?)

(assert)

(hide -1)

{-1} cd3d(5,1000,(21,-5,-100),(-551,-1,300))

|-

(eval-formula)

Making the Proofs Even Easier
All of the proofs are the same.

We can create a single command that will execute the entire proof.

Let’s call it (noconflict).

This is called a strategy.

After defining it, every lemma of the form

not_conflict_8741: LEMMA

D = 5 AND

H = 1000 AND

s = (21,-5,-100) AND

v = (-551,-1,300)

IMPLIES

NOT conflict?(D,H,s,v)

can be proved by just typing

(noconflict)

Strategies and Computational Reflection

The command

(noconflict)

is called a strategy.

The combination of a strategy with computational reflection is very
powerful for proving results with complicated proofs very quickly.

Recursion and Computational Reflection

I A proof tree can be complicated

I A strategy can form the tree automatically in PVS

Recursion and Computational Reflection

It isn’t hard to decide when you need to split:

Yogi Berra: “When you come to a fork in the road, take it!”

I PVS can figure this out as well

I A strategy can tell PVS to split at each splitting node so that
forming the tree is automatic

I It can also prove the result at each terminating node

Recursion and Computational Reflection

I The proof in PVS is as big as the tree

I All of this is done in PVS

I Even if we use reflection on the terminating nodes, forming a
huge tree is slow in PVS

When Computational Reflection is Really Powerful

I Define the reflection function Q(p) as a recursive function
that computes the whole tree

I ... and determines whether the result is true

I Then the proof in PVS is just reduced to evaluating Q(p) in
PVS

I Which it does recursively in LISP by recreating the tree

When Computational Reflection is Really Powerful
Instead of having PVS develop a proof that looks like

Define the recursive reflection function Q(p) in LISP whose
execution looks like

When Computational Reflection is Really Powerful

After proving P(p) in this way, the branch of the proof tree where
P(p) was proved is now a single node

When Computational Reflection is Really Powerful
The proof tree

becomes

When Computational Reflection is Really Powerful

I Now the proof has the same length in PVS regardless of the
size of the sub-tree where P(p) is proved

I But this is not always possible

I Every node in the recursion of Q(p) must be composed of
only ground terms

I So no variables, existential quantifiers, infinite universal
quantifiers, or square roots

I Coming up with a Q so that its execution mimics the proof
tree can be difficult

Examples

Sat Solving

Nonlinear Arithmetic

Any other problems with recursive proofs

	Proofs & Quantifiers
	Introduction

