Theory Interpretations in PVS
NASA/NIA PVS Class 2012

Sam Owre
Computer Science Laboratory
SRI International
Menlo Park, CA

October, 2012
Contents

- Introduction
- Mappings and Views
- Parameter vs Uninterpreted Declarations
- Theory Declarations
- Nested Theory Declarations
- Theories as Parameters
- Conclusion
Introduction

- Logic has two primary aspects:
 - syntactic (proof theory) and
 - semantic (model theory)

- Interpretations are the bridge between these, assigning meaning to the symbols of a formal language

- Interpretations provide
 - Consistency: ensuring axioms are not contradictory
 - Refinement: providing an implementation for a specification
 - Expected Models: the specification satisfies expected models
 - Renaming: simply changing names
Interpretations have been important in several systems:

- Ehdm - precursor to PVS
- IMPS - axiomatic method based on “little theories”
- HOL - abstract theories and instantiations
- Maude - based on Rewriting Logic
- Extended ML - a framework for specification and refinement for Standard ML
- Specware - categorical basis—pullbacks
- COQ - based on the Calculus of Inductive Constructions
PVS Theories

- *Theories* are the top-level structures for PVS
- Theories may be parameterized
- Theories contain declarations for
 - types, constants, variables
 - definitions
 - inductive and coinductive definitions
 - axioms and formulas
 - importing other theories
 - judgements
 - conversions
 - auto-rewrites
 - libraries
Mappings in PVS are specified using *mappings*. Mappings assign meaning to *uninterpreted* types and constants.

```plaintext
trivial

trivial: THEORY
BEGIN
  T: TYPE
  c: T
END trivial
```

Assignments must be consistent; `c := true` would be an error.

But need not be complete - could assign `T` and leave `c` for later.
PVS has more than just uninterpreted types and constants

In general, interpretations for other entities is simply substitution, but

- Substituted axioms become proof obligations
- Other substituted formulas are considered proved if their associated formula is
Group Example

group

group: THEORY
BEGIN
 G: TYPE+
 +: [G, G -> G]
 0: G
 -: [G -> G]
 x, y, z: VAR G
 associative_ax: AXIOM FORALL x, y, z: x + (y + z) = (x + y) + z
 identity_ax: AXIOM FORALL x: x + 0 = x
 inverse_ax: AXIOM FORALL x: x + -x = 0 AND -x + x = 0
 idempotent_is_identity: LEMMA x + x = x => x = 0
END group

Importings

IMPORTING group{{ G := int, + := +, 0 := 0, - := - }
TCCs

<table>
<thead>
<tr>
<th>Obligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IMP_group_G_nonempty_TCC1: OBLIGATION EXISTS (x: int): TRUE;</td>
</tr>
<tr>
<td>% was not generated because int is non-empty</td>
</tr>
<tr>
<td>IMP_group_associative_ax_TCC1: OBLIGATION</td>
</tr>
<tr>
<td>FORALL (x: int), (y: int), (z: int): x + (y + z) = (x + y) + z;</td>
</tr>
<tr>
<td>IMP_group_identity_ax_TCC1: OBLIGATION FORALL (x: int): x + 0 = x;</td>
</tr>
<tr>
<td>IMP_group_inverse_ax_TCC1: OBLIGATION</td>
</tr>
<tr>
<td>FORALL (x: int): x + -x = 0 AND -x + x = 0;</td>
</tr>
</tbody>
</table>
Implicit Axioms

- Some types include implicit axioms—for example, TYPE+
- Datatypes and Codatatypes also have implicit axioms
- For example, list has extensionality, induction, etc.

```plaintext
stack

astack [T: TYPE]: THEORY
BEGIN
  stack : TYPE = [# size : nat, elems: [below(size) -> T] #]
  empty?(S: stack): bool = (S'size = 0)
  nonempty?(S: stack): bool = NOT empty?(S)
  nonempty_stack: TYPE = (nonempty?)
  top(S: nonempty_stack): T = S'elems(S'size - 1)
  push(a: T, S: stack): nonempty_stack =
    S WITH ['size := S'size + 1,
             'elems := lambda (x: below(S'size+1)):
                IF x = S'size THEN a ELSE S'elems(x) ENDF]
END astack
```

Sam Owre
Theory Interpretations in PVS
list to stack

list_map: THEORY
BEGIN
IMPORTING astack[int]
IMPORTING list[int]
{{
list := astack,
null := (# size := 0,
elems := lambda (x: below(0)): 0 #),
null? := empty?,
cons := push,
cons? := nonempty?,
car := top,
cdr := lambda (S: nonempty_stack):
 S WITH ['size := S'size-1,
 'elems := lambda (x: below(S'size-1)): S'elems(x)]
}}
END list_map
Extensionality Axiom

\[
\text{list_cons_extensionality: AXIOM}
\]

\[
\text{FORALL (cons?_var: (cons?), cons?_var2: (cons?)):}
\]
\[
\begin{align*}
\text{car(cons?_var)} &= \text{car(cons?_var2)} \\
\text{AND cdr(cons?_var)} &= \text{cdr(cons?_var2)} \\
\text{IMPLIES cons?_var} &= \text{cons?_var2};
\end{align*}
\]

Extensionality TCC

\[
\text{IMP_list_list_cons_extensionality_TCC1: OBLIGATION}
\]

\[
\text{FORALL (cons?_var, cons?_var2: x: stack[int] | nonempty?[int](x))):
\]
\[
\begin{align*}
\text{top[int](cons?_var)} &= \text{top[int](cons?_var2) AND}
\text{cons?_var WITH [‘size := cons?_var‘size - 1,}
\text{‘elems := LAMBDA (x: below(cons?_var‘size - 1)):}
\text{cons?_var‘elems(x)]}
\text{= cons?_var2 WITH [‘size := cons?_var2‘size - 1,}
\text{‘elems := LAMBDA (x: below(cons?_var2‘size - 1)):}
\text{cons?_var2‘elems(x)]}
\text{IMPLIES cons?_var} &= \text{cons?_var2};
\end{align*}
\]
Induction Axiom

list_induction: AXIOM
 FORALL (p: [list -> boolean]):
 (p(null) AND
 (FORALL (cons1_var: T, cons2_var: list):
 p(cons2_var) IMPLIES p(cons(cons1_var, cons2_var))))
 IMPLIES (FORALL (list_var: list): p(list_var));

Induction TCC

IMP_list_list_induction_TCC1: OBLIGATION
 FORALL (p: [stack[int] -> boolean]):
 (p((# size := 0, elems := LAMBDA (x: below(0)): 0 #)) AND
 (FORALL (cons1_var: int, cons2_var: stack[int]):
 p(cons2_var) IMPLIES p(push[int](cons1_var, cons2_var))))
 IMPLIES (FORALL (list_var: stack[int]): p(list_var));
Theory Views (Mapping Shortcut)

- Often refinements use the same names for specification and implementation
- Views make this more convenient and less error-prone
- Example from the theory of Timed Automata:

```
Timed Automaton Spec

automaton: THEORY
BEGIN
  actions: TYPE+;
  visible(a: actions): bool;
  states: TYPE+;
  enabled(a: actions, s: states): bool;
  trans(a: actions, s: states): states;
  equivalent(a1, s2: states): bool;
  reachable(s: states): bool;
  start(s: states): bool;
END automaton
```

- A machine implementation defines actions, visible, etc.
Theory Views

Now instead of

Automaton Mapping

```plaintext
IMPORTING machine
IMPORTING automaton {{ actions := actions,
                   visible := visible, ... }}
```

Can write shorthand (the automaton view of a machine)

Automaton View

```plaintext
IMPORTING automaton :-> machine
```

The defaults can be overridden:

Views with Mappings

```plaintext
IMPORTING automaton{{ visible := myvisible }} :-> machine
```
Importing Limitations

- Importings are limited—example: group homomorphisms
- It is easy to define group automorphisms: \([G \rightarrow G]\)
- But homomorphisms are between different groups:

\[
\text{IMPORTING group}\{\{ G := \text{int}, + := +, 0 := 0, - := - \}\}
\]

\[
\text{IMPORTING group}\{\{ G := \text{nzreal}, + := *, 0 := 1, -(x: \text{nzreal}) := 1/x \}\}
\]

- Can define homomorphism \([\text{int} \rightarrow \text{nzreal}]\), but that is too specific
- We need two \((\text{generative})\) copies of the group theory
Theory declarations are generative in this way

```plaintext
group_homomorphism: THEORY
BEGIN
    G1, G2: THEORY = group
    x, y: VAR G1.G
    homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)
END group_homomorphism

IMPORTING group_homomorphism
{}
{{
    G1 = group{{ G := int, + := +, 0 := 0, - := - }},
    G2 = group{{ G := nzreal, + := *, 0 := 1,
               -(x: nzreal) := 1/x } }
}}
```
A theory declaration creates a new copy of the named theory.
This is basically an inline expansion of the theory - a copy of all the declarations with the given substitution.
The declarations are named apart by prepending the theory declaration id and a period - G1.G, G2.+.
The expanded form may be seen using M-x prettyprint-expanded.
Theory Abbreviations

- Theory abbreviations are similar to theory declarations
- Provide a name associated with an importing
 - Mostly used with importings that introduce ambiguity
 - The abbreviation may be used in name references to disambiguate

```
IMPORTING group{{ G := nzreal, + := *, 0 := 1,
-(x: nzreal) := 1/x }} AS nzR
```

- Can now reference, for example, nzR.associative_axf
Nested Theory Declarations

group_homomorphism decl

\[\text{ghinst: THEORY} \]

BEGIN

\[\text{gh: THEORY} = \text{group_homomorphism} \]

- \[G1 := \text{group}{{ G := \text{int}, + := +, 0 := 0, - := -}} \]
- \[G2 := \text{group}{{ G := \text{nzreal}, + := *, 0 := 1, -(x: \text{nzreal}) := 1/x}} \]

END \text{ghinst}

- Note the mappings within mappings
- Importing \text{ghinst} leads to names such as \text{ghinst.gh.G1.+}
- The syntax of names was extended to allow such nested names
Theory declarations are more general, but do incur an overhead.

Generally used when a copy is actually needed.

However, nested mappings may only be given for theory declarations.

```
Th1: THEORY BEGIN T: TYPE END Th1
Th2: THEORY BEGIN IMPORTING Th1 END Th2
Th3: THEORY BEGIN IMPORTING Th1 END Th3
Th4: THEORY BEGIN IMPORTING Th2, Th3 END Th4
Th5: THEORY BEGIN IMPORTING Th4{{T := int}} % ???
```
The name syntax is

```
name ::= [id '@'] idop [actuals]
   [mappings] ['->' modname]
   ['.'] idop++'.']
```

Name Examples

```
timed_auto_lib@timed_automaton{{ visible := vis }}
   :-> timeout_decls
ghinst.gh.G1.+
lib@th[int]{{ T := int }} :-> spec.A.f
```

- Note that mappings and views may appear in any name, not just importings and theory declarations
- Only the top level (before the first '.') has actual parameters
Names rarely need to be fully provided

- Actual parameters can often be inferred (mostly for types)
- The theory name is usually not needed
- Just suffix of dotted names is needed—enough to disambiguate e.g., G1.+
Theories may be partially interpreted:

```
IMPORTING group{{ G := int, + := + }} AS igrp
```

- igrp may be further interpreted later
- TCCs are only generated for axioms that are fully interpreted; in this case only associative_ax.
- The other axioms remain as axioms for proofchain analysis
Mapping *renames* introduced with ::=

For example, lists are really stacks

```
Lists as Stacks

list2stack: THEORY
BEGIN
   intstack: THEORY = list[int]
      {{
         list:TYPE ::= stack,
         null ::= empty,
         null? ::= empty?,
         cons ::= push,
         cons ::= nonempty??,
         car ::= top,
         cdr ::= pop
      }}
   push2pop2: LEMMA empty?(pop(push(1, empty)))
END list2stack
```
Renamings (continued)

- Renamings are only available for theory declarations, as new declarations must be generated.
- The new copy of the theory has all declarations substituted with renamings.
- Renamings may be mixed with normal mappings.
Theory Parameters versus Mappings

- In principle, theory parameters are not required
- They could be given as uninterpreted types and constants and instantiated with mappings
- In practice, theory parameters have some advantages:
 - Parameters are required
 - Parameters may have assumptions that act as contracts
 - Parameters often can be inferred
- On the other hand, parameters
 - Must be completely provided every time (no partial instantiation)
 - Assumptions tend to have to be carried along the theory hierarchy
Theory declarations may also appear as parameters

```plaintext
group_homomorphism[G1, G2: THEORY group]: THEORY
BEGIN
  x, y: VAR G1.G
  homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)
END group_homomorphism

gh: THEORY
BEGIN
  IMPORTING group_homomorphism
  [group{"G := int, + := +, 0 := 0, - := -"},
   group{"G := nzreal, + := *, 0 := 1,
      - := LAMBDA (x: nzreal): 1/x"}]
  h: (homomorphism?)
END gh
```

As before, which to use is a matter of taste
Further Work

- There is some preliminary work with interpreting equality as an equivalence relation, using quotient types.
- Interpreting type structures such as record and function types—need to be careful about implicit axioms.
- Providing means for, e.g., after mapping list to stack, getting access to the mapped theorems of list_props.
- Provide a theory hierarchy display that makes it easy to follow the how theories are imported or mapped.