
Expression Language Features of PVS

Ben Di Vito

NASA Langley Research Center
Formal Methods Team

b.divito@nasa.gov

NASA Langley – NIA Short Course on PVS

9–12 October 2012

Expressions

PVS allows many operators and constructors for use in forming expressions.

• Equality relations

• Arithmetic expressions

• Logical expressions, formulas

• Conditional expressions

• Function application

• Lambda abstraction

• Override expressions

• Record construction and access

• Tuple construction and access

• LET and WHERE expressions

• Set expressions

• Lists and strings

• Pattern matching on data types

• Name resolution

Every expression must be properly typed.

• Typechecker emits TCCs if it’s unsure.

Expression Language Features Oct 2012 — 1 / 29

Equality Relations

Equality operations are defined for any type.

• Two operators available: x = y z /= 7

• Both sides of an equality/inequality must be of compatible types.

x * y = 4 is valid

true /= 4 is illegal

• A (dis)equality is legal if there is a common supertype.

• TCCs may be generated when subtypes are involved.

• Equality on function values entails special techniques when proving.

– Use of extensionality inference rule:

(∀x ∈ D : f(x) = g(x)) ⊃ f = g

– Logic notation:

P ⊃ Q means P ⇒ Q (P implies Q)

Expression Language Features Oct 2012 — 2 / 29

Arithmetic Expressions

PVS has the usual assortment of arithmetic operations.

• Relational operators: <, <=, >, >=

• Binary operators: +, -, *, /, ^

• Unary operators: -

• Numeric constants are limited to integers and rationals.

– Decimal point format is available.

– Can bound or approximate reals using rational numbers.

– Examples: 1/2, 22/7, 3.14, 0.621

• Base type for arithmetic is real.

– Subtypes built in for naturals, integers, etc.

– Automatic coercions performed when needed.

Expression Language Features Oct 2012 — 3 / 29

Logical Expressions and Formulas

Logical expressions may be used to construct both propositional and predicate
calculus formulas.

• Logical constants: true and false

• Propositional connectives:

– Negation: NOT

– Conjunction: AND, &

– Disjunction: OR

– Implication: =>, IMPLIES

– Equivalence: <=>, IFF

• Quantified formulas:

– Universal: FORALL x: P(x), also with ALL

– Existential: EXISTS x: Q(x), also with SOME

• A few other synonyms and operators are available.

Expression Language Features Oct 2012 — 4 / 29

Conditional Expressions

Conditional expressions come in two basic varieties.

• IF expressions:

IF a THEN b ELSE c ENDIF

• Evaluates to either b or c according to the value of boolean expression a.

• Subexpressions b and c must have compatible types.

• Type of resulting expression is the common supertype of b and c.

• The ELSE clause is not optional.

• Also can have multiple tests and branches:

IF x < 0 THEN -1 ELSIF x = 0 THEN 0 ELSE 1 ENDIF

• Can include any number of ELSIF clauses.

Expression Language Features Oct 2012 — 5 / 29

Conditional Expressions (Cont’d)

• COND expressions:

COND m = n -> n,

m > n -> gcd(m - n, n),

m < n -> gcd(m, n - m)

ENDCOND

• Allows multiway conditional evaluation similar to IF expressions containing
ELSIF clauses.

• PVS generates coverage and disjointness TCCs to ensure expression is well
formed.

– Disjointness: at most one case applies.

– Coverage: at least one case applies.

– Together ensure that exactly one case applies.

• COND expressions are used in table-based specifications.

Expression Language Features Oct 2012 — 6 / 29

Tabular Expressions

Complex conditional expressions can be put in the form of tables:

TABLE %---%

|[m = n | m > n | m < n]|

%---%

| n | gcd(m - n, n) | gcd(m, n - m) ||

%---%

ENDTABLE

• Semantically equivalent to COND expressions.

• More complex forms are also available.

• Can directly express many types of tables used in practice.

• Well-formedness analysis is available through TCC mechanism.

Expression Language Features Oct 2012 — 7 / 29

Function Application

Function application can be a little more involved than normal when
higher-order features are present.

• Basic function application:

f(x) a - b g(y, z) h(0, f(a)) + 1

• Infix operators can be applied in prefix style.

+(x, y) *(y, -(z, 1))

• Expressions can evaluate to functions, which are then applied to other
expressions.

Function signature Possible application
f: [nat -> [real -> real]] f(1)(x)

g: [nat,nat -> [real -> real]] g(2,3)(f(k)(z))

h: [nat,real -> [bool,int -> real]] h(0, a)(true, 39)

Expression Language Features Oct 2012 — 8 / 29

Function Application (Cont’d)

• Signatures of functions and corresponding types are used to sort things out.

• Function being applied could be given as the value of a variable, which
looks the same as regular application.

f(x), g(y, z) if f and g are variables of suitable function types.

Expression Language Features Oct 2012 — 9 / 29

Lambda Abstraction

Lambda expressions allow writing function-valued expressions without having
to explicitly introduce named functions.

• Typical examples:

LAMBDA j: 0

LAMBDA i: table(i)

LAMBDA x,y: x + 2 * y

LAMBDA (p: prime): 2^p - 1

• Evaluates to a function of n arguments with a signature derived from the
argument types and expression types.

• The following declarations are equivalent:

square: [real-> real] = LAMBDA (x: real): x * x

square(x: real): real = x * x

Expression Language Features Oct 2012 — 10 / 29

Lambda Abstraction (Cont’d)

• Lambda expressions can be used wherever a function value of the
appropriate type is used.

– As part of defining expressions for larger functions

– As a value supplied to data structure update operations

– As the function being applied to one or more arguments

– Example: (LAMBDA (p: prime): 2^p - 1)(3) = 7

• Lambda expressions pop up a lot because of PVS’s orientation toward
function types and higher-order logic.

Expression Language Features Oct 2012 — 11 / 29

Function Overriding

Another way to construct new function values is to override/update an
existing function value to create a new one.

• Examples of basic forms:

f WITH [0 := 2, 1 := 3]

f WITH [(0) := 2, (1) := 3]

table WITH [(i) := g(i)]

matrix WITH [(i)(j) := x * y]

• Each evaluates to a new function formed from the original that differs on
one or more elements of its domain.

• A form using symbol |-> extends the domain of the function, resulting in
a different type.

f WITH [(-1) |-> g(0)]

Expression Language Features Oct 2012 — 12 / 29

Function Overriding (Cont’d)

• Useful for specifying state-changing operations on large data objects.

• Meaning is best visualized by considering function update and then
function application:

(f WITH [(i) := a])(j) =

IF i = j THEN a ELSE f(j) ENDIF

– Some prover commands apply this reduction automatically.

Expression Language Features Oct 2012 — 13 / 29

Record Operations

PVS has facilities for record construction, field selection, and updates.

• Record construction:

(# ready := true, timestamp := T + 1, count := 0 #)

• Field selection is similar to the familiar r.ready notation from
programming languages:

IF r‘ready THEN r‘timestamp ELSE 0 ENDIF

• Field selection is also possible using function application:

IF ready(r) THEN timestamp(r) ELSE 0 ENDIF

• Record update (two forms allowable):

r WITH [ready := false, timestamp := current]

r WITH [‘ready := false, ‘timestamp := current]

– Evaluates to r with two of its fields updated as indicated.

Expression Language Features Oct 2012 — 14 / 29

Tuple Operations

Tuple construction, field selection, and updates are similar to those of records.

• Tuple construction:

(true, T + 1, 0)

• Tuple selection is similar to record field selection:

IF t‘1 THEN t‘2 ELSE 0 ENDIF

• Selection is also possible using built-in projection functions:

IF proj_1(t) THEN proj_2(t) ELSE 0 ENDIF

• Tuple update (two forms allowable):

t WITH [1 := false, 2 := current]

t WITH [‘1 := false, ‘2 := current]

– Evaluates to t with two of its components updated as indicated.

Expression Language Features Oct 2012 — 15 / 29

LET and WHERE Expressions

Two expression types are used to introduce named subexpressions.

• Basic form:

LET x = 2, y: nat = x * x IN f(x, y) + y

• LET variables are local to the LET expression.

• Within the IN part, variables denote values as if the subexpressions were
substituted in their place.

• WHERE form is analogous:

f(x, y) + y WHERE x = 2, y: nat = x * x

• There is also a tuple form to name components implicitly:

LET (x, y, z) = t IN x + y * z

• LET and WHERE expressions are useful for modeling sequential
computation steps.

Expression Language Features Oct 2012 — 16 / 29

Misc. Expressions

Several other expression types are available in PVS.

• Coercions alert the typechecker to type membership.

• Example: (a / b) :: int (assuming b divides a)

• Sets are represented in PVS as predicates over a base type.

• Set expressions: {n: int | n < 10}

– Equivalent to LAMBDA (n: int): n < 10

• List constructors:

(: 1, 2, 3, 4 :)

– Equivalent to cons(1, cons(2, ... null))

• String constants: "A character string"

Expression Language Features Oct 2012 — 17 / 29

Pattern Matching on Data Types

A special construct is available for working with abstract data types.

• The CASES construct enables a kind of “pattern matching” on
DATATYPE-introduced values.

CASES list OF

cons(elt, rest): append(reverse(rest),

cons(elt, null))

ELSE null

ENDCASES

• Allows conditional selection of alternative expressions.

– Based on the form of a value with respect to its DATATYPE definition.

– One clause per constructor.

Expression Language Features Oct 2012 — 18 / 29

Extensible Syntax and Semantics

PVS supports several ways to enhance flexibility and expressibility.

• Function names may be overloaded.

– Types of arguments are used to disambiguate function instances.

– Predefined as well as user-defined functions may be overloaded.

– Even infix operators such as + and * may be overloaded.

• Also, the identifier o is available as a user-definable operator.

– Example: fs1 o (fs2 o fs3) = (fs1 o fs2) o fs3

• Several “outfix” operators are available as well.

– Three bracket pairs: [| |] (| |) {| |}

– Function definition example:

[||] (a,b,c): real = (a + b + c) / 3

– Use in an expression:

avg_123: LEMMA [| 1,2,3 |] = 2

Expression Language Features Oct 2012 — 19 / 29

Name Resolution

When names have been imported from multiple theories, name conflicts or
ambiguity may result.

• The same name may be imported from different theories.

• Or, the same name may be imported from different theory instances.

• Three ways to reference “name” declared in theory “thy”:

1. name

2. name[params]

3. thy[params].name

• Method 1 works when there are no conflicts.

• Method 2 works for some clashes.

• Method 3 is guaranteed to be unambiguous.

Expression Language Features Oct 2012 — 20 / 29

Function Declaration

Named functions are declared using the constant declaration mechanism.

• A function is simply a constant whose type is a function type.

• As with simple data constants, function declarations may be either
interpreted or uninterpreted.

• Typical uninterpreted function declarations:

abs(x): nat

max: [int, int -> int]

ordered(s: num_list): bool

• Note these are equivalent:

gcd: [nat, nat -> nat]

gcd(m: nat, n: nat): nat

Expression Language Features Oct 2012 — 21 / 29

Function Declaration (Cont’d)

• Note a subtle difference:

scalar_mult(a, v: vector): real

scalar_mult(a, (v: vector)): real

– In the second case, the type of a is inherited from the theory.

• Undefined (uninterpreted) functions may be referenced freely in PVS
specifications.

– But there is nothing to expand during proofs.

– This is perfectly fine and typical for abstract modeling.

Expression Language Features Oct 2012 — 22 / 29

Function Definition

Functions are defined by giving interpreted function declarations.

• Typical function definitions:

abs(x): nat = IF x < 0 THEN -x ELSE x ENDIF

time(m: minute, s: second): nat = m * 60 + s

device_busy(d: control_block): bool = NOT d‘ready

scalar_mult(a, V): vector = LAMBDA i: a * V(i)

• Type of defining expression must be contained in function’s result type.

• Result type may be any PVS type.

• Function types are allowed for arguments and result.

• Recursive definitions are allowed, with special syntax provided.

– But no mutual recursion across two or more definitions.

Expression Language Features Oct 2012 — 23 / 29

Function Definition (Cont’d)

• Rules are designed to ensure conservative extension of theory.

– Adding a function definition cannot make a theory inconsistent.

• Macros are a variant of constant/function declarations.

– They are expanded at typecheck time.

Expression Language Features Oct 2012 — 24 / 29

Recursive Function Definitions

Recursive definitions have a special form.

• Recursion must be signaled so the system can check for well-foundedness
of the definition, i.e, that recursion always terminates.

factorial(n): RECURSIVE nat =

IF n = 0 THEN 1 ELSE n * factorial(n-1) ENDIF

MEASURE LAMBDA n: n

• A measure function M on one or more variables must be provided.

– M(n) must strictly decrease on every recursive call.

– Termination TCCs may be generated if this cannot be established.

– Shortcuts are allowed for simple measures: MEASURE n

• A special form also exists to deal with DATATYPE situations.

• Inductive definitions are a related concept.

Expression Language Features Oct 2012 — 25 / 29

Formula Declarations

Various kinds of logical formulas may be included in a theory.

• A formula declaration is a named logical formula (boolean expression).

transitive: AXIOM x < y AND y < z => x < z

distrib_law: LEMMA x * (y + z) = x * y + x * z

friendly_skies: THEOREM

mode(aircraft) = cruise IMPLIES

altitude(aircraft) > 1000

• Formulas may contain free variables.

– PVS assumes the universal closure:

distrib_law: LEMMA x * (y + z) = x * y + x * z

is treated as:

distrib_law: LEMMA

FORALL x,y,z: x * (y + z) = x * y + x * z

Expression Language Features Oct 2012 — 26 / 29

Formula Declarations (Cont’d)

• Declared formulas may be submitted to the theorem prover.

– PVS tracks the proof status of formulas.

– Changing a formula marks its proof as needing to be rechecked.

• Multiple formula types or “spellings” are available.

– LEMMA, THEOREM, CONJECTURE, etc.

– All are semantically equivalent except AXIOM and POSTULATE.

Expression Language Features Oct 2012 — 27 / 29

Judgements: Formulas about Types

PVS allows special formulas to specify type attributes of function applications.

• Judgements are lemmas about (sub)types that get applied automatically
during type checking.

– They can obviate many TCCs that would otherwise be generated.

– Many judgements are provided by the prelude.

– Users can introduce their own.

• Constant judgements can narrow the type of an expression.

even_plus_even_is_even:

JUDGEMENT +(e1,e2) HAS_TYPE even_int

odd_plus_even_is_odd:

JUDGEMENT +(o1,e2) HAS_TYPE odd_int

Expression Language Features Oct 2012 — 28 / 29

Judgements (Cont’d)

• Subtype judgements express type relationships.

JUDGEMENT posrat SUBTYPE_OF nzrat

JUDGEMENT nzrat SUBTYPE_OF nzreal

• There are possible interactions with various type conversion features.

– Extensions, restrictions, etc.

Expression Language Features Oct 2012 — 29 / 29

