
Abstract Datatypes1

Alwyn E. Goodloe

NASA Langley Formal Methods Group

a.goodloe@nasa.gov

11 October 2012

1Material in this lecture derived from NASA/CR-97-206264 Abstract
Datatypes in PVS, by Sam Owre and Natarajan Shankar, November 1997.



Abstract Datatype (ADT) Uses in PVS

I Recursive Types
I Lists
I Stacks
I Trees
I Syntax
I . . .

I Enumerated Types

I Disjoint Unions (case-variant records)



ADT Syntax

<name>[<type parameters>]: DATATYPE

BEGIN

<constructor> : <recognizer>

. . .

<constructor>(<accessor>:<type>, ...):<recognizer>

END <name>

I Constructor and accessor names must be disjoint

I If <name> used in type of accessor, it must occur positively

I Declaration is not contained in a PVS theory (an alternate
form may be used)

I PVS automatically generates file <name>_adt.pvs



Inline declaration

<theory>[<theory parameters>]: THEORY

BEGIN

...

<name>: DATATYPE

BEGIN

<constructor> : <recognizer>

. . .

<constructor>(<accessor>:<type>, ...):<recognizer>

END <name>

...

I No type parameters allowed if declared in a theory

I PVS does not generate <name>_adt.pvs file

I However, the theory is implicitly available



Example ADT: Stacks

stack[T:TYPE]: DATATYPE

BEGIN

empty: empty?

push(top:T, pop:stack) : non_empty?

END stack

I Constructors: empty, push

I Accessors: top, pop

I Recognizers: empty?, non empty?



Automatically generated facts

%%% ADT file generated from stacks

stack_adt[T: TYPE]: THEORY

BEGIN

stack: TYPE

empty?, non_empty?: [stack -> boolean]

empty: (empty?)

push: [[T, stack] -> (non_empty?)]

top: [(non_empty?) -> T]

pop: [(non_empty?) -> stack]



Definition by cases

Each ADT allows a construct for definition by cases, allowing a
form a pattern matching on datatype constructors.

ord(x: stack): upto(1) =

CASES x OF

empty: 0,

push(push1_var, push2_var): 1

ENDCASES

The cases construct is implicitly axiomatized to ensure that the
constructors are disjoint.



Extensionality Axioms

stack_empty_extensionality: AXIOM

(FORALL (empty?_var: (empty?),

empty?_var2: (empty?)):

empty?_var = empty?_var2);

stack_push_extensionality: AXIOM

(FORALL (non_empty?_var: (non_empty?),

non_empty?_var2: (non_empty?)):

top(non_empty?_var) = top(non_empty?_var2)

AND pop(non_empty?_var) = pop(non_empty?_var2)

IMPLIES non_empty?_var = non_empty?_var2);

stack_push_eta: AXIOM

(FORALL (non_empty?_var: (non_empty?)):

push(top(non_empty?_var), pop(non_empty?_var))

= non_empty?_var);



Accessor-Constructor Axioms

stack_top_push: AXIOM

(FORALL (push1_var: T, push2_var: stack):

top(push(push1_var, push2_var)) = push1_var);

stack_pop_push: AXIOM

(FORALL (push1_var: T, push2_var: stack):

pop(push(push1_var, push2_var)) = push2_var);

These are automatically applied whenever PVS does a
beta-reduction. (A beta reduction occurs whenever assert is
applied)



Structural Induction Schema

stack_induction: AXIOM

(FORALL (p: [stack -> boolean]):

p(empty)

AND

(FORALL (push1_var: T, push2_var: stack):

p(push2_var) IMPLIES

p(push(push1_var, push2_var)))

IMPLIES

(FORALL (stack_var: stack): p(stack_var)));



Proper Subterms

<<(x: stack, y: stack): boolean =

CASES y OF

empty: FALSE,

push(push1_var, push2_var):

x = push2_var OR x {<<} push2_var

ENDCASES;

stack_well_founded: AXIOM well_founded?[stack](<<);

NOTE: Definition of << is recursive, but has no measure provided.
None of the recursive definitions in stack adt.pvs have a measure
provided. The file is read-only, so the user cannot modify it.



Definition by Recursion

The automatically generated ADT file contains several recursion
combinators. These are generally not used in practice. The usual
schema for definition by recursion is available for abstract
datatypes. For example, the depth of a stack could be defined by:

depth(s:stack): RECURSIVE nat =

CASES s OF

empty: 0,

push(a,s1): 1 + depth(s1)

ENDCASES

MEASURE s BY <<



Every and Some

For each positive type parameter, PVS generates combinators
every and some:

every(p: PRED[T])(a: stack): boolean =

CASES a OF

empty: TRUE,

push(push1_var, push2_var):

p(push1_var) AND every(p)(push2_var)

ENDCASES;

some(p: PRED[T])(a: stack): boolean =

CASES a OF

empty: FALSE,

push(push1_var, push2_var):

p(push1_var) OR some(p)(push2_var)

ENDCASES;



Map combinator

If all type parameters occur positively, a map combinator is
generated:

map(f: [T -> T1])(a: stack[T]): stack[T1] =

CASES a OF

empty: empty,

push(push1_var, push2_var):

push(f(push1_var), map(f)(push2_var))

ENDCASES;



Example: Enumerated types

The PVS declaration:

colors: TYPE = {red, white, blue}

is an abbreviation for

colors: DATATYPE

BEGIN

red : red?

white : white?

blue : blue?

END colors



Induction on enumerated types

Suppose you have a proof goal:

(FORALL (c: colors): P(c))

The proof command (INDUCT "c") splits this into three goals:
P(red), P(white), and P(blue).



Binary Trees

binary_tree[T:TYPE] : DATATYPE BEGIN

leaf: leaf?

node(val:T, left,right: binary_tree):node?

END binary_tree



Ordered Binary Trees

orderedBTree [T:Type, <= : (total_order?[T])] : THEORY

BEGIN

IMPORTING binary_tree[T]

A, B, C: VAR binary_tree

x, y, z: VAR T

pp: VAR pred[T]

i,j,k :VAR nat

size(A): nat = reduce_nat(0, (LAMBDA x, i,j: i+j+1))(A)



Every For Trees

every(p: PRED[T], a: binary_tree): boolean =

CASES a

OF leaf: TRUE,

node(node1_var, node2_var, node3_var):

p(node1_var) AND every(p, node2_var) AND every(p, node3_var)

ENDCASES;



Predicate On Trees

ordered?(A): RECURSIVE bool =

IF node?(A)

THEN (every((LAMBDA y: y<=val(A)), left(A)) AND

every((LAMBDA y: val(A)<=y), right(A)) AND

ordered?(left(A)) AND ordered?(right(A)))

ELSE TRUE

ENDIF

MEASURE size



Insert

insert (x, A): RECURSIVE binary_tree[T] =

CASES A of

leaf: node(x, leaf, leaf),

node(y,B,C): IF x <= y

THEN node(y, insert(x,B), C)

ELSE node(y, B, insert(x,C))

ENDIF

ENDCASES

MEASURE size(A)



Structural Induction on Ordered Trees

ord_insert_step:LEMMA

pp(x) AND every(pp,A) IMPLIES every(pp, insert(x,A))

Prove using

(induct-and-simplify "A")

ord_insert: THEOREM

ordered??(A) IMPLIES ordered?(insert(x,A))

Proof is more intricate:

(induct-and-simplify "A" :rewrites "ord_insert_step")

(rewrite "ord_insert_step")

(typepred "<=’’)

(grind :if_match all)



Disjoint Union Types (case-variant records)

The PVS prelude includes the following example of a disjoint union
type:

union[T1, T2: TYPE]: DATATYPE

BEGIN

inl(left: T1): inl?

inr(right: T2): inr?

END union



Co-tuples

However, with PVS 3.0 and later, there is an alternative means for
declaring disjoint union types.
Consider the following declaration:

disj_sum: TYPE = [ int + bool + [int -> bool]]

This behaves almost as if the declaration were:

disj_sum: DATATYPE

BEGIN

in_1(out_1: int): in?_1

in_2(out_2: bool): in?_2

in_3(out_3: [int -> int]): in?_3

END disj_sum



Maybe

In the programming language Haskell, the Maybe functor type
class is a means of being explicit that you are not sure that a
function will be successful when it is executed. In PVS, we can
represent this type as a disjoint union as follows:

Maybe[T:TYPE] : DATATYPE

BEGIN

None : none?

Some(some:T): some?

END Maybe



Mutually Recursive Datatypes

I Useful for language definition

I Not directly admissible in PVS

I Most can be accomodated in a datatype with subtypes



Example: Arithmetic Expressions

arith: DATATYPE WITH SUBTYPES expr, term

BEGIN

num(n:int): num? :term

sum(t1:term, t2:term): sum? :term

%...

eq(t1:term, t2:term):eq? :expr

ite(e:expr,t1:term,t2:term): ite? :term

END arith



Subtypes effect on arith adt.pvs

The generated file has the following additional declarations

expr((x: arith)): boolean = eq?(x);

expr: TYPE = {x: arith | eq?(x)}

term((x: arith)): boolean = num?(x) OR sum?(x) OR ite?(x);

term: TYPE = {x: arith | num?(x) OR sum?(x) OR ite?(x)}



An Evaluator for Arith

value: DATATYPE

BEGIN

bool(b:bool):bool?

int(i:int):int?

END value

eval(a:arith): RECURSIVE

{v: value | IF expr(a)

THEN bool?(v)

ELSE int?(v) ENDIF} =

CASES a OF

num(n) : int(n),

sum(n1,n2) : int( i(eval(n1)) + i(eval(n2))),

eq(n1,n2) : bool(i(eval(n1)) = i(eval(n2))),

ite(e,n1,n2) : IF b(eval(e))

THEN eval(n1)

ELSE eval(n2) ENDIF

ENDCASES

MEASURE a BY <<



Summary

I General mechanism for defining a class of recursive types
I Lists, stacks, trees, etc.

I Same mechanism used for enumerated types and disjoint sum
types

I Augmented with subtypes to provide limited form of mutual
recursion



Co-datatypes

I PVS 3.x added a capability for describing co-algebraic
datatypes

I Structure is similar to ADTs

I Feature is currently undocumented

The following declaration illustrates the definition of lazy lists
(possibly infinite). It automatically generates the file
llist_codt.pvs.

llist [T:Type]: CODATATYPE

BEGIN

lnull: lnull?

lcons(car: T, cdr: llist): lcons?

END llist


