Strategy Writing in PVS

César A. Muñoz
NASA Langley Research Center Cesar.A.Munoz@nasa.gov

PVS Class 2012

1

PVS Strategies

- A conservative mechanism to extend theorem prover capabilities by defining new proof commands, i.e.,
- User defined strategies do not compromise the soundness of the theorem prover.

Prove the following lemma:

```
bounded_FLT3 : LEMMA
    FORALL (a,b,c:posnat):
    a <= 3 AND b <= 3 and c <= 3 IMPLIES
    a^3+b^3 /= c^3
```

- Formalize Wiles' general proof in PVS and instantiate it to $n=3$ or
- prove each one of the 27 cases.

```
{-1} a <= 3
{-2} b <= 3
{-3} c<= 3
    |-----
{1} a - 3 + b - 3 /= c^ 3
```

Rule? (case "a=1 AND b=1 AND c=1")(flatten)
$\{-1\} \quad a=1$
$\{-2\} \quad b=1$
$\{-3\} \quad c=1$
...
|----
$\{1\} \quad \mathrm{a}$ - $3+\mathrm{b}$ - $3 /=\mathrm{c}$ - 3
Rule? (replaces ($-1-2-3$)) (eval-formula)
This completes the proof of bounded_FLT3.1.

Strategies

Strategies enable proof scripting:

- Programatic tasks, e.g., (case " $a=1$ AND $b=1$ AND $c=1 "$), ..., (case "a=3 AND b=3 AND c=3").
- Repetitive tasks, e.g., (flatten) (replaces ...) (eval-formula ...).

Strategy Language: Basic Steps

- Any proof command, e.g., (ground), (case . . .), etc.
- (skip) does nothing.
- (skip-msg message) prints message.
- (fail) fails the current goal and reaches the next backtracking point.
- (label label fnums) labels formulas fnums with string label.
- (unlabel fnums) unlabels formulas fnums.

Strategy Language: Combinators

- Sequencing: (then step1 ...stepn).
- Branching: (branch step (step1 ...stepn)).
- Binding local variables: (let ((var1 lisp1) ...(varn lispn)) step).
- Conditional: (if lisp step1 step2).
- Loop: (repeat step).
- Backtracking: (try step step1 step2).

Strategy Language: Sequencing

- (then step1 ...stepn):

Sequentially applies stepi to all the subgoals generated by the previous step.

- (then@ step1 ...stepn):

Sequentially applies stepi to the first subgoal generated by the previous step.

Strategy Language: Branching

- (branch step (step1 ...stepn)): Applies step and then applies stepi to the i 'th subgoal generated by step. If there are more subgoals than steps, it applies stepn to the subgoals following the n 'th one.
- (spread step (step1 ...stepn)):

Like branch, but applies skip to the subgoals following the n 'th one.

Binding Local Variables

- (let ((var1 lisp1) ...(varn lispn)) step): Allows local variables to be bound to Lisp forms (vari is bound to lispi).
- Lisp code may access the proof context using the PVS Application Programming Interface (API).

Conditional and Loops

- (if lisp step1 step2):

If lisp evaluates to NIL then applies step2. Otherwise, it applies step1.

- (repeat step):

Iterates step (while it does something) on the the first subgoal generated at each iteration.

- (repeat* step):

Like repeat, but carries out the repetition of step along all the subgoals generated at each iteration.*
Note that repeat and repeat are potential sources of infinite loops.

Backtracking

- Backtracking is achieved via (try step step1 step2).
- Informal explanation: Tries step, if it does nothing, applies step2 to the new subgoals. Otherwise, applies step1.
- What does (try (grind) (fail) (skip)) do ?

Example

```
What does (try (grind) (fail) (skip)) do ?
    - if (grind) does nothing then (skip)
    - if (grind) does something (without finishing the proof) then
        (skip)
    - if (grind) finishes the proof, then Q.E.D.
```

It either completes the proof with (grind), or does nothing.

Writing your Own Strategies

- New strategies are defined in a file named pvs-strategies in the current context. PVS automatically loads this file when the theorem prover is invoked.
- The IMPORTING clause loads the file pvs-strategies if it is defined in the imported library.

Strategies and Rules

Strategies can be expanded into more elementary steps.

- Some strategies have a \$-form for expanding their definitions, e.g., grind\$.
- Some strategies are automatically expanded in the proof script, e.g., repeat.

Proof commands that cannot be expanded into elementary steps are called rules and cannot be defined by regular users.

Strategy Definitions

- defstep defines a strategy and its \$-form:
(defstep name (parameters \&optional parameters) step help-string format-string)
- defhelper defines a strategy that is excluded from the standard user interface.
(defhelper name (parameters \&optional parameters) step
help-string format-string)
- defstrat defines strategy that expands automatically. (defstrat name (parameters \&optional parameters) step help-string)

In pvs-strategies:

```
(defstrat for (n step)
    (if (<= n 0)
    (skip)
    (let ((m (- n 1)))
    (then@ step (for m step))))
    "Repeats step n times")
```


Using a Finite Loop

```
ex1 :
    |-----
    {1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) <= x+y+z
    Rule? (for 2 (rewrite "sqrt_sq_abs"))
    ...
    |-----
    {1} abs(x) + abs(y) + sqrt(sq(z)) <= x+y+z
```

$\{-1\} \quad a<=3$
$\{-2\} \quad b<=3$
$\{-3\} \quad c<=3$
$\{-4\} \quad \mathrm{a} \wedge 3+\mathrm{b}$ - $3=\mathrm{c}$ - 3
|-----
Rule? (bflt3 ...)

In pvs-strategies:
(defstep bflt3 (a b c)
"Checks $a^{\wedge} 3+b^{\wedge} 3 /=c^{\wedge} 3$ for $0<a, b, c<=3 "$
"Checking $a^{\wedge} 3+b^{\wedge} 3 /=c^{\wedge} 3$ for $\left.0<a, b, c<=3 "\right)$
(defstep bflt3 (a b c)
(let ((casestr (format nil "a=~a AND b=~a AND c=~~a" a b c)))
(spread (case casestr)
(...)))
"Checks $\mathrm{a}^{\wedge} 3+\mathrm{b}^{\wedge} 3$ /= $\mathrm{c}^{\wedge} 3$ for $0<a, b, c<=3 "$
"Checking $a^{\wedge} 3+b^{\wedge} 3 /=c^{\wedge} 3$ for $\left.0<a, b, c<=3 "\right)$

```
(defstep bflt3 (a b c)
    (let ((casestr (format nil "a=~a AND b=~a AND c=~ a"
                    a b c)))
(spread (case casestr)
            ((then (flatten)(replaces (-1 -2 -3))
                (eval-formula -4))
                (if (< c 3) (let ((nc (+ c 1))) (bflt3 a b nc))
            (if (< b 3) (let ((nb (+ b 1))) (bflt3 a nb 1))
            (if (< a 3) (let ((na (+ a 1))) (bflt3 na 1 1))
                (grind)))))))
    "Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"
    "Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")
```


(spread (case casestr)

((then (flatten) (replaces (-1 -2 -3))
(eval-formula -4))
(if (< c 3) (let ($n c(+c$ 1))) (bflt3 a b nc)) (if (< b 3) (let ($n \mathrm{nb}(+\mathrm{b}$ 1))) (bflt3 a nb))
(if (< a 3) (let ((na (+ a 1))) (bflt3 na)) (grind)))))))
"Checks $\mathrm{a}^{\wedge} 3+\mathrm{b}^{\wedge} 3$ /= $\mathrm{c}^{\wedge} 3$ for $0<a, b, c<=3 "$
"Checking $a^{\wedge} 3+b^{\wedge} 3$ /= $c^{\wedge} 3$ for $\left.0<a, b, c<=3 "\right)$
$\{-1\} \quad \mathrm{a}<=3$
$\{-2\} \quad b<=3$
$\{-3\} \quad c<=3$
$\{-4\} \quad \mathrm{a} ~ 3+b-3=c$ - 3

|-----

Rule? (bflt3)
Checking $a \wedge 3+b \wedge 3 /=c \wedge 3$ for $0<a, b, c<=3$, Q.E.D.

Run time $=0.86$ secs.
Real time $=3.29$ secs.

References

- Documentation: PVS Prover Guide, N. Shankar, S. Owre, J. Rushby, D. Stringer-Calvert, SRI International: http://www.csl.sri.com/pvs.html.
- Proceedings of STRATA 2003: http://hdl.handle.net/2060/20030067561.
- Examples:
- Manip: http:
//shemesh.larc.nasa.gov/people/bld/manip.html.
- Field: http://research.nianet.org./~munoz/Field.
- Programming: Lisp The Language, G. L. Steele Jr., Digital Press. See, for example, http://www.supelec.fr/docs/cltl/clm/node1.html.
- Arbitrary Lisp expressions (functions, global variables, etc.) can be included in a strategy file.
- PVS's data structures are based on various Common Lisp Object System (CLOS) classes. They are available to the strategy programmer through global variables and accessory functions.

Proof Context: Global Variables

ps	Current proof state
goal	Goal sequent of current proof state
label	Label of current proof state
par-ps	Current parent proof state
par-label	Label of current parent
par-goal	Goal sequent of current parent
+	Consequent sequent formulas
-	Antecedent sequent formulas
new-fmla-nums	Numbers of new formulas in current sequent
current-context	Current typecheck context
module-context	Context of current module
current-theory	Current theory

- (select-seq (s-forms *goal*) fnums) retrieves the sequent formulas fnums from the current context.
- (formula seq) returns the expression of the sequent formula seq.
- (operator expr), (args1 expr), and (args2 expr) return the operator, first argument, and second argument, respectively, of expression expr.

PVS Context: Recognizers

Negation	(negation? expr)
Disjunction	(disjunction? expr)
Conjunction	(conjunction? expr)
Implication	(implication? expr)
Equality	(equation? expr)
Equivalence	(iff? expr)
Conditional	(branch? expr)
Universal	(forall-expr? expr)
Existential	(exists-expr? expr)

Formulas in the antecedent are negations.

- In the theorem prover the command LISP evaluates a Lisp expression.
- In Lisp, show (or describe) displays the content and structure of a CLOS expression. The generic print is also handy.

Example

\{1\} $\operatorname{sqrt}(s q(x))+\operatorname{sqrt}(s q(y))+\operatorname{sqrt}(s q(z))>=x+y+z$
Rule? (lisp (show (formula (car (select-seq (s-forms *goal*) 1)))))
$\operatorname{sqrt}(s q(x))+\operatorname{sqrt}(s q(y))+\operatorname{sqrt}(s q(z))>=x+y+z i s$ an instance of \#<STANDARD-CLASS INFIX-APPLICATION>:
The following slots have :INSTANCE allocation:

OPERATOR
ARGUMENT
>=
(sqrt(sq(x))) sqrt(sq(y)) + sqrt (sq(z)),

$$
x+y+z)
$$

A Non-(Completely-)Trivial Example

- Assume we have a goal $e_{1}=e_{2}$.
- Our strategy is to use an injective function f such that $f\left(e_{1}\right)=f\left(e_{2}\right)$. Then, by injectivity, $f\left(e_{1}\right)=f\left(e_{2}\right)$ implies $e_{1}=e_{2}$.
- For instance, to prove
$\{-1\} \cos (x)>0$

\{1\} $\operatorname{sqrt}(1-\operatorname{sq}(\sin (x)))=\cos (x)$ we square both sides formula $\{1\}$, i.e., $f \equiv$ sq. ${ }^{\dagger}$
${ }^{\dagger}$ The function sq is injective for non-negative reals.
(let ((eqs (get-form fnum)))
(if (equation? eqs)
(let ((case-str (format nil "~a(~a) = ~a(~a)"
(case case-str))
(skip)))
"Applies function F to both sides of equality FNUM"
"Applying ~a to both sides of ~a")
(defun get-form (fnum)
(formula (car (select-seq (s-forms *goal*) fnum))))

Using both-sides-f

```
Rule? (both-sides-f "sq")
Applying sq to both sides of 1,
this yields 2 subgoals:
ex2.1 :
{-1} sq(sqrt(1 - sq(sin(x)))) = sq(\operatorname{cos}(x))
[-2] cos(x) > 0
    |-----
[1] }\operatorname{sqrt}(1-\operatorname{sq}(\operatorname{sin}(x)))=\operatorname{cos}(x
ex2.2 :
[-1] cos(x) > 0
    |-----
{1} sq(sqrt(1 - sq(sin(x)))) = sq(\operatorname{cos}(x))
[2] sqrt(1 - sq(sin(x))) = cos(x)
```

