
PVS 6.0 and Beyond
NASA/NIA PVS Class 2012

Sam Owre

Computer Science Laboratory
SRI International
Menlo Park, CA

October, 2012

What’s ahead?

Contents

What’s new in PVS 6.0?

Declaration parameters
Expression Judgements
Unicode in PVS
Numeric Simplification

What’s ahead for PVS?

New GUI Interface
SMT-LIB integration
Dimension checking
Evidential Tool Bus (ETB)
Kernel of Truth (KoT)

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Declaration Parameters

PVS has theory level parameters, which allow generic theories
to be defined

They are very useful, and are extensively used in the prelude
and NASA libraries

But there are situations where they are not so convenient

The NASA libraries introduce groups with

groups

groups_scaf[T: TYPE, *: [T,T -> T], one: T]: THEORY

Homomorphisms require two sets of parameters, hence
another theory:

homomorphisms

homomorphism_lemmas[T1: TYPE, *: [T1,T1 -> T1], one1: T1,

T2: TYPE, o: [T2,T2 -> T2], one2: T2]: THEORY

Sam Owre PVS 6.0 and Beyond

What’s ahead?

Declaration Parameters (cont)

A rather simple result in group theory is that homomorphisms
are associative:

G1
f→ G2

g→ G3
h→ G4 ⊃ (h ◦ g) ◦ f = h ◦ (g ◦ f )

But this requires four sets of parameters, and is not included
in the NASA library

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Declaration Parameters (cont)

To fix this, we introduce declaration level parameters
Illustrated with yet another group theory:

groups

groups[G: TYPE]: THEORY

BEGIN

group: TYPE =

[# e: G,

P: {f: [G, G -> G] | associative?(f)

and forall (g: G): f(g, e) = g},

M: {i: [G -> G] | forall (g: G): P(g, i(g)) = e} #]

END groups

Sam Owre PVS 6.0 and Beyond

What’s ahead?

Declaration Parameters (cont)

group morphisms

group_morphisms: THEORY

BEGIN

importing groups

homo?[G1, G2: TYPE](g1: group[G1], g2: group[G2])(f: [G1 -> G2]):

bool =

f(g1‘e) = g2‘e and

forall (x, y: G1): f(g1‘P(x, y)) = g2‘P(f(x), f(y)) and

forall (x: G1): f(g1‘M(x)) = g2‘M(f(x))

homo[G1, G2: TYPE](g1: group[G1], g2: group[G2]): TYPE

= (homo?[G1, G2](g1, g2))

homo_is_assoc[G1, G2, G3, G4: TYPE]: lemma

forall (g1: group[G1], g2: group[G2], g3: group[G3], g4: group[G4],

f: (homo?[G1, G2](g1, g2)), g: (homo?[G2, G3](g2, g3)),

h: (homo?[G3, G4](g3, g4))):

h o (g o f) = (h o g) o f

END group_morphisms

Sam Owre PVS 6.0 and Beyond



What’s ahead?

PVS as Why3 Backend

Why3 is a software verification platform

Features an ML-style language

Interfaces to various automated and interactive theorem
provers

Some changes introduced in Why3 made it difficult to support
PVS

In principle, this could be done in PVS by refactoring, but it is
difficult

Sam Owre PVS 6.0 and Beyond

What’s ahead?

PVS as Why3 Backend (cont)

Why3 to PVS

· · ·
% Why3 zwf_zero

zwf_zero(a:int, b:int): bool = (0 <= b) AND (a < b)

% Why3 alloc_table

alloc_table[t:TYPE]: TYPE+

· · ·
% Why3 memory

memory[t:TYPE, v:TYPE]: TYPE+

% Why3 select

select[t:TYPE, v:TYPE+](x:memory[t, v], x1:pointer[t]): v

· · ·
% Why3 pset

pset[t:TYPE]: TYPE+

% Why3 pset_empty

pset_empty[t:TYPE]: pset[t]

· · ·

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Declaration Parameters: Advanced Example

Monads

monad: THEORY
BEGIN

m[a: TYPE]: TYPE

return[a: TYPE]: [a -> m[a]]

>>=[a, b: TYPE](x: m[a], f: [a -> m[b]]): m[b] % infix
>>=[a, b: TYPE](x: m[a])(f: [a -> m[b]]): m[b] = x >>= f; % Curried

>>[a, b: TYPE](x: m[a])(y: m[b]): m[b] = x >>= (lambda (z: a): y);

join[a: TYPE](x: m[m[a]]): m[a] = x >>= id[m[a]]

bind_return[a, b: TYPE]: AXIOM
FORALL (x: a, f: [a -> m[b]]): (return[a](x) >>= f) = f(x)

bind_ret2[a: TYPE]: AXIOM
FORALL (x: m[a]): (x >>= return[a]) = x

END monad

Sam Owre PVS 6.0 and Beyond

What’s ahead?

Monads continued

Maybe Monad

Maybe[a: TYPE]: datatype
BEGIN

Nothing: Nothing?
Just(Val: a): Just?

END Maybe

maybe: THEORY
BEGIN
IMPORTING Maybe
IMPORTING monad

{{ m[a: type] := Maybe[a],
return[a: type] := Just[a],
>>=[a, b: type](x:Maybe[a], f: [a -> Maybe[b]])

:= CASES x OF Nothing: Nothing,
Just(y): f(y) ENDCASES }}

f(x: int): Maybe[int] =
IF rem(2)(x) = 0 THEN Nothing ELSE Just(2 * x) ENDIF

g(x: int): Maybe[int] =
IF rem(3)(x) = 0 THEN Nothing else Just(3 * x) ENDIF

h(x: int): Maybe[int] =
IF rem(5)(x) = 0 THEN Nothing ELSE Just(5 * x) ENDIF

k(x: int): Maybe[int] = f(x) >>= g >>= h
END maybe

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Expression Judgements

PVS judgements work on types, names, numbers, and
functions

This has been extended, can now give types to arbitrary
expressions under a universal quantifier:

Expression Judgements

expr_jdg: THEORY

BEGIN

ej: JUDGEMENT FORALL (x: real): x*x HAS_TYPE nnreal

f: [nnreal -> real]

fm: FORMULA

FORALL (y: real):

f(f((y - 100) * (y - 100)) * f((y - 100) * (y - 100))) = 2

END expr_jdg

Sam Owre PVS 6.0 and Beyond

What’s ahead?

Unicode

Simple ASCII text is very limiting

The Unicode standard extends this, providing a standard for
representing over 110,000 characters

Both Lisp and Emacs (among many other applications) have
builtin support for Unicode

In addition to display, Emacs has several input methods for
conveniently inserting Unicode characters

It was relatively simple to modify the PVS parser to allow
Unicode characters

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Unicode Demo

M-x list-input-methods list available input methods

M-x set-input-method selects the (buffer specific) input
method

M-x describe-input-method shows how to input the
characters

C-x 8 <RET> inputs a character by name

Sam Owre PVS 6.0 and Beyond

What’s ahead?

Unicode To Do

Identify unary, binary, mix-fix, etc. operators to be included in
the PVS grammar

Unicode is difficult to directly use in alltt, hence needs
translation

Create a PVS input method to make it easy to insert
frequently used symbols

Backward compatibility could be supported

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Numeric Simplification

Cesar requested better handling of numeric values in PVS

We provided new internal representations that significantly
sped up processing

This was fairly limited, and a flag had to be set to enable it

In PVS 6.0, the numeric operations (+, -, *, /) are simplified
aggressively

Sam Owre PVS 6.0 and Beyond

What’s ahead?

Numeric Simplification (cont)

dec :

|-------

{1} FORALL (u, s: real):

u >= 0.78 AND s > 0 AND s < 4 AND u < 0.9 IMPLIES

-(0.115210368 * s) - 0.101102976 * s - 0.15072 * s * u -

0.1301216 * s * u

- 0.018146688 * s

- 0.4702464

- 4 * (0.1296192 * u)

+ 0.404411904

+ 4 * (0.15072 * u)

+ 0.072586752

+ 0.1175616 * s

+ 0.101494848 * s

+ 0.015614592 * s

+ 0.1477056 * s * u

+ 0.1296192 * s * u

>= 0

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Numeric Simplification (cont)

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

this simplifies to:

dec :

|-------

1 FORALL (u, s: real):

u >= 0.78 AND s > 0 AND s < 4 AND u < 0.9 IMPLIES

13188/1953125 - 1099/312500 * (s * u) + 3297/15625000 * s +

6594/78125 * u

>= 0

Sam Owre PVS 6.0 and Beyond

What’s ahead?

What’s ahead?

New GUI Interface

SMT-LIB integration

Dimension checking

Evidential Tool Bus (ETB)

Kernel of Truth (KoT)

Sam Owre PVS 6.0 and Beyond



What’s ahead?

New GUI Interface

We are working on a new interface to PVS

Roughly speaking, the current Emacs interface will be
reimplemented as JSON

The PVS Lisp image will act as a server

Started trying to make an Eclipse interface

very difficult—PVS is not Java

Now working on one based on wxPython

Sam Owre PVS 6.0 and Beyond

What’s ahead?

PVS GUI

Demo

Sam Owre PVS 6.0 and Beyond



What’s ahead?

SMT-LIB integration

Yices and Yices2 are already integrated into PVS

SMT-LIB (http://www.smtlib.org/ provides

standard rigorous descriptions of background theories for
Satisfiability Modulo Theory (SMT) solvers,
common input and output languages used for these theories,
a large library of benchmarks

The PVS integration provides an smt prover rule

This can invoke any SMT solver that can parse SMT-LIB,
(Z3, CVC4, and others)

The advantage is that any new features provided in an SMT
solver are quickly available in PVS

Sam Owre PVS 6.0 and Beyond

What’s ahead?

Dimension Checking

DimSim is dimensional analysis extension to Simulink (with

It checks that Simulink blocks are dimensionally consistent,
using a form of Gauss-Jordan elimination

Paper was presented at FM 2012

The PVS language has been extended to include dimension
types, and we plan on integrating the DimSim algorithm

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Formal Tool Integration

Software and hardware designs are used in many critical
applications

Formal and semi-formal tools are used in analysis and
synthesis at all phases of the design lifecycle.

A typical project integrates many diverse tools

How do we create systematic workflows that integrates
multiple tools?

How do we make these workflows replayable?

Sam Owre PVS 6.0 and Beyond

What’s ahead?

Examples of Tool Integration

Counterexample-guided abstraction refinement (CEGAR)

Concolic execution uses symbolic evaluation with a SAT or
SMT solver

Bounded model checking employs a SAT or SMT solver

Simplification using a computer algebra system such as
REDUCE or QEPCAD

Proof obligation generation for pre/post-condition
specifications and refinement steps using the PVS type
checker.

Invariant generation using a range of techniques such as static
analysis, templates, dynamic analysis, k-induction.

Combining a verification condition generator with a range of
deductive techniques for discharging proof obligations.

Using a high-performance automated theorem prover to find
an unsatisfiable core of input formulas

Sam Owre PVS 6.0 and Beyond



What’s ahead?

Evidential Tool Bus (ETB)

The main goal of ETB is the production of claims supported
by arguments, where some sub-claims in the argument can be
established by external tools.
The ETB should extensible with new claim forms and rules of
argumentation.
The ETB should admit new external tools that interact with
the ETB through an API to produce claims and generate
queries.
Workflows involving external tools should be definable as
scripts.
The argument produced by a completed development using
the ETB should be checkable.
The ETB explicates the tools and assumptions on which an
argument depends.
The ETB should be semantically neutral so that it does not
exclude any tools, languages, or models.

Sam Owre PVS 6.0 and Beyond

What’s ahead?

ETB Design Choices

Information in the ETB is in the form of queries and claims
which are either atoms or negations of atoms.
An atom is an n-ary predicate applied to n arguments that are
either data objects or variables.
A claim is a ground (i.e., fully instantiated) atom or its
negation that is asserted to hold.
A query is a partially instantiated atom that triggers a chain
of inference.
Data objects are either JSON representations or tool or file
handles.
External tools are integrated into ETB through interpreted
predicates.
Scripts are Datalog programs defined through uninterpreted
predicates.
An ETB proof is a tree of claims where each claim follows
from the subclaims by a rule of inference.
An ETB instance is a network of server and client nodes.Sam Owre PVS 6.0 and Beyond



What’s ahead?

Kernel of Truth

Certificates

Proof generation

Hints

Proofs

Verified Verifiers

Offline

Trusted

Verifier

Verified

Untrusted

Frontline

Kernel

Verifier

Proof 

Verified

Checker

Sam Owre PVS 6.0 and Beyond

What’s ahead?

The Kernel of Truth (KoT)

The kernel contains a reference proof system formalizing ZFC.

It also contains several verified checkers for specialized
certificate formats.

If the checker validates the certificate for a claim, then there
is a proof of the claim.

These certificates can be more compact than proofs.

Generating and checking certificates is easier than generating
proofs.

Proof generation (including LCF) and verification are
subsumed.

Verifying the checkers is (a lot) easier than verifying the
inference procedures.

Sam Owre PVS 6.0 and Beyond



What’s ahead?

PVS Festschrift

PVS won the CAV award this year

PVS was formally introduced at FME 93

In 2014 it turns 21 (old enough to drink)

We are planning a Festschrift for 2014:

Still in the conceptual stages
Have multiple AFM meetings:

in Europe at FM (formerly FME)
in the US at CAV
possibly in Asia

Papers would be a mix of historical origins, definitive papers,
and applications

Hope to see you there!

Sam Owre PVS 6.0 and Beyond


