Theory Interpretations in PVS

NASA/NIA PVS Class 2012

Sam Owre

Computer Science Laboratory
SRI International
Menlo Park, CA

October, 2012

Introduction
Mappings and Views

Parameter vs Uninterpreted Declarations

Nested Theory Declarations

o
°

°

@ Theory Declarations
°

@ Theories as Parameters
°

Conclusion

Sam Owre Theory Interpretations in PVS

Introduction

@ Logic has two primary aspects:
e syntactic (proof theory) and
e semantic (model theory)
@ Interpretations are the bridge between these, assigning
meaning to the symbols of a formal language
@ Interpretations provide

Consistency: ensuring axioms are not contradictory
Refinement: providing an implementation for a specification
Expected Models: the specification satisfies expected models
Renaming: simply changing names

Sam Owre Theory Interpretations in PVS

. SamOwe | TheoylnterpretationsinPVS |

Interpretations have been important in several systems:
@ Ehdm - precursor to PVS
@ IMPS - axiomatic method based on “little theories”
@ HOL - abstract theories and instantiations
@ Maude - based on Rewriting Logic
@ Extended ML - a framework for specification and refinement
for Standard ML
@ Specware - categorical basis—pullbacks

@ COQ - based on the Calculus of Inductive Constructions

Sam Owre Theory Interpretations in PVS

PVS Theories

@ Theories are the top-level structures for PVS

@ Theories may be parameterized
@ T heories contain declarations for

e types, constants, variables
definitions

inductive and coinductive definitions
axioms and formulas

importing other theories
judgements

conversions

auto-rewrites

o
o
o
o
o
o
o
e libraries

Sam Owre Theory Interpretations in PVS

L S Owc TheoylntepretatonsinPVS |
Mappings

@ Interpretations in PVS are specified using mappings

@ Mappings assign meaning to uninterpreted types and
constants

trivial
trivial: THEORY
BEGIN

T: TYPE

c: T
END trivial

mapping

trivial{{ T := int, c := 2 }}

@ Assignments must be consistent; ¢ := true would be an
error

@ But need not be complete - could assign T and leave ¢ for
later

Sam Owre Theory Interpretations in PVS

PVS Interpretations

@ PVS has more than just uninterpreted types and constants

@ In general, interpretations for other entities is simply
substitution, but

e Substituted axioms become proof obligations
e Other substituted formulas are considered proved if their
associated formula is

Group Example

group: THEORY

BEGIN
G: TYPE+
+: [G, G -> G]
0: G
-: [G -> G]
X, ¥y, z: VAR G
associative_ax: AXIOM FORALL x, y, z: x + (y + 2) = (x +y) + z
identity_ax: AXIOM FORALL x: x + 0 = x
inverse_ax: AXIOM FORALL x: x + -x = 0 AND -x + x = 0

idempotent_is_identity: LEMMA x + x = x => x =0
END group

Importings

IMPORTING group{{ G := int, + :=+, 0 := 0, - := - }}

Sam Owre Theory Interpretations in PVS

TCCs

% IMP_group_G_nonempty_TCC1l: OBLIGATION EXISTS (x: int): TRUE;
% was not generated because int is non-empty

IMP_group_associative_ax_TCC1: OBLIGATION
FORALL (x: int), (y: int), (z: int): x + (y + 2) = (x + y) + z;

IMP_group_identity_ax_TCC1: OBLIGATION FORALL (x: int): x + 0 = x;

IMP_group_inverse_ax_TCC1: OBLIGATION
FORALL (x: int): x + -x = 0 AND -x + x = 0;

N,

group Obligations

@ Some types include implicit axioms—for example, TYPE+
@ Datatypes and Codatatypes also have implicit axioms

@ For example, 1ist has extensionality, induction, etc.

astack [T: TYPE]: THEORY
BEGIN

stack : TYPE = [# size : nat, elems: [below(size) -> T] #]

empty?(S: stack): bool = (S‘size = 0)

nonempty?(S: stack): bool = NOT empty?(S)

nonempty_stack: TYPE = (nonempty?)

top(S: nonempty_stack): T = S‘elems(S‘size - 1)

push(a: T, S: stack): nonempty_stack =

S WITH [‘size := S‘size + 1,
‘elems := lambda (x: below(S‘size+1)):
IF x = S‘size THEN a ELSE S‘elems(x) ENDIF]

END astack

.

Sam Owre Theory Interpretations in PVS

Implicit Axioms

SRIi

International,
]

stack Interpretation

list to stack
list_map: THEORY
BEGIN
IMPORTING astack[int]
IMPORTING list[int]
{{ list := astack,
null := (# size := 0,
elems := lambda (x: below(0)): 0 #),
null? := empty?,
cons := push,
cons? := nonempty?,
car := top,
cdr := lambda (S: nonempty_stack):
S WITH [‘size := S‘size-1,
‘elems := lambda (x: below(S‘size-1)):
S‘elems(x)]
H
END list_map

)

Sam Owre Theory Interpretations in PVS

stack extensionality TCC

Extensionality Axiom

list_cons_extensionality: AXIOM

FORALL (cons?_var:
car (cons?_var)

AND cdr(cons?_var)

(cons?), cons?_var2:
car (cons?_var2)

cdr (cons?_var?2)

(cons?)):

IMPLIES cons?_var

cons?_var?2;

o

Extensionality TCC

IMP_list_list_cons_extensionality_TCC1: OBLIGATION
FORALL (cons?_var, cons?_var2: x: stack[int] | nonempty?[int](x)):
toplint] (cons?_var) = toplint] (cons?_var2) AND
cons?_var WITH [‘size := cons?_var‘size - 1,
‘elems := LAMBDA (x: below(cons?_var‘size - 1)):
cons?_var ‘elems (x)]
cons?_var2‘size - 1,
:= LAMBDA (x: below(cons?_var2‘size - 1)):
cons?_var2‘elems(x)]
cons?_var2;

cons?_var2 WITH [‘size :
‘elems

IMPLIES cons?_var

Sam Owre Theory Interpretations in PVS

stack induction TCC

Induction Axiom

list_induction: AXIOM
FORALL (p: [list -> boolean]):
(p(null) AND
(FORALL (consl_var: T, cons2_var: list):
p(cons2_var) IMPLIES p(cons(consl_var, cons2_var))))
IMPLIES (FORALL (list_var: list): p(list_var));

v

Induction TCC

IMP_list_list_induction_TCC1: OBLIGATION
FORALL (p: [stack[int] -> boolean]):
(p((# size := 0, elems := LAMBDA (x: below(0)): O #)) AND
(FORALL (consl_var: int, cons2_var: stack[int]):
p(cons2_var) IMPLIES p(push[int] (consl_var, cons2_var))))
IMPLIES (FORALL (list_var: stack[int]): p(list_var));

v

Sam Owre Theory Interpretations in PVS

Theory Views (Mapping Shortcut)

@ Often refinements use the same names for specification and
implementation

@ Views make this more convenient and less error-prone

@ Example from the theory of Timed Automata:

Timed Automaton Spec

automaton:THEORY

BEGIN
actions: TYPE+;
visible(a:actions) :bool;
states: TYPE+;
enabled(a:actions, s:states): bool;
trans(a:actions, s:states):states;
equivalent(al, s2:states):bool;
reachable(s:states) :bool;
start(s:states) :bool;

END automaton

@ A machine implementation defines actions, visible, etc.

Sam Owre Theory Interpretations in PVS

Theory Views

Now instead of

Automaton Mapping

IMPORTING machine
IMPORTING automaton {{ actions :
visible :

actions,
visible, ... }}

Can write shorthand (the automaton view of a machine)

Automaton View
IMPORTING automaton :-> machine

The defaults can be overridden:

Views with Mappings
IMPORTING automaton{{ visible := myvisible }} :-> machine

Sam Owre Theory Interpretations in PVS

Importing Limitations

Sam Owre Theory Interpretations in PVS

@ Importings are limited—example: group homomorphisms
@ It is easy to define group automorphisms: [G -> G]

@ But homomorphisms are between different groups:
IMPORTING group{{ G := int, + := +, 0 :

IMPORTING group{{ G := nzreal, + := %, 0 := 1,
-(x: nzreal) := 1/x }

@ Can define homomorphism [int -> nzreall, but that is too
specific

@ We need two (generative) copies of the group theory

Theory Declarations

Theory declarations are generative in this way

group_homomorphism: THEORY
BEGIN

G1, G2: THEORY = group

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(f): bool = FORALL x, y: f(x + y)
END group_homomorphism

f(x) + £(y)

IMPORTING group_homomorphism
{{ G1 = group{{ G := int, + := +, 0 :
G2 = group{{ G := nzreal, + := *,
-(x: nzreal) := 1/x }

0, - := - }},
=1,

(@)

1}

Theory Declarations (continued)

@ A theory declaration creates a new copy of the named theory

@ This is basically an inline expansion of the theory - a copy of
all the declarations with the given substitution

@ The declarations are named apart by prepending the theory
declaration id and a period - G1.G, G2.+

@ The expanded form may be seen using
M-x prettyprint-expanded

Sam Owre Theory Interpretations in PVS

Theory Abbreviations

@ Theory abbreviations are similar to theory declarations
@ Provide a name associated with an importing

e Mostly used with importings that introduce ambiguity
e The abbreviation may be used in name references to
disambiguate

Theory Abbreviation

IMPORTING group{{ G := nzreal, + := %, 0 := 1,
-(x: nzreal) := 1/x }} AS nzR

@ Can now reference, for example, nzR.associative_axf

Sam Owre Theory Interpretations in PVS

. SemOwe | TheoylntepretationsinPVS |
Nested Theory Declarations
| group homomorphisndec

group_homomorphism decl

ghinst: THEORY
BEGIN
gh: THEORY = group_homomorphism

{{ G1 := group{{ G := int, + := +,
0 :=0, - := - }},
G2 := group{{ G := nzreal, + := %, 0 := 1,

-(x: nzreal) := 1/x }}
}
END ghinst

@ Note the mappings within mappings
@ Importing ghinst leads to names such as ghinst.gh.G1.+

@ The syntax of names was extended to allow such nested names

Sam Owre Theory Interpretations in PVS

Importings vs Theory Declarations

@ Theory declarations are more general, but do incur an
overhead

@ Generally used when a copy is actually needed

e However, nested mappings may only be given for theory
declarations

Nested Importings

Thil: THEORY BEGIN T: TYPE END Thil

Th2: THEORY BEGIN IMPORTING Thl END Th2

Th3: THEORY BEGIN IMPORTING Thl END Th3

Th4: THEORY BEGIN IMPORTING Th2, Th3 END Th4

Th5: THEORY BEGIN IMPORTING Th4{{T := int}} 7% 7?77

Name Review

@ The name syntax is

name ::= [td ’Q’] <dop [actuals]
[mappings] [’:->’ modnamel
[’.” <dop++’.’]

Name Examples

timed_auto_lib@timed_automaton{{ visible := vis }}
:—=> timeout_decls

ghinst.gh.G1.+
1lib@th[int]{{ T := int }} :-> spec.A.f

@ Note that mappings and views may appear in any name, not
just importings and theory declarations

@ Only the top level (before the first ".") has actual parameters

Sam Owre Theory Interpretations in PVS

Names (continued)

@ Names rarely need to be fully provided

o Actual parameters can often be inferred (mostly for types)

e The theory name is usually not needed

e Just suffix of dotted names is needed—enough to
disambiguate e.g., G1.+

Sam Owre Theory Interpretations in PVS

L S Owc TheoylntepretatonsinPVS |
Partial Mappings

@ Theories may be partially interpreted:

Partial Interpretation

IMPORTING group{{ G := int, + := + }} AS igrp

@ igrp may be further interpreted later

@ TCCs are only generated for axioms that are fully interpreted;
in this case only associative_ax.

@ The other axioms remain as axioms for proofchain analysis

Sam Owre Theory Interpretations in PVS

Renamings

@ Mapping renames introduced with : :=

@ For example, lists are really stacks

Lists as Stacks

list2stack: THEORY

BEGIN
intstack: THEORY = list[int]

{{ 1list:TYPE ::= stack,
null ::= empty,
null? ::= empty?,
cons ::= push,
cons ::= nonempty??,
car ::= top,
cdr ::= pop }}

push2pop2: LEMMA empty?(pop(push(1l, empty)))
END list2stack

Renamings (continued)

@ Renamings are only available for theory declarations, as new
declarations must be generated

@ The new copy of the theory has all declarations substituted
with renamings

@ Renamings may be mixed with normal mappings

Sam Owre Theory Interpretations in PVS

Theory Parameters versus Mappings

@ In principle, theory parameters are not required

@ They could be given as uninterpreted types and constants and
instantiated with mappings
@ In practice, theory parameters have some advantages:

e Parameters are required
e Parameters may have assumptions that act as contracts
e Parameters often can be inferred

@ On the other hand, parameters

e Must be completely provided every time (no partial
instantiation)

e Assumptions tend to have to be carried along the theory
hierarchy

Sam Owre Theory Interpretations in PVS

[SamOwre | TheoyInterpretationsinPVS |
Theories as Parameters

@ Theory declarations may also appear as parameters

Theories as Parameters

group_homomorphism[G1, G2: THEORY group]: THEORY
BEGIN
x, y: VAR G1.G
f: VAR [G1.G —> G2.G]
homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + £(y)
END group_homomorphism

gh: THEORY
BEGIN
IMPORTING group_homomorphism
[group{{G := int, + := +, 0 :
group{{G := nzreal, + := %, =1,
- := LAMBDA (x: nzreal): 1/x}}]

0 - = _}}:

s

I
|
(@]

h: (homomorphism?)
END gh

@ As before, which to use is a matter of taste

Sam Owre Theory Interpretations in PVS

Further Work

@ There is some preliminary work with interpreting equality as
an equivalence relation, using quotient types

@ Interpreting type structures such as record and function
types—need to be careful about implicit axioms

@ Providing means for, e.g., after mapping 1list to stack,
getting access to the mapped theorems of 1list_props

@ Provide a theory hierarchy display that makes it easy to follow
the how theories are imported or mapped

Sam Owre Theory Interpretations in PVS

