Theory Interpretations in PVS
NASA/NIA PVS Class 2012

Sam Owre

Computer Science Laboratory
SRI International
Menlo Park, CA

October, 2012

Contents

- Introduction
- Mappings and Views
- Parameter vs Uninterpreted Declarations
- Theory Declarations
- Nested Theory Declarations
- Theories as Parameters
- Conclusion
Introduction

- Logic has two primary aspects:
 - syntactic (proof theory) and
 - semantic (model theory)
- Interpretations are the bridge between these, assigning meaning to the symbols of a formal language
- Interpretations provide
 - Consistency: ensuring axioms are not contradictory
 - Refinement: providing an implementation for a specification
 - Expected Models: the specification satisfies expected models
 - Renaming: simply changing names

History

Interpretations have been important in several systems:
- Ehdm - precursor to PVS
- IMPS - axiomatic method based on “little theories”
- HOL - abstract theories and instantiations
- Maude - based on Rewriting Logic
- Extended ML - a framework for specification and refinement for Standard ML
- Specware - categorical basis—pullbacks
- COQ - based on the Calculus of Inductive Constructions
PVS Theories

- **Theories** are the top-level structures for PVS
- Theories may be parameterized
- Theories contain declarations for
 - types, constants, variables
 - definitions
 - inductive and coinductive definitions
 - axioms and formulas
 - importing other theories
 - judgements
 - conversions
 - auto-rewrites
 - libraries

Mappings

- Interpretations in PVS are specified using *mappings*
- Mappings assign meaning to *uninterpreted* types and constants

trivial

```
trivial: THEORY
BEGIN
T: TYPE
c: T
END trivial
```

mapping

```
trivial{{ T := int, c := 2 }}
```

- Assignments must be consistent; \(c := \text{true} \) would be an error
- But need not be complete - could assign \(T \) and leave \(c \) for later
PVS has more than just uninterpreted types and constants.
In general, interpretations for other entities is simply substitution, but:
- Substituted axioms become proof obligations
- Other substituted formulas are considered proved if their associated formula is true.

Group Example

```pvs
group
group: THEORY
BEGIN
  G: TYPE+
  +: [G, G -> G]
  0: G
  -: [G -> G]
  x, y, z: VAR G
  associative_ax: AXIOM FORALL x, y, z: x + (y + z) = (x + y) + z
  identity_ax: AXIOM FORALL x: x + 0 = x
  inverse_ax: AXIOM FORALL x: x + -x = 0 AND -x + x = 0
  idempotent_is_identity: LEMMA x + x = x => x = 0
END group

IMPORTINGS
IMPORTING group{{ G := int, + := +, 0 := 0, - := - }}
```
Implicit Axioms

- Some types include implicit axioms—for example, TYPE+
- Datatypes and Codatatypes also have implicit axioms
- For example, list has extensionality, induction, etc.

stack

```plaintext
astack [T: TYPE]: THEORY
BEGIN
  stack : TYPE = [# size : nat, elems: [below(size) -> T] #]
  empty?(S: stack): bool = (S' size = 0)
  nonempty?(S: stack): bool = NOT empty?(S)
  nonempty_stack: TYPE = (nonempty?)
  top(S: nonempty_stack): T = S' elems(S' size - 1)
  push(a: T, S: stack): nonempty_stack =
    S WITH ['size := S' size + 1,
             'elems := lambda (x: below(S' size+1)):
                 IF x = S' size THEN a ELSE S' elems(x) ENDIF]
END astack
```
stack Interpretation

list to stack

list_map: THEORY

BEGIN

IMPORTING astack[int]
IMPORTING list[int]

{{
 list := astack,
 null := (# size := 0,
 elems := lambda (x: below(0)): 0 #),
 null? := empty?,
 cons := push,
 cons? := nonempty?,
 car := top,
 cdr := lambda (S: nonempty_stack):
 S WITH ['size := S'size-1,
 'elems := lambda (x: below(S'size-1)):
 S'elems(x)]
}}

END list_map

stack extensionality TCC

Extensionality Axiom

list_cons_extensionality: AXIOM

FORALL (cons?_var: (cons?), cons?_var2: (cons?),
 car(cons?_var) = car(cons?_var2)
AND cdr(cons?_var) = cdr(cons?_var2)
IMPLIES cons?_var = cons?_var2;

Extensionality TCC

IMP_list_list_cons_extensionality_TCC1: OBLIGATION

FORALL (cons?_var, cons?_var2: x: stack[int] | nonempty?[int](x)):
 top[int](cons?_var) = top[int](cons?_var2) AND
 cons?_var WITH ['size := cons?_var'\'size - 1,
 'elems := LAMBDA (x: below(cons?_var'\'size - 1)):
 cons?_var'\'elems(x)]
 = cons?_var2 WITH ['size := cons?_var2'\'size - 1,
 'elems := LAMBDA (x: below(cons?_var2'\'size - 1)):
 cons?_var2'\'elems(x)]
 IMPLIES cons?_var = cons?_var2;
Induction Axiom

Induction Axiom

list induction: AXIOM

FORALL (p: [list -> boolean]):

(p(null) AND
(FORALL (cons1_var: T, cons2_var: list):
p(cons2_var) IMPLIES p(cons(cons1_var, cons2_var))))

IMPLIES (FORALL (list_var: list): p(list_var));

Induction TCC

IMP_list_list_induction_TCC1: OBLIGATION

FORALL (p: [stack[int] -> boolean]):

(p(# size := 0, elems := LAMBDA (x: below(0)): 0 #) AND
(FORALL (cons1_var: int, cons2_var: stack[int]):
p(cons2_var) IMPLIES p(push[int](cons1_var, cons2_var))))

IMPLIES (FORALL (list_var: stack[int]): p(list_var));

Theory Views (Mapping Shortcut)

- Often refinements use the same names for specification and implementation
- Views make this more convenient and less error-prone
- Example from the theory of Timed Automata:

Timed Automaton Spec

automaton: THEORY

BEGIN

actions: TYPE+;
visible(a:actions): bool;
states: TYPE+;
enabled(a:actions, s:states): bool;
trans(a:actions, s:states): states;
equivalent(a1, s2:states): bool;
reachable(s:states): bool;
start(s:states): bool;

END automaton

- A machine implementation defines actions, visible, etc.
Now instead of

Automaton Mapping

```plaintext
IMPORTING machine
IMPORTING automaton {{ actions := actions,
visible := visible, ... }}
```

Can write shorthand (the automaton view of a machine)

Automaton View

```plaintext
IMPORTING automaton :-> machine
```

The defaults can be overridden:

Views with Mappings

```plaintext
IMPORTING automaton{{ visible := myvisible }} :-> machine
```

Importing Limitations

- Importings are limited—example: group homomorphisms
- It is easy to define group automorphisms: \([G \rightarrow G]\)
- But homomorphisms are between different groups:

```plaintext
IMPORTING group{{ G := int, + := +, 0 := 0, - := - }}
IMPORTING group{{ G := nzreal, + := *, 0 := 1,
                 -(x: nzreal) := 1/x }}
```

- Can define homomorphism \([\text{int} \rightarrow \text{nzreal}]\), but that is too specific
- We need two (generative) copies of the group theory
Theory declarations are generative in this way

```plaintext
theory group_homomorphism: THEORY BEGIN
  G1, G2: THEORY = group
  x, y: VAR G1.G
  homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)
END group_homomorphism

importing group_homomorphism

{{ G1 = group{{ G := int, + := +, 0 := 0, - := - }},
  G2 = group{{ G := nzreal, + := *, 0 := 1,
  -(x: nzreal) := 1/x }},
}}
```

Theory Declarations (continued)

- A theory declaration creates a new copy of the named theory
- This is basically an inline expansion of the theory - a copy of all the declarations with the given substitution
- The declarations are named apart by prepending the theory declaration id and a period - G1.G, G2.+
- The expanded form may be seen using `M-x prettyprint-expanded`
Theory Abbreviations

- Theory abbreviations are similar to theory declarations
- Provide a name associated with an importing
 - Mostly used with importings that introduce ambiguity
 - The abbreviation may be used in name references to disambiguate

Theory Abbreviation

```plaintext
IMPORTING group{{ G := nzreal, + := *, 0 := 1, -(x: nzreal) := 1/x }} AS nzR
```

- Can now reference, for example, nzR.associative_axf

Nested Theory Declarations

```plaintext
group_homomorphism decl
ghinst: THEORY
BEGIN
  gh: THEORY = group_homomorphism
  {{ G1 := group{{ G := int, + := +,
                 0 := 0, - := - }},
   G2 := group{{ G := nzreal, + := *, 0 := 1,
                 -(x: nzreal) := 1/x }},

  END ghinst
```

- Note the mappings within mappings
- Importing ghinst leads to names such as ghinst.gh.G1.+
- The syntax of names was extended to allow such nested names
Importings vs Theory Declarations

- Theory declarations are more general, but do incur an overhead
- Generally used when a copy is actually needed
 - However, nested mappings may only be given for theory declarations

Nested Importings

<table>
<thead>
<tr>
<th>Theory</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1</td>
<td>THEORY BEGIN T: TYPE END Th1</td>
</tr>
<tr>
<td>Th2</td>
<td>THEORY BEGIN IMPORTING Th1 END Th2</td>
</tr>
<tr>
<td>Th3</td>
<td>THEORY BEGIN IMPORTING Th1 END Th3</td>
</tr>
<tr>
<td>Th4</td>
<td>THEORY BEGIN IMPORTING Th2, Th3 END Th4</td>
</tr>
<tr>
<td>Th5</td>
<td>THEORY BEGIN IMPORTING Th4{T := int} % ??</td>
</tr>
</tbody>
</table>

Name Review

- The name syntax is

Name Syntax

\[
\text{name ::= [id '@'] idop [actuals]
 \[mappings\] [':'->' modname]
 ['.', idop'++'.']}
\]

Name Examples

- timed_auto_lib@timed_automaton{{ visible := vis }}
 :-> timeout_decls
- lib@th[int]{{ T := int }} :-> spec.A.f

- Note that mappings and views may appear in any name, not just importings and theory declarations
- Only the top level (before the first '.') has actual parameters
Names rarely need to be fully provided
- Actual parameters can often be inferred (mostly for types)
- The theory name is usually not needed
- Just suffix of dotted names is needed—enough to disambiguate e.g., G1.+

Partial Mappings

- Theories may be partially interpreted:

 Partial Interpretation
 IMPORTING group{{ G := int, + := + }} AS igrp

 - igrp may be further interpreted later
 - TCCs are only generated for axioms that are fully interpreted; in this case only associative_ax.
 - The other axioms remain as axioms for proofchain analysis
Renamings

- Mapping *renames* introduced with `::=`
- For example, lists are really stacks

Lists as Stacks

```plaintext
list2stack: THEORY
BEGIN
  intstack: THEORY = list[int]
  {{ list:TYPE ::= stack,
    null ::= empty,
    null?: ::= empty?,
    cons ::= push,
    cons ::= nonempty??,
    car ::= top,
    cdr ::= pop }}

  push2pop2: LEMMA empty?(pop(push(1, empty)))
END list2stack
```

Renamings (continued)

- Renamings are only available for theory declarations, as new declarations must be generated
- The new copy of the theory has all declarations substituted with renamings
- Renamings may be mixed with normal mappings
In principle, theory parameters are not required
They could be given as uninterpreted types and constants and instantiated with mappings
In practice, theory parameters have some advantages:
- Parameters are required
- Parameters may have assumptions that act as contracts
- Parameters often can be inferred
On the other hand, parameters
- Must be completely provided every time (no partial instantiation)
- Assumptions tend to have to be carried along the theory hierarchy

Theories as Parameters

Theory declarations may also appear as parameters

Theories as Parameters

```plaintext
group_homomorphism[G1, G2: THEORY group]: THEORY
BEGIN
x, y: VAR G1.G
homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)
END group_homomorphism

gh: THEORY
BEGIN
IMPORTING group_homomorphism
[group{{G := int, + := +, 0 := 0, - := -}},
group{{G := nzreal, + := *, 0 := 1,
    - := LAMBDA (x: nzreal): 1/x}}]
h: (homomorphism?)
END gh
```

As before, which to use is a matter of taste
Further Work

- There is some preliminary work with interpreting equality as an equivalence relation, using quotient types.
- Interpreting type structures such as record and function types—need to be careful about implicit axioms.
- Providing means for, e.g., after mapping list to stack, getting access to the mapped theorems of list_props.
- Provide a theory hierarchy display that makes it easy to follow the how theories are imported or mapped.