
Theory Interpretations in PVS
NASA/NIA PVS Class 2012

Sam Owre

Computer Science Laboratory
SRI International
Menlo Park, CA

October, 2012

Contents

Introduction

Mappings and Views

Parameter vs Uninterpreted Declarations

Theory Declarations

Nested Theory Declarations

Theories as Parameters

Conclusion

Sam Owre Theory Interpretations in PVS



Introduction

Logic has two primary aspects:

syntactic (proof theory) and
semantic (model theory)

Interpretations are the bridge between these, assigning
meaning to the symbols of a formal language

Interpretations provide

Consistency: ensuring axioms are not contradictory
Refinement: providing an implementation for a specification
Expected Models: the specification satisfies expected models
Renaming: simply changing names

Sam Owre Theory Interpretations in PVS

History

Interpretations have been important in several systems:

Ehdm - precursor to PVS

IMPS - axiomatic method based on “little theories”

HOL - abstract theories and instantiations

Maude - based on Rewriting Logic

Extended ML - a framework for specification and refinement
for Standard ML

Specware - categorical basis—pullbacks

COQ - based on the Calculus of Inductive Constructions

Sam Owre Theory Interpretations in PVS



PVS Theories

Theories are the top-level structures for PVS

Theories may be parameterized

Theories contain declarations for

types, constants, variables
definitions
inductive and coinductive definitions
axioms and formulas
importing other theories
judgements
conversions
auto-rewrites
libraries

Sam Owre Theory Interpretations in PVS

Mappings

Interpretations in PVS are specified using mappings

Mappings assign meaning to uninterpreted types and
constants

trivial

trivial: THEORY

BEGIN

T: TYPE

c: T

END trivial

mapping

trivial{{ T := int, c := 2 }}

Assignments must be consistent; c := true would be an
error

But need not be complete - could assign T and leave c for
later

Sam Owre Theory Interpretations in PVS



PVS Interpretations

PVS has more than just uninterpreted types and constants

In general, interpretations for other entities is simply
substitution, but

Substituted axioms become proof obligations
Other substituted formulas are considered proved if their
associated formula is

Sam Owre Theory Interpretations in PVS

Group Example

group

group: THEORY

BEGIN

G: TYPE+

+: [G, G -> G]

0: G

-: [G -> G]

x, y, z: VAR G

associative_ax: AXIOM FORALL x, y, z: x + (y + z) = (x + y) + z

identity_ax: AXIOM FORALL x: x + 0 = x

inverse_ax: AXIOM FORALL x: x + -x = 0 AND -x + x = 0

idempotent_is_identity: LEMMA x + x = x => x = 0

END group

Importings

IMPORTING group{{ G := int, + := +, 0 := 0, - := - }}

Sam Owre Theory Interpretations in PVS



group Obligations

TCCs

% IMP_group_G_nonempty_TCC1: OBLIGATION EXISTS (x: int): TRUE;

% was not generated because int is non-empty

IMP_group_associative_ax_TCC1: OBLIGATION

FORALL (x: int), (y: int), (z: int): x + (y + z) = (x + y) + z;

IMP_group_identity_ax_TCC1: OBLIGATION FORALL (x: int): x + 0 = x;

IMP_group_inverse_ax_TCC1: OBLIGATION

FORALL (x: int): x + -x = 0 AND -x + x = 0;

Sam Owre Theory Interpretations in PVS

Implicit Axioms

Some types include implicit axioms—for example, TYPE+

Datatypes and Codatatypes also have implicit axioms

For example, list has extensionality, induction, etc.

stack

astack [T: TYPE]: THEORY

BEGIN

stack : TYPE = [# size : nat, elems: [below(size) -> T] #]

empty?(S: stack): bool = (S‘size = 0)

nonempty?(S: stack): bool = NOT empty?(S)

nonempty_stack: TYPE = (nonempty?)

top(S: nonempty_stack): T = S‘elems(S‘size - 1)

push(a: T, S: stack): nonempty_stack =

S WITH [‘size := S‘size + 1,

‘elems := lambda (x: below(S‘size+1)):

IF x = S‘size THEN a ELSE S‘elems(x) ENDIF]

END astack

Sam Owre Theory Interpretations in PVS



stack Interpretation

list to stack

list_map: THEORY

BEGIN

IMPORTING astack[int]

IMPORTING list[int]

{{ list := astack,

null := (# size := 0,

elems := lambda (x: below(0)): 0 #),

null? := empty?,

cons := push,

cons? := nonempty?,

car := top,

cdr := lambda (S: nonempty_stack):

S WITH [‘size := S‘size-1,

‘elems := lambda (x: below(S‘size-1)):

S‘elems(x)]

}}

END list_map

Sam Owre Theory Interpretations in PVS

stack extensionality TCC

Extensionality Axiom

list_cons_extensionality: AXIOM

FORALL (cons?_var: (cons?), cons?_var2: (cons?)):

car(cons?_var) = car(cons?_var2)

AND cdr(cons?_var) = cdr(cons?_var2)

IMPLIES cons?_var = cons?_var2;

Extensionality TCC

IMP_list_list_cons_extensionality_TCC1: OBLIGATION

FORALL (cons?_var, cons?_var2: x: stack[int] | nonempty?[int](x)):

top[int](cons?_var) = top[int](cons?_var2) AND

cons?_var WITH [‘size := cons?_var‘size - 1,

‘elems := LAMBDA (x: below(cons?_var‘size - 1)):

cons?_var‘elems(x)]

= cons?_var2 WITH [‘size := cons?_var2‘size - 1,

‘elems := LAMBDA (x: below(cons?_var2‘size - 1)):

cons?_var2‘elems(x)]

IMPLIES cons?_var = cons?_var2;

Sam Owre Theory Interpretations in PVS



stack induction TCC

Induction Axiom

list_induction: AXIOM

FORALL (p: [list -> boolean]):

(p(null) AND

(FORALL (cons1_var: T, cons2_var: list):

p(cons2_var) IMPLIES p(cons(cons1_var, cons2_var))))

IMPLIES (FORALL (list_var: list): p(list_var));

Induction TCC

IMP_list_list_induction_TCC1: OBLIGATION

FORALL (p: [stack[int] -> boolean]):

(p((# size := 0, elems := LAMBDA (x: below(0)): 0 #)) AND

(FORALL (cons1_var: int, cons2_var: stack[int]):

p(cons2_var) IMPLIES p(push[int](cons1_var, cons2_var))))

IMPLIES (FORALL (list_var: stack[int]): p(list_var));

Sam Owre Theory Interpretations in PVS

Theory Views (Mapping Shortcut)

Often refinements use the same names for specification and
implementation

Views make this more convenient and less error-prone

Example from the theory of Timed Automata:

Timed Automaton Spec

automaton:THEORY

BEGIN

actions: TYPE+;

visible(a:actions):bool;

states: TYPE+;

enabled(a:actions, s:states): bool;

trans(a:actions, s:states):states;

equivalent(a1, s2:states):bool;

reachable(s:states):bool;

start(s:states):bool;

END automaton

A machine implementation defines actions, visible, etc.

Sam Owre Theory Interpretations in PVS



Theory Views

Now instead of

Automaton Mapping

IMPORTING machine

IMPORTING automaton {{ actions := actions,

visible := visible, ... }}

Can write shorthand (the automaton view of a machine)

Automaton View

IMPORTING automaton :-> machine

The defaults can be overridden:

Views with Mappings

IMPORTING automaton{{ visible := myvisible }} :-> machine

Sam Owre Theory Interpretations in PVS

Importing Limitations

Importings are limited—example: group homomorphisms

It is easy to define group automorphisms: [G -> G]

But homomorphisms are between different groups:

IMPORTING group{{ G := int, + := +, 0 := 0, - := - }}

IMPORTING group{{ G := nzreal, + := *, 0 := 1,

-(x: nzreal) := 1/x }}

Can define homomorphism [int -> nzreal], but that is too
specific

We need two (generative) copies of the group theory

Sam Owre Theory Interpretations in PVS



Theory Declarations

Theory declarations are generative in this way

group_homomorphism: THEORY

BEGIN

G1, G2: THEORY = group

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)

END group_homomorphism

IMPORTING group_homomorphism

{{ G1 = group{{ G := int, + := +, 0 := 0, - := - }},

G2 = group{{ G := nzreal, + := *, 0 := 1,

-(x: nzreal) := 1/x }}

}}

Sam Owre Theory Interpretations in PVS

Theory Declarations (continued)

A theory declaration creates a new copy of the named theory

This is basically an inline expansion of the theory - a copy of
all the declarations with the given substitution

The declarations are named apart by prepending the theory
declaration id and a period - G1.G, G2.+

The expanded form may be seen using
M-x prettyprint-expanded

Sam Owre Theory Interpretations in PVS



Theory Abbreviations

Theory abbreviations are similar to theory declarations

Provide a name associated with an importing

Mostly used with importings that introduce ambiguity
The abbreviation may be used in name references to
disambiguate

Theory Abbreviation

IMPORTING group{{ G := nzreal, + := *, 0 := 1,

-(x: nzreal) := 1/x }} AS nzR

Can now reference, for example, nzR.associative axf

Sam Owre Theory Interpretations in PVS

Nested Theory Declarations

group homomorphism decl

ghinst: THEORY

BEGIN

gh: THEORY = group_homomorphism

{{ G1 := group{{ G := int, + := +,

0 := 0, - := - }},

G2 := group{{ G := nzreal, + := *, 0 := 1,

-(x: nzreal) := 1/x }}

}}

END ghinst

Note the mappings within mappings

Importing ghinst leads to names such as ghinst.gh.G1.+

The syntax of names was extended to allow such nested names

Sam Owre Theory Interpretations in PVS



Importings vs Theory Declarations

Theory declarations are more general, but do incur an
overhead

Generally used when a copy is actually needed

However, nested mappings may only be given for theory
declarations

Nested Importings

Th1: THEORY BEGIN T: TYPE END Th1

Th2: THEORY BEGIN IMPORTING Th1 END Th2

Th3: THEORY BEGIN IMPORTING Th1 END Th3

Th4: THEORY BEGIN IMPORTING Th2, Th3 END Th4

Th5: THEORY BEGIN IMPORTING Th4{{T := int}} % ???

Sam Owre Theory Interpretations in PVS

Name Review

The name syntax is

Name Syntax

name ::= [id ’@’] idop [actuals]

[mappings] [’:->’ modname]

[’.’ idop++’.’]

Name Examples

timed_auto_lib@timed_automaton{{ visible := vis }}

:-> timeout_decls

ghinst.gh.G1.+

lib@th[int]{{ T := int }} :-> spec.A.f

Note that mappings and views may appear in any name, not
just importings and theory declarations

Only the top level (before the first ’.’) has actual parameters

Sam Owre Theory Interpretations in PVS



Names (continued)

Names rarely need to be fully provided

Actual parameters can often be inferred (mostly for types)
The theory name is usually not needed
Just suffix of dotted names is needed—enough to
disambiguate e.g., G1.+

Sam Owre Theory Interpretations in PVS

Partial Mappings

Theories may be partially interpreted:

Partial Interpretation

IMPORTING group{{ G := int, + := + }} AS igrp

igrp may be further interpreted later

TCCs are only generated for axioms that are fully interpreted;
in this case only associative ax.

The other axioms remain as axioms for proofchain analysis

Sam Owre Theory Interpretations in PVS



Renamings

Mapping renames introduced with ::=

For example, lists are really stacks

Lists as Stacks

list2stack: THEORY

BEGIN

intstack: THEORY = list[int]

{{ list:TYPE ::= stack,

null ::= empty,

null? ::= empty?,

cons ::= push,

cons ::= nonempty??,

car ::= top,

cdr ::= pop }}

push2pop2: LEMMA empty?(pop(push(1, empty)))

END list2stack

Sam Owre Theory Interpretations in PVS

Renamings (continued)

Renamings are only available for theory declarations, as new
declarations must be generated

The new copy of the theory has all declarations substituted
with renamings

Renamings may be mixed with normal mappings

Sam Owre Theory Interpretations in PVS



Theory Parameters versus Mappings

In principle, theory parameters are not required

They could be given as uninterpreted types and constants and
instantiated with mappings

In practice, theory parameters have some advantages:

Parameters are required
Parameters may have assumptions that act as contracts
Parameters often can be inferred

On the other hand, parameters

Must be completely provided every time (no partial
instantiation)
Assumptions tend to have to be carried along the theory
hierarchy

Sam Owre Theory Interpretations in PVS

Theories as Parameters

Theory declarations may also appear as parameters

Theories as Parameters

group_homomorphism[G1, G2: THEORY group]: THEORY

BEGIN

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)

END group_homomorphism

gh: THEORY

BEGIN

IMPORTING group_homomorphism

[group{{G := int, + := +, 0 := 0, - := -}},

group{{G := nzreal, + := *, 0 := 1,

- := LAMBDA (x: nzreal): 1/x}}]

h: (homomorphism?)

END gh

As before, which to use is a matter of taste

Sam Owre Theory Interpretations in PVS



Further Work

There is some preliminary work with interpreting equality as
an equivalence relation, using quotient types

Interpreting type structures such as record and function
types—need to be careful about implicit axioms

Providing means for, e.g., after mapping list to stack,
getting access to the mapped theorems of list props

Provide a theory hierarchy display that makes it easy to follow
the how theories are imported or mapped

Sam Owre Theory Interpretations in PVS


