Exercise Set 7: Induction, Recursion, and Iteration

These exercises are intended to illustrate the trials and tribulations of induction, recursion, and iteration. The PVS file exercises/induction.pvs support these exercises.

1. The factorial function is defined in the NASA PVS theory ints@factorial as follows:
```
factorial(n): RECURSIVE posnat =
    IF n = 0 THEN 1
    ELSE n*factorial(n-1)
ENDIDF
MEASURE n
```

Problem: Use induction to prove that the factorial of any number strictly greater than 1 is even. Lemma factorial_even specifies this statement in PVS. The predicate even? is defined in the PVS prelude library as follows.

```
even?(i): bool = EXISTS j: i = j * 2
```

Hint: First use (induct "n"). The base case is discharged by (grind). For the inductive case, introduce the skolem constants, along with its type information, with the proof command (skeep :preds? t). Then, expand the definitions of factorial and even?. Be careful here, to avoid expanding all occurrences of factorial use the command (expand "factorial" fnum), where fnum is a formula number. Next, you have to introduce an skolem constant for the existential formula in the antecedent, use for example (skolem fnum "J"), and to instantiate the existential variable in the consequent, use for example (inst fnum $\mathrm{J} *(\mathrm{ja}+1)$ "). The proof command (assert) finishes the proof.
2. Problem: Use induction to prove the following statement about the factorial function

$$
\forall n: n!\geq n
$$

Lemma factorial_ge specifies this statement in PVS.
Hint: First use (induct " n "). The base case is discharged easily. After expanding the right occurrence of factorial, assert that the factorial of n is greater than or equal to 1 . This can be accomplished with the proof command (case "factorial(n) >= $1^{\prime \prime}$). Multiply both sides of that inequality by $j+1$ using the proof rule mult-by (see lecture on proving real number properties). Finally, use (assert).
3. The two-variable Ackermann function can be defined as follows.

$$
\operatorname{ack}(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ \operatorname{ack}(m-1,1) & \text { if } n=0 \\ \operatorname{ack}(m-1, \operatorname{ack}(m, n-1)) & \text { otherwise }\end{cases}
$$

Problem: Prove the following statement about the Ackermann function

$$
\forall m, n: \operatorname{ack}(m, n)>m+n .
$$

Lemma ack_gt_m_n specifies this statement in PVS.
Hint: Avoid induction, recursive judgments are your friends. Once you express the formula as a recursive judgement, the proof of ack_gt_m_n is just (grind). The TCCs are discharged automatically using the Emacs command $M-x$ tcp.
4. The exponent function is defined in the PVS prelude as follows.

```
expt(r, n): RECURSIVE real =
    IF n = 0 THEN 1
    ELSE r * expt(r, n-1)
    ENDIF
MEASURE n
```

The following is an imperative version of this function written in pseudo-code.

```
function expt_it(x:real,n:nat):nat {
    a := 1;
    // a = expt(x,0)
    for (i:=1; i <= n; i++) {
        // invariant: a = expt(x,i)
        a := a*x;
    }
    return a;
    // post: a = expt(x,n)
}
```

In PVS, using the for loop defined in structures@for_iterate, the function expt_it can be specified as follows.

```
expt_it(x:real,n:nat): real =
    for[real](1,n,1,LAMBDA(i:subrange(1,n),a:real):a*x)
```

Problem: Prove that the functions expt_it and expt coincide in all points x and n . Lemma expt_it_sound specifies this statement in PVS.

Hint: After expanding the definition of expt_it use lemma for_induction[real]. All universal variables in that lemma, but inv, are automatically instantiated using the proof command (inst? fnum). The universal variable inv corresponds to the invariant of the loop and it is a predicate of the form
LAMBDA(i:upto(n),a:real): ...
where i is the iteration number and a is the value of the accumulator at each iteration. Once you find the right invariant inv use the proof command (inst fnum inv). The command (grind) finishes the proof.
5. The predicate even? can be inductively defined in PVS as follows.

```
even(n:nat): INDUCTIVE bool =
    n = O OR (n > 1 AND even(n - 2))
```

Problem: Prove that for all natural number n, even? (n) holds if even(n) holds. Lemma we_are_even specifies this statement in PVS.
Hint: Start the proof with (rule-induct "even") and then you are on your own.

