Exercise 2: The World According to Chronos

Archaeologists recently discovered a manuscript from an ancient Greek natural philoso-
pher named Chronos, whose work was previously unknown. Chronos was ahead of his
time, but his theoretical ideas were tragically flawed. You have been asked to formalize
his theories in PVS.

1. The file chronos.pvs contains two PVS theories: one is the vectors theory already
presented, and the other is a mostly empty theory named chronos. Bring up the
file using the command M-x ff (find file). Go ahead and typecheck it. You will be
building up the theory chronos incrementally in the following steps. Typecheck it
again after each item is added. Keep correcting any specification errors until the
theory typechecks cleanly at each step.

2. Chronos used a three-axis coordinate system to model the physical world. His axes
were labeled «, § and «. Introduce an enumeration type called something like
chr_axis to represent these axes. Import the theory vectors with this type as a
parameter.

3. In his studies Chronos used a simple calendar that was nothing more than a num-
bering of the days. Day One he considered to be the day of his own birth. Day
Omega was his hypothesized end date for the world as we know it, which he esti-
mated would occur in one million days. Introduce a constant for Day Omega, then
declare a type such as calendar_day to model the Chronosian calendar using a
suitable predicate subtype of nat.

4. Remarkably, Chronos hypothesized a law of universal gravitation long before New-
ton did. In a bizarre twist, however, he believed the Earth’s gravitational accel-
eration “constant” increased in stepwise fashion once a day at midnight. Declare
a type gravity_fn to represent functions from calendar_day to real, which can
model the time-varying acceleration due to gravity.

5. Introduce a constant for the number of seconds in a day. Declare a type for the
time of day expressed as seconds past midnight. This type should be a predicate
subtype of real.

6. Declare a record type representing the concept of “point in time” that contains a
field for calendar day and a field for time of day.

7. Define a predicate (boolean-valued function) to test whether one point in time
precedes another, i.e., is less than or equal using a lexicographic ordering.

precedes(x, y: point_in_time): bool = <expression>



10.

11.

12.

Define a function that takes a point-in-time value y and another value x that
precedes y, then computes their time difference in seconds. Note that the type of
x depends on the value of y:

time_diff(y: point_in_time,
x: {t: point_in_time | precedes(t, y)}): real =
<expression>

Declare a type that represents vectors in the Chronosian coordinate system. Use the
imported vectors theory and specialize it with your axis type declared in step 2.

Using the vector type from step 9, define a function that computes the final position
of a moving body in Chronosian coordinates when given initial position and velocity
vectors. Give the function four arguments: a point in time z, a later point in time
y, and the position and velocity vectors representing the state at time x. Assume
linear motion and no net force acting on the body. Use the vector operations defined
in the vectors theory and the time difference function from step 8. (Recall from
physics the vector equation ps = p; + vt.)

final_position(x: point_in_time,
y: {t: point_in_time | precedes(x, t)},
position, velocity: chr_vector): chr_vector =
<expression>

The Chronosian Principle of Daily Gravitational Progression holds that the gravi-
tation “constant” is a monotonically increasing function of calendar day. Inciden-
tally, Chronos also theorized that gravity eventually would become so strong that
the Earth would collapse (on Day Omega) into what we now call a black hole.
Declare a function of type gravity_fn g and express the montonicity principle as
a constraint in a predicate subtype.

g: {f: gravity_fn | <constraint>}

Define a function that takes a point-in-time z and a duration ¢, and calculates,
according to Chronosian theory, the speed a falling object would have attained
after ¢ seconds if dropped at point in time x. (Recall from physics that the speed
change Av experienced under constant acceleration a is given by at.)



13.

14.

Restrict x to be earlier than Day Omega and ¢ to be less than one day. Remember
what happens to gravity at midnight. Ignore the slight increase in weight as the
object falls, the effects of wind resistance, etc. (Hint: split the duration into two
portions that lie on either side of midnight following the initial time z, then use
LET to name the two times.)

final_speed(x: {T: point_in_time | T‘day < Omegal,
t: {d: real | 0 <= d & d < sec_per_day}): real =
LET delta_T_before =
<expression>,
delta_T_after =
<expression>
IN
<expression>

After successfully typechecking your theory, look over any TCCs that are gener-
ated by issuing the command M-x show-tccs. If any of them look untrue, try to
determine why and revise your theory accordingly.

Make up any other interesting concepts from the world according to Chronos and
express them in PVS.



Tolh

oth Generic vector operations on real elements.

Tolh

vectors [index_type: TYPE]: THEORY
BEGIN

vector: TYPE = [index_type -> real]
i,j,k: VAR index_type

a,b,c: VAR real

uU,V: VAR vector

zero_vector: vector = LAMBDA i: O
vector_sum(U, V): vector = LAMBDA i: U(i) + V(i)
vector_diff (U, V): vector = LAMBDA i: U(i) - V(i)
scalar_mult(a, V): vector = LAMBDA i: a * V(i)
END vectors

oo

ot The World According to Chronos (Exercise 2)

Yoo

chronos: THEORY
BEGIN

%% Insert new declarations in this theory.

%% Stubs for some function declarations are provided in

%% the file chronos.pvs.

END chronos



