
Exercise 1: Getting Acquainted with the System

1. Login.

2. Start PVS

3. Make a new pvs file inside pvs-emacs. C-x C-f ___.pvs

4. Create a new theory. The structure of a theory file is:

ex1: THEORY

BEGIN

END ex1

You can either type this in or issue command Esc 1 M-x nt

5. Create a function after BEGIN. Example: f(x) = x+1

6. Type check your theory: M-x tc (This should give an error.)

7. The type of the function must be declared. Example: f(x):nat = x+1

8. Typecheck your theory: M-x tc

9. More type information needed. The type of the variable x must be declared. Either declare
x as a variable before the function or within the function:
x : VAR nat
f(x):nat = x+1

or
f(x:nat):nat = x+1

10. The theory should type check without errors now.

11. Create a theorem based on the previous function.
Example: trivial : THEOREM (FORALL (x:nat): f(x) > x)

12. A PVS interactive session to prove “trivial” can be started by placing the cursor over the
declaration of “trivial” and typing M-x pr

13. Prove the theorem by giving the command grind at the prompt: (grind)

14. Let’s prove the theorem again the “old fashion way”. Again place the cursor over the decla-
ration of “trivial” and typing M-x pr

15. try again?: yes

16. Rerun existing proof?: no

17. Eliminate the universal quantifier: (skosimp*)

18. Expand the function f with its definition: (expand "f")



19. Use arithmetic simplification to prove the formula: (assert)

20. Compare the Run Time and the Real Time for the two methods of proof. This will be an
issue when formulas become complex.

21. Let’s prove it a third time. Issue M-x pr again and answer all the questions. Once the sequent
appears in the *pvs* buffer, type TAB *. Then put the cursor on the f in the sequent and
type TAB e. Then type TAB a.

22. Now type M-x spt.

23. Place cursor on the THEOREM keyword, and type M-x edit-proof. Then type C-x o followed
by C-x 1.

24. End of Exercise 1.

If you finish early add

a: VAR nat
another: LEMMA f(a-f(a)) = 0

to your theory. Issue M-x tc. Next issue M-x show-tccs. Notice that a window pops up with the
following in it:

another_TCC1: OBLIGATION FORALL (a: nat): a - f(a) >= 0;

The message tells you what line generated this obligation. Why do you think this obligation was
created? Is it provable? Prove lemma another using M-x pr (grind). Issue M-x spt and notice
that trivial is now unchecked. Whenever you change something in a theory the proofs have to
be rerun. Issue command M-x prt to reprove everything in the theory. Notice that another_TCC1
is not proved and the status of another is proved - incomplete. This tells you that this lemma
depends upon something that is unproven. Your job is not done until you see proved - complete
everywhere.


