Symbolic Computation of Strongly Connected Components using Saturation

Yang Zhao Gianfranco Ciardo Department of Computer Science and Engineering University of California at Riverside

Work supported in part by the National Science Foundation under grant CCF-0848463

- Finding strongly connected components (SCCs) is a basic problem in formal verification:
 - LTL and CTL model checking
 - \circ Language emptiness check for ω -automata
- In Markov chain analysis, we need to partition the state space into transient vs. recurrent states (recurrent states are those that belong to terminal SCCs)
- It is impractical to enumerate SCCs using explicit algorithms for large discrete-state models
 ⇒ use symbolic computation of SCCs
- Objectives: symbolically build the set of states in non-trivial (terminal) SCCs

Two difficulties:

- huge state spaces: the primary obstacle to formal verification
- potentially large number of (terminal) SCCs: a bottleneck for SCC enumeration algorithms

We propose two approaches based on previous ideas: the Xie-Beerel algorithm and transitive closure

- Saturation helps cope with the complexity of state-space exploration
- To cope with a large number of SCCs, we use a transitive closure-based algorithm:
 - Computing transitive closure based on saturation
 - Can support the computation of recurrent states

A structured discrete-state model is specified by $\langle \widehat{S}, S_{init}, \mathcal{E} \rangle$:

- a potential state space $\widehat{\mathcal{S}} = \mathcal{S}_L \times \cdots \times \mathcal{S}_1$
 - $\circ\,$ the (global) state is of the form ${f i}=(i_L,...,i_1)$
 - $\circ \ \mathcal{S}_k$ is the (discrete) local state space for submodel k or local domain for state variable x_k
 - \circ if \mathcal{S}_k is finite, we can map it to $\{0, 1, \dots, n_k 1\}$ n_k is known after state-space generation
- a set of initial states $\mathcal{S}_{init} \subseteq \widehat{\mathcal{S}}$
 - $\circ\,$ often there is a single initial state ${f i}_{init}$
- a set of events \mathcal{E} defining disjunctively-partitioned next-state functions or transition relation $\circ \mathcal{N}_{\alpha} : \widehat{\mathcal{S}} \to 2^{\widehat{\mathcal{S}}}$ $\mathbf{j} \in \mathcal{N}_{\alpha}(\mathbf{i})$ iff state \mathbf{j} can be reached by firing event α in state \mathbf{i} $\circ \mathcal{N} : \widehat{\mathcal{S}} \to 2^{\widehat{\mathcal{S}}}$ $\mathcal{N}(\mathbf{i}) = \bigcup_{\alpha \in \mathcal{E}} \mathcal{N}_{\alpha}(\mathbf{i})$ \circ naturally extended to sets of states $\mathcal{N}_{\alpha}(\mathcal{X}) = \bigcup_{\mathbf{i} \in \mathcal{X}} \mathcal{N}_{\alpha}(\mathbf{i})$ and $\mathcal{N}(\mathcal{X}) = \bigcup_{\mathbf{i} \in \mathcal{X}} \mathcal{N}(\mathbf{i})$
 - α is enabled in **i** iff $\mathcal{N}_{\alpha}(\mathbf{i}) \neq \emptyset$, otherwise it is disabled

An MDD is an acyclic directed edge-labeled graph where:

- The only terminal nodes can be 0 and 1, and are at level 0 0.lvl = 1.lvl = 0
- A nonterminal node p is at a level k, with $L \ge k \ge 1$
- A nonterminal node is associated with a state variable x_k , with $L \ge k \ge 1$
- For each $i_k \in \mathcal{S}_k$, a nonterminal node p at level k has an outgoing edge pointing to child $p[i_k]$
- The level of a child is lower than that of p
- A node p at level k encodes the function $v_p : S_k \times \cdots \times S_1 \to \mathbb{B}$ defined recursively by

$$v_p(x_k, ..., x_1) = \begin{cases} p & \text{if } k = 0\\ v_{p[x_k]}(x_{k-1}, ..., x_1) & \text{if } k > 0 \end{cases}$$

An *L*-level MDD encodes a set of states $\mathcal{X} \subseteq \widehat{\mathcal{S}} = \mathcal{S}_L \times \cdots \times \mathcal{S}_1$

 $\mathbf{i} \in \mathcal{X} \iff$ the path $(i_L, ..., i_1)$ from the root leads to terminal 1, corresponding to \mathbf{i} .

p.lvl = k

 $p[i_k].lvl < p.lvl$

Using MDDs to encode next-state functions

A 2L-level MDD encodes the next-state function $\mathcal{N}:\widehat{\mathcal{S}}\to 2^{\widehat{\mathcal{S}}}$

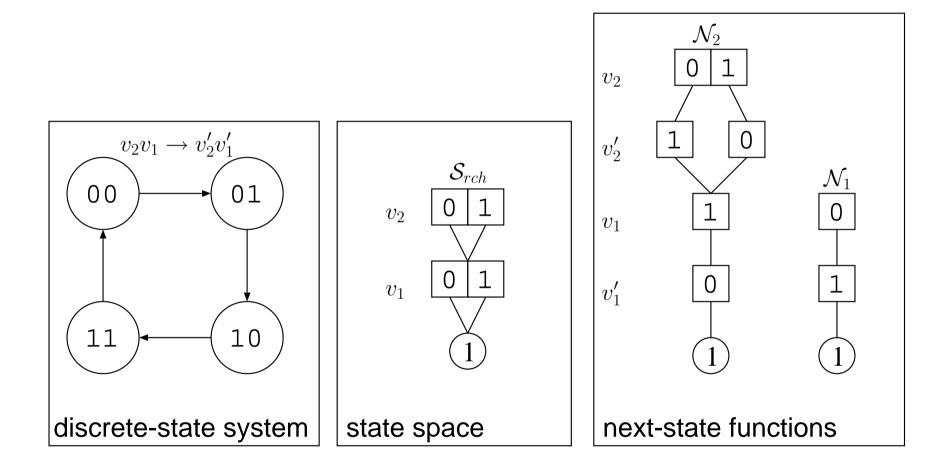
 $\mathbf{j} \in \mathcal{N}(\mathbf{i}) \iff$ the path $(i_L, j_L, ..., i_1, j_1)$ from the root leads to terminal $\mathbf{1}$.

- α is independent of the k^{th} submodel if:
 - $\circ\,$ its enabling does not depend on i_k ,

 \circ and its firing does not change the value of i_k .

- A level k belongs to $supp(\alpha)$, if α is not independent of k.
- Let $Top(\alpha)$ be the highest-numbered level in $supp(\alpha)$.
- Let \mathcal{E}_k be the set of events $\{\alpha \in \mathcal{E} : Top(\alpha) = k\}$.
- Let \mathcal{N}_k be the next-state function corresponding to all events in \mathcal{E}_k :

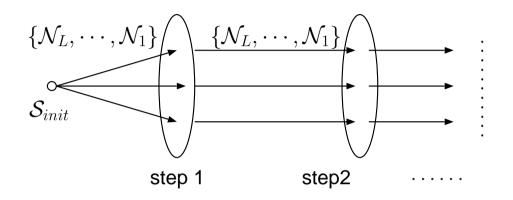
$$\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$$



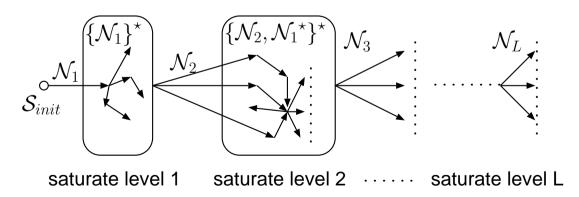
MDD node p at level k is **saturated** if it encodes a fixpoint w.r.t. any event α s.t. $Top(\alpha) \leq k$

- build the *L*-level MDD encoding of S_{init} if $|S_{init}| = 1$, there is one node per level
- saturate each node at level 1: fire in them all events α s.t. $Top(\alpha) = 1$
- saturate each node at level 2: fire in them all events α s.t. $Top(\alpha) = 2$ (if this creates nodes at level 1, saturate them immediately upon creation)
- saturate each node at level 3: fire in them all events α s.t. $Top(\alpha) = 3$ (if this creates nodes at levels 2 or 1, saturate them immediately upon creation)
- . . .
- saturate the root node at level *L*: fire in it all events α s.t. $Top(\alpha) = L$ (if this creates nodes at levels L-1, L-2, ..., 1, saturate them immediately upon creation)

Breadth-first search (BFS):



Saturation:



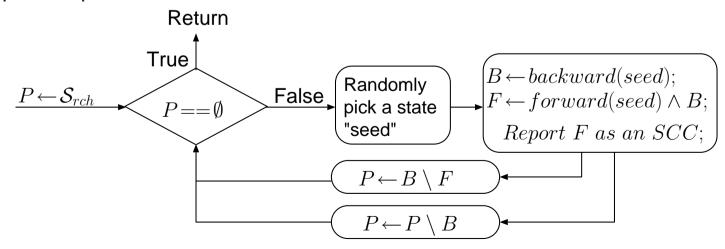
- states are **not** discovered in breadth-first order
- enormous time and memory savings for asynchronous systems

Two categories of related work: transitive closure and the SCC enumeration

• transitive closure: Hojati et al. presented as fully symbolic algorithm for testing ω -regular language containment by computing the transitive closure:

$$\mathcal{N}^+ = \mathcal{N} \cup \mathcal{N}^2 \cup \mathcal{N}^3 \cup \cdots$$

- Due to the high complexity of computing the transitive closure, this approach has long been considered infeasible for complex systems.
- SCC enumeration: the Xie-Beerel algorithm combines both explicit state enumeration and symbolic state-space exploration.



Lockstep reduces the number of image computations w.r.t. the Xie-Beerel algorithm.

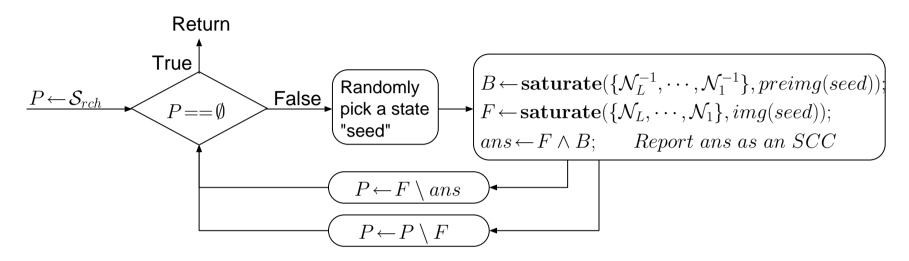
- It interleaves one forward and one backward step to compute forward and backward reachable states.
- It uses the earlier converged set of states to bound the other.
- Lockstep achieves $O(n \log n)$ complexity in the terms of steps.

```
mdd \ Lockstep(mdd \ P)
  1 . . .
 2 while (F_{front} \neq \emptyset \text{ and } B_{front} \neq \emptyset)
        F_{front} \leftarrow \mathcal{N}(F_{front}) \cap \mathcal{P} \setminus F; B_{front} \leftarrow \mathcal{N}^{-1}(B_{front}) \cap \mathcal{P} \setminus B;
 3
        F \leftarrow F \cup F_{front}; \quad B \leftarrow B \cup B_{front};
  4
 5 endwhile
 6 if(F_{front} = \emptyset) then
                                                                                                                     F converges earlier than B
          mdd\ Conv \leftarrow F:
 7
       while (B_{front} \cap F \neq \emptyset) do
 8
                B_{front} \leftarrow \mathcal{N}^{-1}(B_{front}) \cap \mathcal{P} \setminus B;
 9
                B \leftarrow B \cup B_{front};
10
11
           endwhile
12 else
13 • • •
```

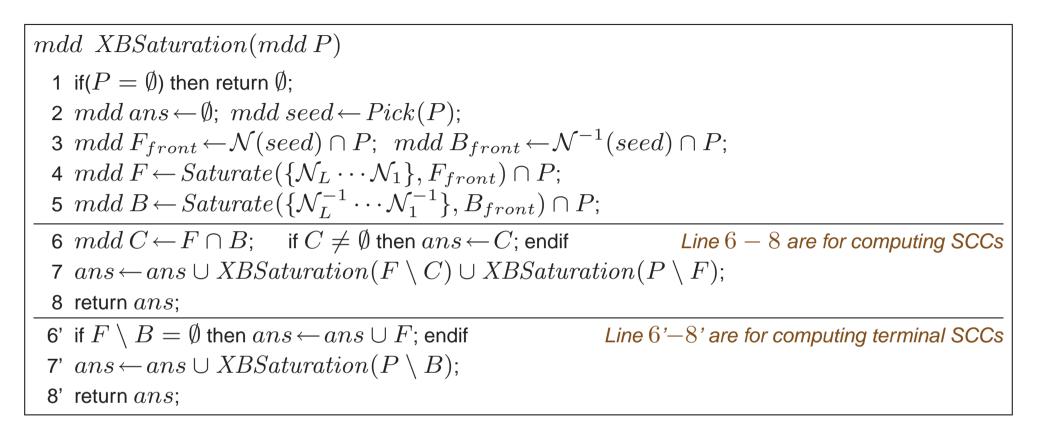
Our contributions

Improving the Xie-Beerel algorithm using saturation

We employ saturation for the state-space exploration in the Xie-Beerel algorithm.



- Our algorithms compute B and F separately, unlike Lockstep, which uses the set that converges first to bound the other.
- The complexity of our algorithm and of *Lockstep* are hard to compare (one saturation run vs. a bounded number of BFS steps)
 - Saturation executes a series of lightweight firings instead of global image computations, its complexity cannot be captured as a number of steps.
 - Saturation results in more compact decision diagrams during state-space exploration, often greatly reducing runtime and memory.



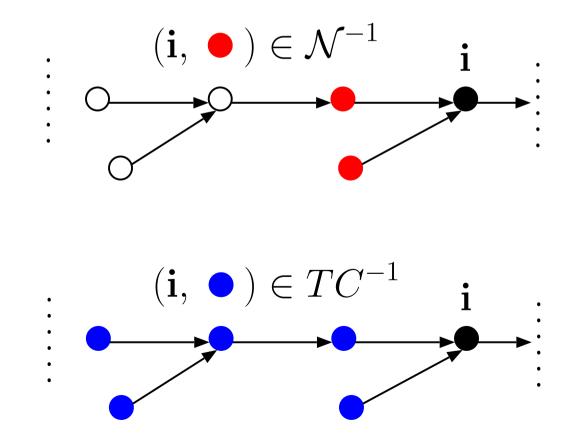
Experimental results show that, for most models, the saturation-based Xie-Beerel algorithm outperforms *Lockstep*, sometimes by orders of magnitude.

Our algorithm and Lockstep improve the Xie-Beerel algorithm in different ways

- Lockstep aims at reducing the number of image computations.
- Our algorithm aims as improving state-space exploration by scheduling event firings based on locality.

We define the backward transitive closure TC^{-1} of a discrete-state model as follows:

Definition: A pair of states $(\mathbf{i}, \mathbf{j}) \in TC^{-1}$ iff there exists a non-trivial (i.e., positive length) path π from \mathbf{j} to \mathbf{i} , denoted by $\mathbf{j} \stackrel{+}{\rightarrow} \mathbf{i}$. Symmetrically, we can define TC where $(\mathbf{i}, \mathbf{j}) \in TC$ iff $\mathbf{i} \stackrel{+}{\rightarrow} \mathbf{j}$.



Can be described as a new state-space exploration problem:

- Potential state space: (\mathbf{i}, \mathbf{j}) where $\mathbf{i}, \mathbf{j} \in \mathcal{S}_{rch}$.
- Initial states: $\{(\mathbf{i},\mathbf{j})|(\mathbf{i},\mathbf{j})\in\mathcal{N}^{-1}\}.$
- Next-state function \mathcal{N}' :

 $\mathcal{N}'((\mathbf{i},\mathbf{j})) \!=\! \{(\mathbf{i},\mathbf{k}) | \mathbf{k} \in \mathcal{N}^{-1}(\mathbf{j})\}$

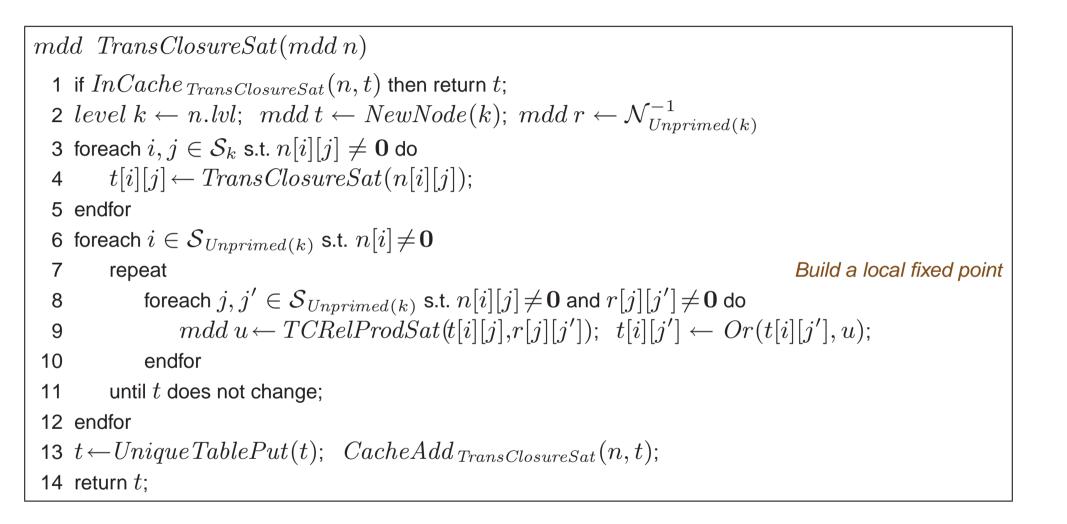
Our algorithm using saturation is based on the following observation:

$$\text{if } (\mathbf{i}, \mathbf{k}) \in \mathcal{N}^{-1} \text{ then } (\mathbf{i}, \mathbf{j}) \in TC^{-1} \text{ where } \mathbf{j} \in Saturate(\{\mathcal{N}_L^{-1}, \cdots, \mathcal{N}_1^{-1}\}, \{\mathbf{k}\})$$

Top-level pseudocode:

 $\begin{array}{l} mdd \ SCC_{-}TC(\mathcal{N}^{-1}) \\ \texttt{1} \ mdd \ TC^{-1} \leftarrow TransClosureSat(\mathcal{N}^{-1}); \\ \texttt{2} \ mdd \ SCC \leftarrow TCtoSCC(TC^{-1}); \\ \texttt{3} \ \text{return} \ SCC; \end{array}$

Finding all $(\mathbf{i}, \mathbf{i}) \in TC^{-1}$



Similar to the idea of saturation, this function runs node-wise on primed level and fires lower level events exhaustively until the local fixed point is obtained.

 \boldsymbol{j} belongs to a terminal SCC iff

$$\forall \mathbf{i}, \mathbf{j} \xrightarrow{+} \mathbf{i} \Longrightarrow \mathbf{i} \xrightarrow{+} \mathbf{j}$$

Given states \mathbf{i}, \mathbf{j} , let $\mathbf{j} \mapsto \mathbf{i}$ denote that $\mathbf{j} \stackrel{+}{\rightarrow} \mathbf{i}$ and $\neg(\mathbf{i} \stackrel{+}{\rightarrow} \mathbf{j})$.

Encode this relation with a 2*L*-level MDD, which can be obtained as $TC^{-1} \setminus TC$.

```
\begin{array}{ll} mdd \ TSCC\_TC(\mathcal{N}^{-1}) \\ \texttt{1} \ mdd \ TC^{-1} \leftarrow TransClosureSat(\mathcal{N}^{-1}); \\ \texttt{2} \ mdd \ SCC \leftarrow TCtoSCC(TC^{-1}); \\ \texttt{3} \ mdd \ L \leftarrow TC^{-1} \setminus TC; \\ \texttt{4} \ mdd \ nontscc \leftarrow QuantifyUnprimed(L); \\ \texttt{5} \ mdd \ recurrent \leftarrow SCC \setminus nontscc; \\ \texttt{6} \ return \ recurrent; \end{array}
```

- To the best of our knowledge, this is the first symbolic algorithm for terminal SCC computation using transitive closure.
- This algorithm is more expensive in both runtime and memory than SCC computation because of the computation of the → relation.
- With the help of *TransClosureSat*, this algorithm works for most of the models we study. It is the only known algorithm applicable to models with a huge number of terminal SCCs.

Büchi fairness (weak fairness) can be specified as a set of sets of states $\{\mathcal{F}_1, \ldots, \mathcal{F}_n\}$.

A fair loop satisfies Büchi fairness iff it contains a state in \mathcal{F}_i , for each $i = \{1, \dots, n\}$

TC-based approach: Assume TC and TC^{-1} have been built, let

$$S_{weak} = \left\{ \mathbf{i} \mid \bigcap_{m=1,\dots,n} [\exists \mathbf{f}_m \in \mathcal{F}_m.(TC(\mathbf{f}_m, \mathbf{i}) \land TC^{-1}(\mathbf{f}_m, \mathbf{i}))] \right\}$$

 \mathcal{S}_{weak} contains all the states in fair loops.

Experimental results of SCC computations

Model		SCCs	States	ТС		XBSat		Lockstep	
name	Ν	3005	in SCCs	mem(MB)	time(sec)	mem(MB)	time(sec)	mem(MB)	time(sec)
cqn	10	11	2.09e+10	34.2	13.6	3.4	<0.1	4.0	3.9
	15	16	2.20e+15	64.4	73.8	5.0	0.2	89.1	44.5
	20	21	2.32e+20	72.7	687.8	25.8	0.5	118.7	275.0
phil	100	1	4.96e+62	5.0	0.5	3.2	<0.1	52.0	4.5
	500	1	3.03e+316	33.0	4.0	24.5	0.1		to
	1000	1	9.18e+626	40.5	7.8	29.1	0.3	_	to
queens	10	3.22e+4	3.23e+4	8.2	1.6	64.4	14.5	63.9	12.4
	11	1.53e+5	1.53e+5	45.8	9.0	94.2	108.6	96.3	93.6
	12	7.95e+5	7.95e+5	184.8	60.6	170.2	1220.4	281.9	1663.9
	13	4.37e+6	4.37e+6	916.5	840.6	_	to		to
leader	3	4	6.78e+2	6.0	1.4	20.8	<0.1	20.8	<0.1
	4	11	9.50e+3	70.3	73.1	25.4	1.1	23.8	0.3
	5	26	1.25e+5	116.6	3830.4	35.6	40.8	49.4	6.4
	6	57	1.54e+6	_	to	41.6	1494.9	417.2	387.9
arbiter1	10	1	2.05e+4	24.1	1.2	21.4	<0.1	21.8	0.1
	15	1	9.83e+5	128.3	63.0	45.1	<0.1	62.1	6.8
	20	1	4.19e+7	mo	_	709.7	<0.1	mo	_
arbiter2	10	1024	1.02e+4	20.3	<0.1	26.2	0.7	31.1	1.1
	15	32768	4.91e+5	20.4	<0.1	31.1	51.8	211.3	990.3
	20	1.05e+6	2.10e+7	20.4	<0.1	31.2	2393.3	–	to
	500	3.27e+150	1.64e+151	41.0	4.0		to		to

Experimental results of terminal SCC computations

Model		TOCCO	States	TC		XBSat		XBBFS	
name	Ν	TSCCs	in TSCCs	mem(MB)	time(sec)	mem(MB)	time(sec)	mem(MB)	time(sec)
cqn	10	10	2.09e+10	37.9	15.5	21.4	<0.1	33.5	3.4
	15	15	2.18e+15	64.8	79.6	23.0	0.3	59.4	33.7
	20	20	2.31e+20	72.7	691.3	26.2	0.8	90.0	280.5
phil	100	2	2	26.5	0.5	20.9	<0.1	39.2	8.7
	500	2	2	34.3	4.1	23.2	<0.1	_	to
	1000	2	2	44.4	11.3	26.5	0.2	_	to
	10	1.28e+04	1.28e+4	36.2	3.0	46.7	2.8	62.3	35.1
queens	11	6.11e+04	6.11e+4	76.5	19.3	70.6	24.5	145.2	364.2
	12	3.14e+05	3.14e+5	244.1	205.4	98.8	179.4	mo	_
	13	1.72e+06	1.72e+6	mo	_	269.0	1940.81	mo	_
	3	3	3	26.6	1.5	20.7	<0.1	21.4	0.1
leader	4	4	4	70.6	75.1	24.4	0.9	38.0	4.5
ieuuei	5	5	5	119.3	3845.3	30.6	26.9	41.1	87.6
	6	6	6	_	to	39.0	492.9	44.8	1341.5
	10	1	2.05e+4	24.1	1.2	20.4	<0.1	22.4	0.4
arbiter1	15	1	9.83e+5	128.3	63.1	20.4	<0.1	65.3	23.3
	20	1	4.19e+7	mo		20.5	<0.1		to
arbiter2	10	1	1	20.4	<0.1	20.9	<0.1	39.6	6.4
	15	1	1	20.5	<0.1	40.6	4.6	–	to
	20	1	1	20.5	<0.1	450.0	2897.8	–	to

- Saturation is effective in speeding up the SCC and terminal SCC computations within the framework of the Xie-Beerel algorithm.
- Our new saturation-based TC computation can tackle some complex models with up to 10^{150} states.
- For models with huge numbers of SCCs, the TC-based SCC computation has advantages over Lockstep, which symbolically explores one SCC at a time.

Our TC-based approach is not a replacement for Lockstep, but is an alternative worth further research.

For modelds with unknown number of SCCs, employing both approaches concurrently could be ideal.

Future work: It is reasonable to run the two algorithms concurrently, possibly sharing some of the common data structures, such as the MDDs encoding the state space and next-state functions.