
Symbolic Computation of Strongly
Connected Components using Saturation

Yang Zhao Gianfranco Ciardo
Department of Computer Science and Engineering

University of California at Riverside

Work supported in part by the National Science Foundation under grant CCF-0848463

PART: FILE:scc-problemset

Strongly Connected Components 2

• Finding strongly connected components (SCCs) is a basic problem in formal verification:

◦ LTL and CTL model checking

◦ Language emptiness check for ω-automata

• In Markov chain analysis, we need to partition the state space into transient vs. recurrent states

(recurrent states are those that belong to terminal SCCs)

• It is impractical to enumerate SCCs using explicit algorithms for large discrete-state models

⇒ use symbolic computation of SCCs

• Objectives: symbolically build the set of states in non-trivial (terminal) SCCs

PART: FILE:scc-difficulties

Difficulties and approaches 3

Two difficulties:

◦ huge state spaces: the primary obstacle to formal verification

◦ potentially large number of (terminal) SCCs: a bottleneck for SCC enumeration algorithms

We propose two approaches based on previous ideas: the Xie-Beerel algorithm and transitive closure

• Saturation helps cope with the complexity of state-space exploration

• To cope with a large number of SCCs, we use a transitive closure-based algorithm:

◦ Computing transitive closure based on saturation

◦ Can support the computation of recurrent states

PART: FILE:dsm-def-structured

Structured discrete-state models 4

A structured discrete-state model is specified by 〈Ŝ,Sinit, E〉:

• a potential state space Ŝ = SL × · · · × S1

◦ the (global) state is of the form i = (iL, ..., i1)

◦ Sk is the (discrete) local state space for submodel k or local domain for state variable xk

◦ if Sk is finite, we can map it to {0, 1, . . . , nk−1} nk is known after state-space generation

• a set of initial states Sinit ⊆ Ŝ

◦ often there is a single initial state iinit

• a set of events E defining disjunctively-partitioned next-state functions or transition relation

◦ Nα : Ŝ → 2
bS j ∈ Nα(i) iff state j can be reached by firing event α in state i

◦ N : Ŝ → 2
bS N (i) =

⋃
α∈E
Nα(i)

◦ naturally extended to sets of states Nα(X) =
⋃

i∈X
Nα(i) and N (X) =

⋃
i∈X
N (i)

◦ α is enabled in i iffNα(i) 6= ∅, otherwise it is disabled

PART: FILE:mdd-def1

Multi-way decision diagrams (MDDs) 5

An MDD is an acyclic directed edge-labeled graph where:

• The only terminal nodes can be 0 and 1, and are at level 0 0.lvl = 1.lvl = 0

• A nonterminal node p is at a level k, with L ≥ k ≥ 1 p.lvl = k

• A nonterminal node is associated with a state variable xk, with L ≥ k ≥ 1

• For each ik ∈ Sk, a nonterminal node p at level k has an outgoing edge pointing to child p[ik]

• The level of a child is lower than that of p p[ik].lvl < p.lvl

• A node p at level k encodes the function vp : Sk × · · · × S1 → B defined recursively by

vp(xk, ..., x1) =

{
p if k = 0

vp[xk](xk−1, ..., x1) if k > 0

An L-level MDD encodes a set of states X ⊆ Ŝ=SL×· · ·×S1

i ∈ X ⇔ the path (iL, ..., i1) from the root leads to terminal 1, corresponding to i.

PART: FILE:mdd-generationALT

Using MDDs to encode next-state functions 6

A 2L-level MDD encodes the next-state functionN : Ŝ → 2
bS

j ∈ N (i) ⇔ the path (iL, jL, ..., i1, j1) from the root leads to terminal 1.

• α is independent of the kth submodel if:

◦ its enabling does not depend on ik,

◦ and its firing does not change the value of ik.

• A level k belongs to supp(α), if α is not independent of k.

• Let Top(α) be the highest-numbered level in supp(α).

• Let Ek be the set of events {α ∈ E : Top(α) = k}.

• LetNk be the next-state function corresponding to all events in Ek:

Nk =
⋃

α∈Ek

Nα

PART: FILE:mdd-generationALT

Example: 2-bit counter 7

v2v1→ v′
2
v′

1

00 01

11 10

10

0

0

0

1

1

1

1 1

N2

N1

v2

v′
2

v1

v′
1

10

10

1

Srch

v2

v1

discrete-state system state space next-state functions

PART: FILE:saturation-algorithm

Saturation: an iteration strategy based on the model structu re 8

MDD node p at level k is saturated if it encodes a fixpoint w.r.t. any event α s.t. Top(α) ≤ k

• build the L-level MDD encoding of Sinit if |Sinit| = 1, there is one node per level

• saturate each node at level 1: fire in them all events α s.t. Top(α) = 1

• saturate each node at level 2: fire in them all events α s.t. Top(α) = 2
(if this creates nodes at level 1, saturate them immediately upon creation)

• saturate each node at level 3: fire in them all events α s.t. Top(α) = 3
(if this creates nodes at levels 2 or 1, saturate them immediately upon creation)

• . . .

• saturate the root node at level L: fire in it all events α s.t. Top(α) = L

(if this creates nodes at levels L−1, L−2, . . . , 1, saturate them immediately upon creation)

PART: FILE:saturation-algorithm

Saturation vs. BFS 9

Breadth-first search (BFS):

{NL, · · · ,N1}

Sinit

{NL, · · · ,N1}

step 1 step2

.
.
.
.
.
.
.
.
.
.
.

Saturation:

N1

Sinit

N2

saturate level 1 saturate level 2

.
.
.
.
.
.
.
.
.
.
.

{N1}
⋆ {N2,N1

⋆}⋆

.
.
.
.
.
.
.
.
.

N3

saturate level L

.
.
.
.
.
.
.
.
.
.
.

NL

........

• states are not discovered in breadth-first order

• enormous time and memory savings for asynchronous systems

PART: FILE:scc-previouswork

Previous work 10

Two categories of related work: transitive closure and the SCC enumeration

• transitive closure: Hojati et al. presented as fully symbolic algorithm for testing ω-regular language

containment by computing the transitive closure:

N+ = N ∪N 2 ∪N 3 ∪ · · ·

◦ Due to the high complexity of computing the transitive closure, this approach has long been

considered infeasible for complex systems.

• SCC enumeration: the Xie-Beerel algorithm combines both explicit state enumeration and sym-

bolic state-space exploration.

B←backward(seed);
F←forward(seed) ∧B;

Randomly
pick a state
"seed" Report F as an SCC;

False

True

Return

P←Srch
P ==∅

P←B \ F

P←P \B

PART: FILE:scc-previouswork-lockstep

The improved Xie-Beerel algorithm: Lockstep 11

Lockstep reduces the number of image computations w.r.t. the Xie-Beerel algorithm.

• It interleaves one forward and one backward step to compute forward and backward reachable

states.

• It uses the earlier converged set of states to bound the other.

• Lockstep achieves O(n log n) complexity in the terms of steps.

mdd Lockstep(mdd P)

1 · · ·
2 while(Ffront 6= ∅ and Bfront 6= ∅)
3 Ffront←N (Ffront) ∩ P \ F ; Bfront←N

−1(Bfront) ∩ P \B;

4 F←F ∪ Ffront; B←B ∪Bfront;

5 endwhile

6 if(Ffront = ∅) then F converges earlier than B

7 mdd Conv←F ;

8 while(Bfront ∩ F 6= ∅) do

9 Bfront←N
−1(Bfront) ∩ P \B;

10 B←B ∪Bfront;

11 endwhile

12 else

13 · · ·

PART: FILE:

. 12

Our contributions

PART: FILE:scc-xb-saturation

Improving the Xie-Beerel algorithm using saturation 13

We employ saturation for the state-space exploration in the Xie-Beerel algorithm.

F←saturate({NL, · · · ,N1}, img(seed));
Randomly
pick a state
"seed"

ans←F ∧B;

False

True

Return

P←Srch
P ==∅

P←F \ ans

P←P \ F

B←saturate({N−1

L , · · · ,N−1

1
}, preimg(seed));

Report ans as an SCC

• Our algorithms compute B and F separately, unlike Lockstep, which uses the set that con-

verges first to bound the other.

• The complexity of our algorithm and of Lockstep are hard to compare (one saturation run vs. a

bounded number of BFS steps)

◦ Saturation executes a series of lightweight firings instead of global image computations, its

complexity cannot be captured as a number of steps.

◦ Saturation results in more compact decision diagrams during state-space exploration, often

greatly reducing runtime and memory.

PART: FILE:scc-xb-satcode

Improving the Xie-Beerel algorithm using saturation 14

mdd XBSaturation(mdd P)

1 if(P = ∅) then return ∅;
2 mdd ans←∅; mdd seed←Pick(P);

3 mdd Ffront←N (seed) ∩ P ; mdd Bfront←N
−1(seed) ∩ P ;

4 mdd F←Saturate({NL · · · N1}, Ffront) ∩ P ;

5 mdd B←Saturate({N−1
L · · · N−1

1 }, Bfront) ∩ P ;

6 mdd C←F ∩B; if C 6= ∅ then ans←C ; endif Line 6− 8 are for computing SCCs

7 ans←ans ∪XBSaturation(F \ C) ∪XBSaturation(P \ F);

8 return ans;

6’ if F \B = ∅ then ans←ans ∪ F ; endif Line 6’−8’ are for computing terminal SCCs

7’ ans←ans ∪XBSaturation(P \B);

8’ return ans;

Experimental results show that, for most models, the saturation-based Xie-Beerel algorithm outper-

forms Lockstep, sometimes by orders of magnitude.

Our algorithm and Lockstep improve the Xie-Beerel algorithm in different ways

• Lockstep aims at reducing the number of image computations.

• Our algorithm aims as improving state-space exploration by scheduling event firings based on

locality.

PART: FILE:scc-tc-def

Transitive closure 15

We define the backward transitive closure TC−1 of a discrete-state model as follows:

Definition : A pair of states (i, j) ∈ TC−1 iff there exists a non-trivial (i.e., positive length) path π

from j to i, denoted by j
+
⇁i. Symmetrically, we can define TC where (i, j) ∈ TC iff i

+
⇁j.

.
.
.
.
.
. .

.
.
.
.
.

i(i,) ∈ N−1

.
.
.
.
.
. .

.
.
.
.
.

i(i,) ∈ TC−1

PART: FILE:scc-tc-alg

Computing the transitive closure 16

Can be described as a new state-space exploration problem:

• Potential state space: (i, j) where i, j ∈ Srch.

• Initial states: {(i, j)|(i, j) ∈ N−1}.

• Next-state functionN ′:

N ′((i, j))={(i,k)|k ∈ N−1(j)}

Our algorithm using saturation is based on the following observation:

if (i,k) ∈ N−1 then (i, j) ∈ TC−1 where j ∈ Saturate({N−1
L , · · · ,N−1

1 }, {k})

Top-level pseudocode:

mdd SCC TC (N−1)

1 mdd TC−1←TransClosureSat(N−1);

2 mdd SCC←TCtoSCC (TC−1); Finding all (i, i) ∈ TC−1

3 return SCC ;

PART: FILE:scc-tc-code

Computing the transitive closure (cont.) 17

mdd TransClosureSat(mdd n)

1 if InCacheTransClosureSat(n, t) then return t;

2 level k ← n.lvl ; mdd t← NewNode(k); mdd r ← N−1
Unprimed(k)

3 foreach i, j ∈ Sk s.t. n[i][j] 6= 0 do

4 t[i][j]←TransClosureSat(n[i][j]);

5 endfor

6 foreach i ∈ SUnprimed(k) s.t. n[i] 6=0

7 repeat Build a local fixed point

8 foreach j, j′ ∈ SUnprimed(k) s.t. n[i][j] 6=0 and r[j][j′] 6=0 do

9 mdd u←TCRelProdSat(t[i][j],r[j][j′]); t[i][j′]← Or(t[i][j′], u);

10 endfor

11 until t does not change;

12 endfor

13 t←UniqueTablePut(t); CacheAddTransClosureSat(n, t);

14 return t;

Similar to the idea of saturation, this function runs node-wise on primed level and fires lower level

events exhaustively until the local fixed point is obtained.

PART: FILE:scc-tc-tscc

Computing terminal SCCs using transitive closure 18

j belongs to a terminal SCC iff

∀i, j
+
⇁i =⇒ i

+
⇁j

Given states i, j, let j 7→ i denote that j
+
⇁i and ¬(i

+
⇁j).

Encode this relation with a 2L-level MDD, which can be obtained as TC−1 \ TC .

mdd TSCC TC (N−1)

1 mdd TC−1←TransClosureSat(N−1); mdd TC←Inverse(TC−1);

2 mdd SCC←TCtoSCC (TC−1);

3 mdd L←TC−1 \ TC ;

4 mdd nontscc←QuantifyUnprimed(L);

5 mdd recurrent←SCC \ nontscc;

6 return recurrent;

• To the best of our knowledge, this is the first symbolic algorithm for terminal SCC computation

using transitive closure.

• This algorithm is more expensive in both runtime and memory than SCC computation because of

the computation of the 7→ relation.

• With the help of TransClosureSat , this algorithm works for most of the models we study.

It is the only known algorithm applicable to models with a huge number of terminal SCCs.

PART: FILE:scc-fairness

Büchi fairness 19

Büchi fairness (weak fairness) can be specified as a set of sets of states {F1, . . . ,Fn}.

A fair loop satisfies Büchi fairness iff it contains a state in Fi, for each i = {1, . . . , n}

TC-based approach: Assume TC and TC−1 have been built, let

Sweak =

{
i

∣∣∣
⋂

m=1,...,n

[∃fm∈Fm.(TC(fm, i) ∧ TC−1(fm, i))]

}

Sweak contains all the states in fair loops.

PART: FILE:scc-results-scc

Experimental results of SCC computations 20

Model
SCCs

States TC XBSat Lockstep
name N in SCCs mem(MB) time(sec) mem(MB) time(sec) mem(MB) time(sec)

cqn
10 11 2.09e+10 34.2 13.6 3.4 <0.1 4.0 3.9
15 16 2.20e+15 64.4 73.8 5.0 0.2 89.1 44.5
20 21 2.32e+20 72.7 687.8 25.8 0.5 118.7 275.0

phil
100 1 4.96e+62 5.0 0.5 3.2 <0.1 52.0 4.5
500 1 3.03e+316 33.0 4.0 24.5 0.1 – to

1000 1 9.18e+626 40.5 7.8 29.1 0.3 – to

queens

10 3.22e+4 3.23e+4 8.2 1.6 64.4 14.5 63.9 12.4
11 1.53e+5 1.53e+5 45.8 9.0 94.2 108.6 96.3 93.6
12 7.95e+5 7.95e+5 184.8 60.6 170.2 1220.4 281.9 1663.9
13 4.37e+6 4.37e+6 916.5 840.6 – to – to

leader

3 4 6.78e+2 6.0 1.4 20.8 <0.1 20.8 <0.1
4 11 9.50e+3 70.3 73.1 25.4 1.1 23.8 0.3
5 26 1.25e+5 116.6 3830.4 35.6 40.8 49.4 6.4
6 57 1.54e+6 – to 41.6 1494.9 417.2 387.9

arbiter1
10 1 2.05e+4 24.1 1.2 21.4 <0.1 21.8 0.1
15 1 9.83e+5 128.3 63.0 45.1 <0.1 62.1 6.8
20 1 4.19e+7 mo – 709.7 <0.1 mo –

arbiter2

10 1024 1.02e+4 20.3 <0.1 26.2 0.7 31.1 1.1
15 32768 4.91e+5 20.4 <0.1 31.1 51.8 211.3 990.3
20 1.05e+6 2.10e+7 20.4 <0.1 31.2 2393.3 – to

500 3.27e+150 1.64e+151 41.0 4.0 – to – to

PART: FILE:scc-results-tscc

Experimental results of terminal SCC computations 21

Model
TSCCs

States TC XBSat XBBFS

name N in TSCCs mem(MB) time(sec) mem(MB) time(sec) mem(MB) time(sec)

cqn

10 10 2.09e+10 37.9 15.5 21.4 <0.1 33.5 3.4

15 15 2.18e+15 64.8 79.6 23.0 0.3 59.4 33.7

20 20 2.31e+20 72.7 691.3 26.2 0.8 90.0 280.5

phil

100 2 2 26.5 0.5 20.9 <0.1 39.2 8.7

500 2 2 34.3 4.1 23.2 <0.1 – to

1000 2 2 44.4 11.3 26.5 0.2 – to

queens

10 1.28e+04 1.28e+4 36.2 3.0 46.7 2.8 62.3 35.1

11 6.11e+04 6.11e+4 76.5 19.3 70.6 24.5 145.2 364.2

12 3.14e+05 3.14e+5 244.1 205.4 98.8 179.4 mo –

13 1.72e+06 1.72e+6 mo – 269.0 1940.81 mo –

leader

3 3 3 26.6 1.5 20.7 <0.1 21.4 0.1

4 4 4 70.6 75.1 24.4 0.9 38.0 4.5

5 5 5 119.3 3845.3 30.6 26.9 41.1 87.6

6 6 6 – to 39.0 492.9 44.8 1341.5

arbiter1

10 1 2.05e+4 24.1 1.2 20.4 <0.1 22.4 0.4

15 1 9.83e+5 128.3 63.1 20.4 <0.1 65.3 23.3

20 1 4.19e+7 mo – 20.5 <0.1 – to

arbiter2

10 1 1 20.4 <0.1 20.9 <0.1 39.6 6.4

15 1 1 20.5 <0.1 40.6 4.6 – to

20 1 1 20.5 <0.1 450.0 2897.8 – to

PART: FILE:scc-conclusion

Conclusion 22

• Saturation is effective in speeding up the SCC and terminal SCC computations within the framework of the
Xie-Beerel algorithm.

• Our new saturation-based TC computation can tackle some complex models with up to 10150 states.

• For models with huge numbers of SCCs, the TC-based SCC computation has advantages over Lockstep,
which symbolically explores one SCC at a time.

Our TC-based approach is not a replacement for Lockstep, but is an alternative worth further research.

For modelds with unknown number of SCCs, employing both approaches concurrently could be ideal.

Future work: It is reasonable to run the two algorithms concurrently, possibly sharing some of the common data
structures, such as the MDDs encoding the state space and next-state functions.

