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Strongly Connected Components 2

• Finding strongly connected components (SCCs) is a basic problem in formal verification:

◦ LTL and CTL model checking

◦ Language emptiness check for ω-automata

• In Markov chain analysis, we need to partition the state space into transient vs. recurrent states

(recurrent states are those that belong to terminal SCCs)

• It is impractical to enumerate SCCs using explicit algorithms for large discrete-state models

⇒ use symbolic computation of SCCs

• Objectives: symbolically build the set of states in non-trivial (terminal) SCCs
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Difficulties and approaches 3

Two difficulties:

◦ huge state spaces: the primary obstacle to formal verification

◦ potentially large number of (terminal) SCCs: a bottleneck for SCC enumeration algorithms

We propose two approaches based on previous ideas: the Xie-Beerel algorithm and transitive closure

• Saturation helps cope with the complexity of state-space exploration

• To cope with a large number of SCCs, we use a transitive closure-based algorithm:

◦ Computing transitive closure based on saturation

◦ Can support the computation of recurrent states
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Structured discrete-state models 4

A structured discrete-state model is specified by 〈Ŝ,Sinit, E〉:

• a potential state space Ŝ = SL × · · · × S1

◦ the (global) state is of the form i = (iL, ..., i1)

◦ Sk is the (discrete) local state space for submodel k or local domain for state variable xk

◦ if Sk is finite, we can map it to {0, 1, . . . , nk−1} nk is known after state-space generation

• a set of initial states Sinit ⊆ Ŝ

◦ often there is a single initial state iinit

• a set of events E defining disjunctively-partitioned next-state functions or transition relation

◦ Nα : Ŝ → 2
bS j ∈ Nα(i) iff state j can be reached by firing event α in state i

◦ N : Ŝ → 2
bS N (i) =

⋃
α∈E
Nα(i)

◦ naturally extended to sets of states Nα(X ) =
⋃

i∈X
Nα(i) and N (X ) =

⋃
i∈X
N (i)

◦ α is enabled in i iffNα(i) 6= ∅, otherwise it is disabled
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Multi-way decision diagrams (MDDs) 5

An MDD is an acyclic directed edge-labeled graph where:

• The only terminal nodes can be 0 and 1, and are at level 0 0.lvl = 1.lvl = 0

• A nonterminal node p is at a level k, with L ≥ k ≥ 1 p.lvl = k

• A nonterminal node is associated with a state variable xk, with L ≥ k ≥ 1

• For each ik ∈ Sk, a nonterminal node p at level k has an outgoing edge pointing to child p[ik]

• The level of a child is lower than that of p p[ik].lvl < p.lvl

• A node p at level k encodes the function vp : Sk × · · · × S1 → B defined recursively by

vp(xk, ..., x1) =

{
p if k = 0

vp[xk](xk−1, ..., x1) if k > 0

An L-level MDD encodes a set of states X ⊆ Ŝ=SL×· · ·×S1

i ∈ X ⇔ the path (iL, ..., i1) from the root leads to terminal 1, corresponding to i.
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Using MDDs to encode next-state functions 6

A 2L-level MDD encodes the next-state functionN : Ŝ → 2
bS

j ∈ N (i) ⇔ the path (iL, jL, ..., i1, j1) from the root leads to terminal 1.

• α is independent of the kth submodel if:

◦ its enabling does not depend on ik,

◦ and its firing does not change the value of ik.

• A level k belongs to supp(α), if α is not independent of k.

• Let Top(α) be the highest-numbered level in supp(α).

• Let Ek be the set of events {α ∈ E : Top(α) = k}.

• LetNk be the next-state function corresponding to all events in Ek:

Nk =
⋃

α∈Ek

Nα
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Example: 2-bit counter 7
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Saturation: an iteration strategy based on the model structu re 8

MDD node p at level k is saturated if it encodes a fixpoint w.r.t. any event α s.t. Top(α) ≤ k

• build the L-level MDD encoding of Sinit if |Sinit| = 1, there is one node per level

• saturate each node at level 1: fire in them all events α s.t. Top(α) = 1

• saturate each node at level 2: fire in them all events α s.t. Top(α) = 2
(if this creates nodes at level 1, saturate them immediately upon creation)

• saturate each node at level 3: fire in them all events α s.t. Top(α) = 3
(if this creates nodes at levels 2 or 1, saturate them immediately upon creation)

• . . .

• saturate the root node at level L: fire in it all events α s.t. Top(α) = L

(if this creates nodes at levels L−1, L−2, . . . , 1, saturate them immediately upon creation)
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Saturation vs. BFS 9

Breadth-first search (BFS):

{NL, · · · ,N1}
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• states are not discovered in breadth-first order

• enormous time and memory savings for asynchronous systems
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Previous work 10

Two categories of related work: transitive closure and the SCC enumeration

• transitive closure: Hojati et al. presented as fully symbolic algorithm for testing ω-regular language

containment by computing the transitive closure:

N+ = N ∪N 2 ∪N 3 ∪ · · ·

◦ Due to the high complexity of computing the transitive closure, this approach has long been

considered infeasible for complex systems.

• SCC enumeration: the Xie-Beerel algorithm combines both explicit state enumeration and sym-

bolic state-space exploration.

B←backward(seed);
F←forward(seed) ∧B;

Randomly 
pick a state 
"seed" Report F as an SCC;

False

True

Return

P←Srch
P ==∅

P←B \ F

P←P \B
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The improved Xie-Beerel algorithm: Lockstep 11

Lockstep reduces the number of image computations w.r.t. the Xie-Beerel algorithm.

• It interleaves one forward and one backward step to compute forward and backward reachable

states.

• It uses the earlier converged set of states to bound the other.

• Lockstep achieves O(n log n) complexity in the terms of steps.

mdd Lockstep(mdd P )

1 · · ·
2 while(Ffront 6= ∅ and Bfront 6= ∅)
3 Ffront←N (Ffront) ∩ P \ F ; Bfront←N

−1(Bfront) ∩ P \B;

4 F←F ∪ Ffront; B←B ∪Bfront;

5 endwhile

6 if(Ffront = ∅) then F converges earlier than B

7 mdd Conv←F ;

8 while(Bfront ∩ F 6= ∅) do

9 Bfront←N
−1(Bfront) ∩ P \B;

10 B←B ∪Bfront;

11 endwhile

12 else

13 · · ·



PART: FILE:

. 12

Our contributions
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Improving the Xie-Beerel algorithm using saturation 13

We employ saturation for the state-space exploration in the Xie-Beerel algorithm.

F←saturate({NL, · · · ,N1}, img(seed));
Randomly 
pick a state 
"seed"

ans←F ∧B;

False

True

Return

P←Srch
P ==∅

P←F \ ans

P←P \ F

B←saturate({N−1

L , · · · ,N−1

1
}, preimg(seed));

Report ans as an SCC

• Our algorithms compute B and F separately, unlike Lockstep, which uses the set that con-

verges first to bound the other.

• The complexity of our algorithm and of Lockstep are hard to compare (one saturation run vs. a

bounded number of BFS steps)

◦ Saturation executes a series of lightweight firings instead of global image computations, its

complexity cannot be captured as a number of steps.

◦ Saturation results in more compact decision diagrams during state-space exploration, often

greatly reducing runtime and memory.
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Improving the Xie-Beerel algorithm using saturation 14

mdd XBSaturation(mdd P )

1 if(P = ∅) then return ∅;
2 mdd ans←∅; mdd seed←Pick(P );

3 mdd Ffront←N (seed) ∩ P ; mdd Bfront←N
−1(seed) ∩ P ;

4 mdd F←Saturate({NL · · · N1}, Ffront) ∩ P ;

5 mdd B←Saturate({N−1
L · · · N−1

1 }, Bfront) ∩ P ;

6 mdd C←F ∩B; if C 6= ∅ then ans←C ; endif Line 6− 8 are for computing SCCs

7 ans←ans ∪XBSaturation(F \ C) ∪XBSaturation(P \ F );

8 return ans;

6’ if F \B = ∅ then ans←ans ∪ F ; endif Line 6’−8’ are for computing terminal SCCs

7’ ans←ans ∪XBSaturation(P \B);

8’ return ans;

Experimental results show that, for most models, the saturation-based Xie-Beerel algorithm outper-

forms Lockstep, sometimes by orders of magnitude.

Our algorithm and Lockstep improve the Xie-Beerel algorithm in different ways

• Lockstep aims at reducing the number of image computations.

• Our algorithm aims as improving state-space exploration by scheduling event firings based on

locality.
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Transitive closure 15

We define the backward transitive closure TC−1 of a discrete-state model as follows:

Definition : A pair of states (i, j) ∈ TC−1 iff there exists a non-trivial (i.e., positive length) path π

from j to i, denoted by j
+
⇁i. Symmetrically, we can define TC where (i, j) ∈ TC iff i

+
⇁j.

.
.
.
.
.
. .

.
.
.
.
.

i(i, ) ∈ N−1

.
.
.
.
.
. .

.
.
.
.
.

i(i, ) ∈ TC−1
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Computing the transitive closure 16

Can be described as a new state-space exploration problem:

• Potential state space: (i, j) where i, j ∈ Srch.

• Initial states: {(i, j)|(i, j) ∈ N−1}.

• Next-state functionN ′:

N ′( (i, j) )={(i,k)|k ∈ N−1(j)}

Our algorithm using saturation is based on the following observation:

if (i,k) ∈ N−1 then (i, j) ∈ TC−1 where j ∈ Saturate({N−1
L , · · · ,N−1

1 }, {k})

Top-level pseudocode:

mdd SCC TC (N−1)

1 mdd TC−1←TransClosureSat(N−1);

2 mdd SCC←TCtoSCC (TC−1); Finding all (i, i) ∈ TC−1

3 return SCC ;
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Computing the transitive closure (cont.) 17

mdd TransClosureSat(mdd n)

1 if InCacheTransClosureSat(n, t) then return t;

2 level k ← n.lvl ; mdd t← NewNode(k); mdd r ← N−1
Unprimed(k)

3 foreach i, j ∈ Sk s.t. n[i][j] 6= 0 do

4 t[i][j]←TransClosureSat(n[i][j]);

5 endfor

6 foreach i ∈ SUnprimed(k) s.t. n[i] 6=0

7 repeat Build a local fixed point

8 foreach j, j′ ∈ SUnprimed(k) s.t. n[i][j] 6=0 and r[j][j′] 6=0 do

9 mdd u←TCRelProdSat(t[i][j],r[j][j′]); t[i][j′]← Or(t[i][j′], u);

10 endfor

11 until t does not change;

12 endfor

13 t←UniqueTablePut(t); CacheAddTransClosureSat(n, t);

14 return t;

Similar to the idea of saturation, this function runs node-wise on primed level and fires lower level

events exhaustively until the local fixed point is obtained.
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Computing terminal SCCs using transitive closure 18

j belongs to a terminal SCC iff

∀i, j
+
⇁i =⇒ i

+
⇁j

Given states i, j, let j 7→ i denote that j
+
⇁i and ¬(i

+
⇁j).

Encode this relation with a 2L-level MDD, which can be obtained as TC−1 \ TC .

mdd TSCC TC (N−1)

1 mdd TC−1←TransClosureSat(N−1); mdd TC←Inverse(TC−1);

2 mdd SCC←TCtoSCC (TC−1);

3 mdd L←TC−1 \ TC ;

4 mdd nontscc←QuantifyUnprimed(L);

5 mdd recurrent←SCC \ nontscc;

6 return recurrent;

• To the best of our knowledge, this is the first symbolic algorithm for terminal SCC computation

using transitive closure.

• This algorithm is more expensive in both runtime and memory than SCC computation because of

the computation of the 7→ relation.

• With the help of TransClosureSat , this algorithm works for most of the models we study.

It is the only known algorithm applicable to models with a huge number of terminal SCCs.
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Büchi fairness 19

Büchi fairness (weak fairness) can be specified as a set of sets of states {F1, . . . ,Fn}.

A fair loop satisfies Büchi fairness iff it contains a state in Fi, for each i = {1, . . . , n}

TC-based approach: Assume TC and TC−1 have been built, let

Sweak =

{
i

∣∣∣
⋂

m=1,...,n

[∃fm∈Fm.(TC(fm, i) ∧ TC−1(fm, i))]

}

Sweak contains all the states in fair loops.
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Experimental results of SCC computations 20

Model
SCCs

States TC XBSat Lockstep
name N in SCCs mem(MB) time(sec) mem(MB) time(sec) mem(MB) time(sec)

cqn
10 11 2.09e+10 34.2 13.6 3.4 <0.1 4.0 3.9
15 16 2.20e+15 64.4 73.8 5.0 0.2 89.1 44.5
20 21 2.32e+20 72.7 687.8 25.8 0.5 118.7 275.0

phil
100 1 4.96e+62 5.0 0.5 3.2 <0.1 52.0 4.5
500 1 3.03e+316 33.0 4.0 24.5 0.1 – to

1000 1 9.18e+626 40.5 7.8 29.1 0.3 – to

queens

10 3.22e+4 3.23e+4 8.2 1.6 64.4 14.5 63.9 12.4
11 1.53e+5 1.53e+5 45.8 9.0 94.2 108.6 96.3 93.6
12 7.95e+5 7.95e+5 184.8 60.6 170.2 1220.4 281.9 1663.9
13 4.37e+6 4.37e+6 916.5 840.6 – to – to

leader

3 4 6.78e+2 6.0 1.4 20.8 <0.1 20.8 <0.1
4 11 9.50e+3 70.3 73.1 25.4 1.1 23.8 0.3
5 26 1.25e+5 116.6 3830.4 35.6 40.8 49.4 6.4
6 57 1.54e+6 – to 41.6 1494.9 417.2 387.9

arbiter1
10 1 2.05e+4 24.1 1.2 21.4 <0.1 21.8 0.1
15 1 9.83e+5 128.3 63.0 45.1 <0.1 62.1 6.8
20 1 4.19e+7 mo – 709.7 <0.1 mo –

arbiter2

10 1024 1.02e+4 20.3 <0.1 26.2 0.7 31.1 1.1
15 32768 4.91e+5 20.4 <0.1 31.1 51.8 211.3 990.3
20 1.05e+6 2.10e+7 20.4 <0.1 31.2 2393.3 – to

500 3.27e+150 1.64e+151 41.0 4.0 – to – to
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Experimental results of terminal SCC computations 21

Model
TSCCs

States TC XBSat XBBFS

name N in TSCCs mem(MB) time(sec) mem(MB) time(sec) mem(MB) time(sec)

cqn

10 10 2.09e+10 37.9 15.5 21.4 <0.1 33.5 3.4

15 15 2.18e+15 64.8 79.6 23.0 0.3 59.4 33.7

20 20 2.31e+20 72.7 691.3 26.2 0.8 90.0 280.5

phil

100 2 2 26.5 0.5 20.9 <0.1 39.2 8.7

500 2 2 34.3 4.1 23.2 <0.1 – to

1000 2 2 44.4 11.3 26.5 0.2 – to

queens

10 1.28e+04 1.28e+4 36.2 3.0 46.7 2.8 62.3 35.1

11 6.11e+04 6.11e+4 76.5 19.3 70.6 24.5 145.2 364.2

12 3.14e+05 3.14e+5 244.1 205.4 98.8 179.4 mo –

13 1.72e+06 1.72e+6 mo – 269.0 1940.81 mo –

leader

3 3 3 26.6 1.5 20.7 <0.1 21.4 0.1

4 4 4 70.6 75.1 24.4 0.9 38.0 4.5

5 5 5 119.3 3845.3 30.6 26.9 41.1 87.6

6 6 6 – to 39.0 492.9 44.8 1341.5

arbiter1

10 1 2.05e+4 24.1 1.2 20.4 <0.1 22.4 0.4

15 1 9.83e+5 128.3 63.1 20.4 <0.1 65.3 23.3

20 1 4.19e+7 mo – 20.5 <0.1 – to

arbiter2

10 1 1 20.4 <0.1 20.9 <0.1 39.6 6.4

15 1 1 20.5 <0.1 40.6 4.6 – to

20 1 1 20.5 <0.1 450.0 2897.8 – to
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Conclusion 22

• Saturation is effective in speeding up the SCC and terminal SCC computations within the framework of the
Xie-Beerel algorithm.

• Our new saturation-based TC computation can tackle some complex models with up to 10150 states.

• For models with huge numbers of SCCs, the TC-based SCC computation has advantages over Lockstep,
which symbolically explores one SCC at a time.

Our TC-based approach is not a replacement for Lockstep, but is an alternative worth further research.

For modelds with unknown number of SCCs, employing both approaches concurrently could be ideal.

Future work: It is reasonable to run the two algorithms concurrently, possibly sharing some of the common data
structures, such as the MDDs encoding the state space and next-state functions.


