Model checking with edge-valued decision diagrams

Model checking with edge-valued decision diagrams

The State of Symbolic Model Checking Research

Evolution and Impact of Decision Diagrams

- Late 80s early 90s: the wow factor, BDDs are (re)discovered
- Late 90s early 00s: real progress
 - Extensions, generalizations (MTBDDs, BMDs, EVMDDs, etc)
 - New techniques (saturation, BMC, CEGAR, interpolation)
- Since then ...
 - Interest has shifted to other areas (SAT/SMT solving)
 - There are even rumors out there that symbolic MC has entered
 - a "Brezhnevian era" (stagnation)
 - Fact or fiction ?

Purpose of this work

Stagnation: fact or fiction?

- A little bit of both
- New ideas exist, but are disparate
- Examples of untapped resources:
 - Edge-valued decision diagrams (EVMDD)
 - Identity-reduced decision diagrams
 - Hashing, caching, garbage collection
 - Guided search heuristics

Our (declared) goal

Represent in one formalism (some of) the best techniques available at the moment across a spectrum of existing tools

Encoding of functions

The advent of symbolic MC: compact representation of

• boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$

• sets
$$\left\{x\in \left\{0,1
ight\}^n \mid f(x)=1
ight\}$$

Evolution:

- Truth table: 2ⁿ entries
- Binary Decision Diagram (BDD): merge common subtrees still exponential size in worst case, often better in practice

Integer/arithmetic functions

- $f: \{0,1\}^n \to \mathbb{Z}$
- Extend BDD to Multi-Terminal BDD (MTBDD)

• Inefficient if Img(f) is large: less chances to share subtrees

Examples of other forms of DDs:

- Multiway DDs (MDD): $f : \{0, \dots, k_1\} \times \cdots \times \{0, \dots, k_n\} \rightarrow \{0, 1\}$
- Binary Moment Diagrams (BMD):
 - \rightarrow work well for multipliers, but not much else

Edge Valued MDDs (EVMDDs)

- EVBDDs introduced in 1992, but not sufficiently exploited ⇒ (*Reed-Müller spectrum !?!*)
- From MTBDDs to EVMDDs: merge all terminals (0) and assign (integer) values to edges

• Value of f: composition of edge-values (e.g. addition, +) along the path from root to terminal node

EVMDD characteristics

- EVMDD encoding is smaller than MTBDDs (# nodes)
 - $\Rightarrow~$ proved in this paper
- Size can be linear instead of exponential (e.g. linear functions)
- Composition ⇒ a generic algorithm for all binary operators: for f, g encoded by EVMDDs of size |f| and |g| f ⊗ g computed in O (|f||g| |Img(f)| |Img(g)|)
- The algorithm has exactly the same complexity as its equivalent for MTBDDs, hence no gain in (worst-case) time complexity
- Is there room for improvement ?

EV⁺MDD algorithms

Yes, for following operations:

• Addition:

f + g computed in $O(|f| \cdot |g|)$ (actually better with QEV⁺MDDs)

- Relational operators: $f \triangleleft c$ computed in $O(c \cdot |f|)$ $f \triangleleft g$ computed in $O(|f| \cdot |g|)$
- Multiplication:
 - $f \times g$ computed in $O\left(|f|^2 \cdot |g|^2 \cdot |f \times g|\right)$
 - exponential in worst case
 - much better in many "practical" cases
- Remainder and Euclidean division by constant: f/c and f%c computed in $O(c \cdot |f|)$

An EVMDD-based Model Checker

We have developed an EVMDD library featuring:

- EVMDDs for arithmetic expressions
- (Regular) MDDs for boolean expressions
- Identity-reduced encoding of transition relations
- Saturation-based state space construction
- Unsophisticated (i.e. fast) garbage collector (mark & sweep)

Some stats:

- 7 kLOC of ANSI C : library
- 4 kLOC : model checking front-end

Available at http://research.nianet.org/~radu/evmdd/

Results

Building state space vs CUDD (BFS) and SMART (saturation)

Model	Model	Reachable	CUDD	SMART	EVMDD		
	size	states	(sec)	(sec)	(sec)		
Dining	100	$4 imes 10^{62}$	11.42	1.49	0.03		
philosophers	200	$2 imes 10^{125}$	3054.69	3.03	0.07		
	15000	$2 imes 10^{9404}$	—		195.29		
Round robin	40	$9 imes10^{13}$	4.44	0.44	0.08		
mutual exclusion	100	$2 imes 10^{32}$		2.84	1.17		
protocol	200	$7 imes10^{62}$		20.02	9.14		
Slotted ring	10	$8 imes10^9$	1.16	0.19	0.01		
protocol	20	$2 imes 10^{20}$	_	0.71	0.04		
	200	$8 imes 10^{211}$	_	412.27	25.97		
On Intel Core 2, 1.2GHz, 1.5GB mem ("—" means "> 1h").							

Results

Building state space vs CUDD (BFS) and SMART (saturation)

Model	Model	Reachable	CUDD	SMART	EVMDD		
	size	states	(sec)	(sec)	(sec)		
Kanban	15	$4 imes 10^{10}$	80.43	3.41	0.01		
assembly line	20	$8 imes10^{11}$	2071.58	8.23	0.02		
	400	$6 imes 10^{25}$			74.89		
Knights	5	$6 imes 10^7$	1024.42	5.29	0.27		
problem	7	$1 imes 10^{15}$		167.41	3.46		
	9	$8 imes 10^{24}$			32.20		
Randomized	6	$2 imes 10^{6}$	4.22	8.42	0.86		
leader election	9	$5 imes 10^9$	_	954.81	18.89		
protocol	11	$9 imes10^{11}$	_	—	109.25		
On Intel Core 2, 1.2GHz, 1.5GB mem ("—" means "> 1h").							

Model checking with edge-valued decision diagrams

Implementation

Questions

?

Model checking with edge-valued decision diagrams

13 / 13