
A Prototype Embedding of

Bluespec SystemVerilog in the

PVS Theorem Prover

Dominic Richards and David Lester

Advanced Processor Technologies Group

The University of Manchester

Introduction

• Bluespec SystemVerilog (`Bluespec') is a formally-inspired

Hardware Description Language

• Elegant semantics => well suited for formal verification

• To date, a number of Bluespec designs have been verified

with hand proof, but little work has been done on the

application of automated reasoning

Introduction

• We're using PVS to experiment with automatic proof for

Bluespec

– We have embedded a subset of Bluespec in PVS

– Embedding is compatible with the PVS model checker

– This allows us to experiment with verification strategies

that use a combination of model checking and

interactive proof

– We currently translate from Bluespec to PVS by hand

• All code is on sourceforge

Why Investigate Automated Reasoning

for Bluespec?

• Strong demand in the Integrated Circuit industry for automatic

proof support, to combat increasing design complexity

• International Technology Roadmap for Semiconductors 2009:

– “[The] cost of design is the greatest threat to the continuation

of the semiconductor roadmap”

– Describes verification as “a bottleneck that has now reached

crisis proportions”

– Includes an extensive manifesto for the increased role of

formal methods

Why Investigate Automated Reasoning

for Hardware Description Languages?

• In 2009, 9.4% of design errors exposed using formal

verification

• ITRS '09 recommends by 2024, 45% of all design errors

exposed using formal verification. Achieved by:

– Increasing use of formalized languages at early stage in

design cycle

– Complete mechanical proof of equivalence between all

system specifications

Why Investigate Automated Reasoning

for Hardware Description Languages?

• Technology to maintain ITRS schedule:

– Up to 2012 with tools currently in use

– Up to 2016 with tools currently in development

– No known solutions to maintain schedule past 2016

New research required

More reliable

Greater capacity

Broader scope

The Potential for Formal Methods in a

Bluespec Design Flow

Bluespec SystemVerilog

 Intel, IBM, Texas Instruments,

Analog Devices, STMicroelectronics,

 Nokia, Qualcomm, Denali Software,

 Mercury Computer Systems

The Rest Of This Presentation...

! Bluespec SystemVerilog

! Strategies for embedding Bluespec in PVS

– First, a simple, intuitive strategy which can be efficiently

model checked, but has several drawbacks (`primitive'

embedding)

– A monadic embedding: a more sophisticated strategy,

which allows efficient model checking, but avoids the

problems associated with `primitive' embedding

! Experimental results: verifying a Bluespec arbiter

Bluespec SystemVerilog

! Creates hardware that's competitive with hand-written

RTL in terms of time and area for many applications

! A formally inspired Hardware Description Language:

– Based on the guarded action model of concurrency

• Similar to model checking languages such as SAL,

Promela, model checkable subset of the PVS

language

! Hardware specified with modules, which associate

elements of state with:

– Methods: functions that return values from the state

and/or transform it

– Rules: guarded actions that spontaneously change the

state

Bluespec SystemVerilog

Rules in Bluespec

rule my_rule (rl_guard);

 statement_1;

 statement_2;

 ...

endrule

The Semantics of a Bluespec Module

! Behaviour of a module can be understood with a

simple semantics called `one-rule-at-a-time'

semantics

! In a given state, a module chooses one rule for

which the guard evaluates to `true' and applies the

associated action

! If more than one guard is true, a non-deterministic

choice is made

The Semantics of a Bluespec Module

! Reg module:

– A register with 1 element of state and 2 methods:

_read and _write

• Other modules can create instances of Reg, and use

_read and _write in their rules and methods. Eg:

 rule request_rl (!request._read && !acknowledge._read));

 request._write(True);

 endrule

The Model Checkable Subset of the

PVS Language
! A guarded action language

– Similar to Bluespec, but simpler

– We define a state machine with:

• A state, defined inductively from boolean and scalar

types, using tuples, records and arrays

• A transition relation, defined as a binary relation

over pairs of states

– No equivalent to the `module construct'

The State of Module `Arbiter'

Reg : TYPE = [# val: T #]

Arbiter: TYPE = [# req1, req2, req3,

 ack1, ack2, ack3,

 tok1, tok2, tok3 : Reg [bool] #]

val ! T

req1 ! val ! bool

ack1 ! val ! bool

req3 ! val ! bool

req2 ! val ! bool

A Rule from Module `Arbiter'

rule ack1_with_tok (tok1._read && req1._read

 && !(ack1._read || ack2._read || ack3._read));

 ack1._write (True);

 move_token;

endrule

A Method from Module `Arbiter'

Action move_token =

 (action tok1._write(tok3._read);

 tok2._write(tok1._read);

 tok3._write(tok2._read);

 endaction);

A Rule in PVS

ack1_with_tok_primitive (pre, post: Arbiter): bool =

 pre‘tok1‘val ! pre‘req1‘val ! ¬ (pre‘ack1‘val " pre‘ack2‘val " pre‘ack3‘val)

 ! post = pre WITH [(ack1) : = (# val : = TRUE #),

 (tok1) : = (# val : = pre‘tok3‘val #),

 (tok2) : = (# val : = pre‘tok1‘val #),

 (tok3) : = (# val : = pre‘tok2‘val #)]

move_token

ack1_with_tok_primitive (pre, post: Arbiter): bool =

 pre‘tok1‘val ! pre‘req1‘val

 ! ¬ (pre‘ack1‘val " pre‘ack2‘val " pre‘ack3‘val)

 ! post = pre WITH [(ack1) : = (# val : = TRUE #),

 (tok1) : = (# val : = pre‘tok3‘val #),

 (tok2) : = (# val : = pre‘tok1‘val #),

 (tok3) : = (# val : = pre‘tok2‘val #)]

rule ack1_with_tok (token1._read && req1._read

 && !(ack1._read || ack2._read || ack3._read));

 ack1._write (True);

 move_token;

endrule

A Monadic Embedding in PVS

ack1_with_tok = rule (tok1‘read ! req1‘read

 ! ¬ (ack1‘read " ack2‘read " ack3‘read))

 (ack1‘write (TRUE) >>

 move_token)

A Monadic Embedding in PVS

rule ack1_with_tok (tok1._read && req1._read

 && !(ack1._read || ack2._read || ack3._read));

 ack1._write (True);

 move_token;

endrule

ack1_with_tok = rule (tok1‘read ! req1‘read

 ! ¬ (ack1‘read " ack2‘read " ack3‘read))

 (ack1‘write (TRUE) >>

 move_token)

A Monadic Embedding in PVS

move_token =

 tok1‘read >>= tok2‘write >>

 tok2‘read >>= tok3‘write >>

 tok3‘read >>= tok1‘write

A Monadic Embedding in PVS

move_token =

 tok1‘read >>= tok2‘write >>

 tok2‘read >>= tok3‘write >>

 tok3‘read >>= tok1‘write

Action move_token =

 (action tok1._write(tok3._read);

 tok2._write(tok1._read);

 tok3._write(tok2._read);

 endaction);

ack1_with_tok_primitive (pre, post: Arbiter): bool =

 pre‘tok1‘val ! pre‘req1‘val

 ! ¬ (pre‘ack1‘val " pre‘ack2‘val " pre‘ack3‘val)

 ! post = pre WITH [(ack1) : = (# val : = TRUE #),

 (tok1) : = (# val : = pre‘tok3‘val #),

 (tok2) : = (# val : = pre‘tok1‘val #),

 (tok3) : = (# val : = pre‘tok2‘val #)]

rule ack1_with_tok (token1._read && req1._read

 && !(ack1._read || ack2._read || ack3._read));

 ack1._write (True);

 move_token;

endrule

ack1_with_tok =

 rule (tok1‘read ! req1‘read

 ! ¬ (ack1‘read " ack2‘read " ack3‘read))

 (ack1‘write (TRUE) >>

 move_token)

Experimental Results: Fair Arbiter

! Verified a 3 input fair arbiter

! 100 lines of Bluespec code (extracts provided in paper)

! Hand embedded Bluespec code in PVS

! Verified with the PVS model checker and proof

strategies

! Verified deadlock freedom, mutual exclusion, liveness

Conclusion

• Bluespec is a semantically elegant HDL

– Well suited for formal reasoning

– But little work carried out on application of

automated reasoning

• We are using PVS to experiment with proof strategies for

Bluespec

• Today, I presented a strategy for embedding a subset of

Bluespec in the PVS theorem prover

