MANCHESTER
1824

A Prototype Embedding of
Bluespec SystemVerilog in the
PVS Theorem Prover

Dominic Richards and David Lester

Advanced Processor Technologies Group
The University of Manchester

MANCHESTER
1824

Introduction

* Bluespec SystemVerilog (Bluespec') is a formally-inspired
Hardware Description Language

* Elegant semantics => well suited for formal verification

* To date, a number of Bluespec designs have been verified
with hand proof, but little work has been done on the
application of automated reasoning

MANCHESTER
1824

Introduction

* We're using PVS to experiment with automatic proof for

Bluespec
— We have embedded a subset of Bluespec in PVS
— Embedding is compatible with the PVS model checker

— This allows us to experiment with verification strategies
that use a combination of model checking and
interactive proof

— We currently translate from Bluespec to PVS by hand
All code is on sourceforge

MANCHESTER
1824

Why Investigate Automated Reasoning
for Bluespec?

Strong demand in the Integrated Circuit industry for automatic
proof support, to combat increasing design complexity

International Technology Roadmap for Semiconductors 2009:

— “[The] cost of design is the greatest threat to the continuation
of the semiconductor roadmap”

— Describes verification as “a bottleneck that has now reached
crisis proportions”

— Includes an extensive manifesto for the increased role of
formal methods

MANCHESTER
1824

Why Investigate Automated Reasoning
for Hardware Description Languages?

* In 2009, 9.4% of design errors exposed using formal
verification
* ITRS '09 recommends by 2024, 45% of all design errors
exposed using formal verification. Achieved by:
— Increasing use of formalized languages at early stage in
design cycle

— Complete mechanical proof of equivalence between all
system specifications

MANCHESTER
1824

Why Investigate Automated Reasoning

4 ‘

for Hardware Description Languages?

* Technology to maintain ITRS schedule:
— Up to 2012 with tools currently in use

— Up to 2016 with tools currently in development

— No known solutions to maintain schedule past 2016

Broader scope —

Greater capacity — New research required

More reliable —

UJniversit

MANCHESTER
1824

The Potential for Formal Methods in a
Bluespec Design Flow

Functional V&V in a Functional V&V in a

Traditional Design Flow Hybrid Bluespec Design Flow
o)
Functional English / Manual Logic
) mmn | O O 8 O |
Requirements Pseudo-code . Assertions
Translation

M3IADY B Bunsa)

System Level n C/C++ISystemC EEEEEEEEEEEEEEEE NN Bluespec AIRVIRETRRT R

1

AN 2 2

] S

= Bluespec ®

€ 3

fo =

m -

— 2_ Bluespec R

@) o

0 E (o]

= Za

BSV 2 7

Synthesis EEEEEEEEEN mll-ll-ll.ll..l..l..l..ll.ll.ll Bluespec EEm EEEEEEEEN

Level -
(1]
<
=
2

uone|sues]

‘IIIIIIII

snewolny
Jooud @ouajeAinbg

Register ;
Transfer n VHDLI Verilog Illllllllllllllll ------------

Level

Y
er

The Universit
of Manchest

MANCHESTER

1824

Bluespec SystemVerilog

Intel, IBM, Texas Instruments,
Analog Devices, STMicroelectronics,
Nokia, Qualcomm, Denali Software,

Mercury Computer Systems

MANCHESTER
1824

The Rest Of This Presentation...

* Bluespec SystemVerilog
* Strategies for embedding Bluespec in PVS

— First, a simple, intuitive strategy which can be efficiently
model checked, but has several drawbacks (primitive'
embedding)

— A monadic embedding: a more sophisticated strategy,
which allows efficient model checking, but avoids the
problems associated with “primitive' embedding

* Experimental results: verifying a Bluespec arbiter

MANCHESTER
1824

Bluespec SystemVerilog

* Creates hardware that's competitive with hand-written
RTL in terms of time and area for many applications

* Aformally inspired Hardware Description Language:
— Based on the guarded action model of concurrency

* Similar to model checking languages such as SAL,
Promela, model checkable subset of the PVS
language

MANCHESTER
1824

, Bluespec SystemVerilog

* Hardware specified with modules, which associate
elements of state with:

— Methods: functions that return values from the state
and/or transform it

— Rules: guarded actions that spontaneously change the
state

Yy
er

The Universit
of Manchest

MANCHESTER
1824

Rules in Bluespec

rule my_rule (rl_guard);
statement_1;
statement_2;

endrule

MANCHESTER
1824

The Semantics of a Bluespec Module

 Behaviour of a module can be understood with a
simple semantics called "one-rule-at-a-time'
semantics

* In a given state, a module chooses one rule for
which the guard evaluates to true' and applies the
associated action

* If more than one guard is true, a non-deterministic
choice is made

MANCHESTER
1824

The Semantics of a Bluespec Module

* Reg module:

— A register with 1 element of state and 2 methods:
_read and _write

* Other modules can create instances of Reg, and use
_read and _write in their rules and methods. EgQ:

rule request _rl ('request. read && lacknowledge. read));
request._write(True);
endrule

MANCHESTER
1824

The Model Checkable Subset of the
PVS Language

* A guarded action language
— Similar to Bluespec, but simpler
— We define a state machine with:

* A state, defined inductively from boolean and scalar
types, using tuples, records and arrays

* A transition relation, defined as a binary relation
over pairs of states

— No equivalent to the ‘'module construct'

MANCHESTER
1824

Yy
er

The State of Module "Arbiter’

Reg :TYPE = [#val: T #]

Arbiter: TYPE = [# req1, req2, req3,

reql — ack1, ack2, ack3,

k1, tok2, tok3: R I
req2—> tok1, tok2, tok3 : Reg [bool] #]

oq - YR
ack -

-

The Universit
of Manchest

MANCHESTER
1824

A Rule from Module "Arbiter’

rule ack1_with_tok (tok1. read && req1. read
&& l(ack1. read || ack2. read || ack3. read));
ack1. write (True);
move_token;
endrule

‘\;)

jestitel

MANCHESTER
1824

A Method from Module Arbiter’

Action move token =
(action tok1._ write(tok3. read);

tok2. write(tok1. read);
tok3. write(tok2. read);

endaction);

MANCHESTER
1824

Yy
er

A Rule in PVS

The Universit
of Manchest

ack1_with_tok_primitive (pre, post: Arbiter): bool =
pre‘tok1‘val A pre‘req1‘val A = (pre‘ack1‘val V pre‘ack2‘val V pre‘ack3‘val)
A post = pre WITH [(ack1) : = (# val : = TRUE #),
(tok1) : = (# val : = pre‘tok3‘val #),
(tok2) : = (# val : = pre'tok1‘val #),
(tok3) : = (# val : = pre‘tok2'val #)]

\ move_token

rule ack1_with_tok (token1._read && req1._read
&& !(ack1._read || ack2. _read || ack3._read));
ack1._write (True);
move_token;
endrule

ack1_with_tok_primitive (pre, post: Arbiter): bool =
pre‘tok1‘val A pre‘req1‘val
A = (pre‘ack1‘val V pre‘ack2‘val V pre‘ack3‘val)
A post = pre WITH [(ack1) : = (# val : = TRUE #),
(tok1) : = (# val : = pre'tok3‘val #),
(tok2) : = (# val : = pre'tok1‘val #),
(tok3) : = (# val : = pre'tok2‘val #)]

MANCHESTER
1824

A Monadic Embedding in PVS

ack1 _with_tok = rule (tok1‘read A reqg1‘read
A 7 (ack1‘read V ack2read V ack3‘read))

(ack1‘write (TRUE) >>
move_token)

MANCHESTER

1824

Yy
er

A Monadic Embedding in PVS

The Universit
. of Manchest

rule ack1_with_tok (tok1. read && req1._read
&& !(ack1. read || ack2. read || ack3. _read));
ack1. write (True);
move_token;
endrule

ack1_with_tok = rule (tok1‘read A req1‘read
A — (ack1‘read V ack2read V ack3‘read)
(ack1‘write (TRUE) >>

move_token)

MANCHESTER
1824

A Monadic Embedding in PVS

move_token =
tok1‘read >>= tok2'write >>
tok2'read >>= tok3'write >>
tok3'read >>= tok1‘write

Yy
er

The Universit
of Manchest

MANCHESTER

1824

A Monadic Embedding in PVS

Action move_token =
(action tok1._ write(tok3. read);
tok2._write(tok1._read);
tok3._ write(tok2._ read);
endaction);

move_token =
tok1‘read >>= tok2'write >>
tok2‘read >>= tok3‘write >>
tok3‘read >>= tok1‘write

rule ack1_with_tok (token1._read && req1._read
&& !(ack1._read || ack2. _read || ack3._read));
ack1._write (True);

move_token;
endrule
—
\4
ack1_with_tok_primitive (pre, post: Arbiter): bool =
ack1_with_tok = pre‘tok1‘val A pre‘req1‘val
rule (tok1'read A req1‘read A = (pre‘ack1‘val V pre‘ack2'val V pre‘ack3‘val)

A = (ack1‘read V ack2‘read V ack3‘read)) '<:> A post = pre WITH [(ack1) : = (# val : = TRUE #),
(ack1'write (TRUE) >> (tok1) : = (# val : = pre‘tok3'val #),
move_token) (tok2) : = (# val : = pre‘tok1‘val #),

(tok3) : = (# val : = pre'tok2‘val #)]

MANCHESTER
1824

Experimental Results: Fair Arbiter

Verified a 3 input fair arbiter
100 lines of Bluespec code (extracts provided in paper)
Hand embedded Bluespec code in PVS

Verified with the PVS model checker and proof
strategies

Verified deadlock freedom, mutual exclusion, liveness

MANCHESTER
1824

= Conclusion

* Bluespec is a semantically elegant HDL
— Well suited for formal reasoning

— But little work carried out on application of
automated reasoning

* We are using PVS to experiment with proof strategies for
Bluespec

* Today, | presented a strategy for embedding a subset of
Bluespec in the PVS theorem prover

