
1

Verification of Faulty Message-
Passing Systems with

Continuous State Space in PVS

C. Pilotto and J. White
Computer Science Department

California Institute of Technology

2

Outline of the Talk

• Motivation
– Robot Pattern Formations

• Systems of Linear Equations
– Message-Passing Decentralized

Scheme over Unreliable
Communication

• PVS Framework
– System Meta-theory
– Proof of Correctness Meta-theory

• Conclusions and Future work

3

Pattern Formations

• Multi-agent System whose goal is forming “A
fence around a given target”

4

Target Formation

• Multi-agent System whose goal is forming “A
fence around a given target”

• In the final configuration, robots are equispaced

5

Protocol

• Multi-agent System goal is forming “A fence
around a given target”

• In the final configuration, robots are equispaced

Average of its left
and right neighbors

Stay put
Stay put

Stay putStay put

6

As System of Linear Equations
• Restrict on a single line
• Protocol corresponds to Gauss Iteration

x0=init0

x1= 0.5 x0+0.5 x2

1 0 0 0 0 0
-0.5 1 -0.5 0 0 0

…
0 0 0 -0.5 1 -0.5
0 0 0 0 0 1

init0
0
…
0
initN

=.

x0
x1
…
xN-1
xN

A x b

Average of its left
and right neighbors

Stay put
Stay put

7

Outline of the Talk

• Motivation
– Robot Pattern Formations

• Systems of Linear Equations
– Message-Passing Decentralized

Scheme over Unreliable
Communication

• PVS Framework
– System Meta-theory
– Proof of Correctness Meta-theory

• Conclusions and Future work

8

Systems of Linear Equations

• Goal: Decentralized scheme for solving

A x = b

• Assumptions:
– A invertible with diagonal entries of 1

• Decentralized System: Multi-Agent System where
agent i is responsible for computing xi

A

=

x b

i

9

Gauss Scheme

• Solving System of Linear Equations in Rounds
starting from an initial guess init

Rounds
State of System

t
t-1
t-2

…x1 x2 xi xN…

xi (t) =
initi t=0

bi - ji A(i, j) xj (t-1) t>0

10

Pattern Formation Challenges
• Unreliable Message-Passing Communication

• Agents do not update their positions instantaneously

xi:=10
xi:=8xi:=9

…
0 1 N-1 N

11

Communication Medium
• Unreliable Broadcast Communication

Medium:
– Agents send and receive messages
– Messages in transit can be lost, delayed

or received out-of-order
– Bounded transmission delay
– Agent i stores in the variable msgij the

last message it receives from agent j
– Agent i broadcasts xi infinitely often

12

Gauss over Unreliable Networks

• Over Message-Passing Systems:

Time

State of System

t
t-1
t-2

…x1 x2 xi xN…

t-3

xi (t) =
initi t=0

bi - ji A(i, j) msgi,j t>0

13

• Agents do not update their positions
instantaneously

• Introduce a variable zi storing its current position
• Variable xi stores its target position
• Move action: it moves from zi towards xi with some

velocity for dt time units

Agent Dynamics

zi:=10
xi:=8zi:=9

14

Does this Scheme work?
If A satisfies

(D1) invertible

(D2) diagonal entries equal to 1
i : A(i,i) = 1

(D3) weakly diagonally dominant
 j : kj | A(j,k) | 1

(D4) strictly diagonally dominant in at least one row
 j : kj | A(j,k) | < 1

then Message-Passing Gauss Iteration converges to A-1.b

15

Proof Summary
(E1) Error of the system E does not increase
(E2) E eventually decreases by a factor

C

 C
2 C
3 C

Error

Execution

Error of the system

Upper bound on the error

16

Proof Summary
(E1) Error of the system E does not increase:

– For all actions of the system, the execution of the
action does not increase the error

k1>k2>k3…

A-1 b

E ≤ k1

E ≤ k2

E ≤ k3
action

action

17

Proof Summary
(E2) E eventually decreases by a factor
• Proved by Induction
• Tree based on communication links in A

– (i, j) is an edge if A(i, j) 0
– Roots: Strictly Diagonally Dominant

agents
• Induction Proof: Assume E = C

– Base Case: Error of Roots eventually
C

– Induction Step: assuming error along
path to agent j (exclusive of j) is C then
eventually error of j is C

A-1 b

18

Outline of the Talk

• Motivation
– Robot Pattern Formations

• Systems of Linear Equations
– Message-Passing Decentralized

Scheme over Unreliable
Communication

• PVS Framework
– System Meta-theory
– Proof of Correctness Meta-theory

• Conclusions and Future work

19

System
state, initial state predicate, actions,
transition function, enabled predicate

System Theory

PVS Verification Framework

Proof of Convergence:
• System Error
• Stability
• Progress

Interactive
Proof: D1-D4

Model of the System:
• States
• Initial State
• Actions
• Transitions
• Final State

A, b, init

Proof of Convergence

Error Model

Verification Theories

Vector

Matrix

Tree

Mathematical Theories

20

Description of the System
• Automaton with:

– States
– Initial State Predicate
– Actions
– Transition Function
– Enabling Predicate

• Extend time_machine metatheory
IMPORTING time_machine[S,

ACS,
enabled,
trans,
start?, …]

…
0 1 N-1 N

State

Actions
Enabling Predicate

Transition function

Initial State Predicate

21

State of the System

• State of the System is given by the
composition of State of Agents and State of
the Communication Medium
S: TYPE = [#

target : Vector,

lastmsg : Matrix,

buffer : [Index, Index -> Pset],

now : nonneg_real,

next: [Index -> nonneg_real]
#]

Communication
Medium

Global Clock

State of Agent
State of Agent

Communication
Medium

22

State of the Agents

S: TYPE = [#

target : Vector,

lastmsg : Matrix,

buffer : [Index, Index -> Pset],

now : nonneg_real,

next: [Index -> nonneg_real]
#]

variable x

variable m and z along diagonal

Index : TYPE = below(N)
Vector: TYPE = [Index -> real]
Matrix: TYPE = [Index, Index -> real]

Agents’ Identifiers

23

State of Communication Medium
S: TYPE = [#

target : Vector,

lastmsg : Matrix,

buffer : [Index, Index -> Pset],

now : nonneg_real,

next: [Index -> nonneg_real]
#]

Communication
Medium – Buffer(i,j)
dedicated channel
from i to j

Msg: TYPE = [# loc: real, id: Index #]

Pkt: TYPE = [# msg: Msg, ddl: posreal #]

Pset: TYPE = set[Pkt]

b: posreal

d: posreal

A channel is a set
model out-of-order messages

Current value Sender of the Message

Deadline model
bounded delay

Next time a Send
action is executed –
Model infinitely often

Maximum delay
Upper bound on consecutive send actions executed by the same
agent – Model infinitely often

24

Initial State Predicate
• Describe properties of the initial state

start?(s: S): bool =
now(s) = 0
AND
target(s)=x0
AND
(FORALL (i:Index): next(s)(i)<= d)
AND
(FORALL (i,j: Index): lastmsg(s)(i,j)= x0(j))

• Note that the communication channels can have
messages in transit initially

Global clock 0

x initialized with init
Schedule the next time an agent
execute a send action

mi,j =initj

25

Actions of the Systems
• The system has the following actions

ACS : DATATYPE BEGIN

nu_traj(delta_t:posreal): nu_traj?

send(p:Pkt, i:Index , d1:posreal): send?

receive(p:Pkt, i:Index): receive?

msgloss(p:Pkt, i:Index): msgloss?

move(i:Index, delta_t:posreal): move?

END ACS

Agents

Agents

Agents

Packet loss - Channel

Advance Time –Time Manager

26

Transition Function and Enabling
Conditions

• Body of the Actions
trans (a:ACS, s:S): S =

CASES a OF
nu_traj (delta_t): …
send (p,i,d1): …
receive (p,i): …
msgloss (p,i): …
move (i,delta_t): …

ENDCASES

• Enabling Conditions
enabled (a:ACS, s:S): bool=

CASES a OF
nu_traj (delta_t): …
send (p,i,d1): …
receive (p,i): …
msgloss (p,i): …
move (i,delta_t): …

ENDCASES

27

Time Action
• Action

trans (a:ACS, s:S): S =
CASES a OF

nu_traj (delta_t): s WITH [now := now(s) + delta_t]

ENDCASES

• Enabling Conditions
enabled (a:ACS, s:S): bool=
CASES a OF

nu_traj (delta_t):

FORALL (p: Pkt): ddl(p) >= now(s) + delta_t
ENDCASES

Advance Clock of delta_t unit

Clock can be advanced only if the new
time does not violate packet deadlines

28

Agent Send Action
• Agent i sends packet p

send (p: Pkt, i: Index, d1: posreal):
s WITH [

buffer := LAMBDA (k,j: Index):
IF ((k=i) AND (j /= i))
THEN union (p, buffer(s)(k,j))
ELSE buffer (s)(k,j)
ENDIF,

next := next(s) WITH [(i) := next(s)(i) + d1]
]

• Enabling Conditions
send (p, i, d1): next(s)(i) = now(s)

AND d1<=d
AND id(msg(p))=i
AND loc(msg(p)) = target(s)(i)

AND ddl(p) = now(s) + b

Broadcast p along all
outgoing channels of i

Schedule the next send

Agent is allowed to send
Next scheduled time does not violate d

Send its current value and id

Packet deadline does not
violate b

29

Agent Receive Action
• Agent i receives packet p

receive (p:Pkt, i:Index):
LET m: Msg = msg(p),

j: Index = id(m),

l: real = loc(m),
Ci: Vector = update(row(lastmsg(s),i),j,l)

IN s WITH [

buffer := buffer(s) WITH
[(j,i) := remove(p,buffer(s)(j,i))],

lastmsg := lastmsg(s) WITH [(i,j):= l],

target := target(s) WITH [(i):= gauss(Ci,i)]]

• Enabling Conditions
receive (p,i):

buffer(s)(id(msg(p)),i)(p) AND ddl(p) >= now(s)

Sender and location of the message

p is in the channel from j to i and its deadline is not violated

Remove p from the channel from j to i

update mij
compute new xi

30

Message Loss Action
• Packet p is removed from the System

trans (a:ACS, s:S): S =
CASES a OF
msgloss (p: Pkt , i: Index):
LET

m: Msg = msg (p),
j: Index = id(m)

IN s
WITH [buffer := buffer (s)

WITH [(j,i) := remove(p, buffer(s)(j,i))]]
ENDCASES

• Enabling Conditions
enabled (a:ACS, s:S): bool=
CASES a OF

msgloss (p,i): buffer(s)(id(msg(p)),i)(p)
ENDCASES

Sender of the message

p is in the buffer from sender of p to i

Remove p from the channel

31

Agent Move Action
• Agent i moves from its current to its target value

move (i:Index , delta_t:posreal):

s WITH [
lastmsg := lastmsg(s) WITH [(i,i) := target(s)(i)],
now := now(s) + delta_t

]

• Enabling Conditions

move (i:Index , delta_t:posreal):

FORALL (p: Pkt): ddl (p) >= now (s) + delta_t

Advance Clock of delta_t unit

Executes a move action

No packet deadline is violated

32

Outline of the Talk

• Systems of Linear Equations
– Message-Passing Decentralized

Scheme over Unreliable
Communication

• PVS Framework
– System Meta-theory
– Proof of Correctness Meta-theory

• Application
– Robot Pattern Formations

• Conclusions and Future work

33

Assumptions
• Assumptions

ASSUMING

inverse_exist: ASSUMPTION inv?(A)

diag_entry : ASSUMPTION FORALL (i:Index): A(i,i)=1

diag_dominant : ASSUMPTION dd?(A)

strictly_diag_dominant : ASSUMPTION sdd?(A)

ENDASSUMING

• where
dd?(m): bool =
FORALL (r: Index): sum(row(abs(m),r),r) <= abs(m(r,r))

sdd?(m): bool =
EXISTS (r: Index): sum(row(abs(m),r),r) < abs(m(r,r))

D1

D2

D3

D4

34

Error Model
• Error of the system as the maximum of agent errors

me : [S -> nonneg_real]

me_all_error: AXIOM FORALL(i) : mes(s,i)<= me(s)
me_ex_error: AXIOM EXISTS(i) : mes(s,i) = me(s)

• Error of agent i in the system

mes(s,i): nonneg_real = max(mae(s,i), mbe(s,i))

Error of i is the maximum of its error
along its outgoing channels and its
error in all agents

35

Proof Summary
(E1) Error of the system E does not increase

not_incr_error :

LEMMA enabled(a,s) IMPLIES me(s) >= me(trans(a,s))

• Proof is a case on the actions

k1>k2>k3…

A-1 b

E ≤ k1

E ≤ k2

E ≤ k3
action

action

36

Proof Summary
(E2) E eventually decreases by a factor

– p defined recursively along the tree t

p(i:Index) RECURSIVE nonneg_real =
IF root_t?(t,i)
THEN sum(row(abs(A),i),N-1,i)
ELSE abs(A(i,parent(t,i))) * p(parent(t,i)) +

sum(row(abs(A),i),N-1,i,parent(t,i))
ENDIF

– showed that 0 ≤ p <1

– defined as the maximum of function p

Sum along the row

Sum along the row and path to the root

37

Proof Summary
(E2) E eventually decreases by

– Define a family of predicates Z
– Prove Stability

Z_stable:
LEMMA Z(s,C,i) AND enabled(a,s)
IMPLIES Z(trans(a,s),C,i)

Proof is a case on the actions

– Prove Progress

Proof broken in smaller lemmas A-1 b

38

Using the PVS Framework

Proof of Convergence:
• System Error
• Stability
• Progress

Interactive
Proof: D1-D4

PVS Library Architecture

Model of the System:
• States
• Initial State
• Actions
• Transitions
• Final State

A, b, init

1 0 0 0 0 0
-0.5 1 -0.5 0 0 0

…
0 0 0 -0.5 1 -0.5
0 0 0 0 0 1

A=

init0
0
…
0
initN

b=

Average of its left
and right neighbors

Stay put
Stay put

39

Conclusions and Future Directions

• Extend results and framework to a
richer class:
– Non linear schemes
– How much can we reuse?

• Focus on communication
– Conditions for proving correctness of a

message-passing scheme
– Synchronous version of the scheme
– How much can we reuse?

40

Framework for Reliability

• Initial State
• Algorithm
• Final State

Certificate of
Correctness

Family of
Predicates in
Conjunctive

Form

PVS Model for System
without Communication Layer

PVS Model for System with
Communication Layer

Interactive Proof
• Certificate of Correctness

satisfies Assumptions

Automated
Proof

