
University of Campinas - UNICAMP
Institute of Computing - IC

São Paulo - Brazil

A new Method for Incremental Testing of Finite

State Machines 1

Lehilton Lelis Chaves Pedrosa
lehilton.pedrosa@students.ic.unicamp.br

.
Arnaldo Vieira Moura

arnaldo@ic.unicamp.br

15-april-2010

1Supported by FAPESP

lehilton.pedrosa@students.ic.unicamp.br
arnaldo@ic.unicamp.br

Testing of Finite State Machines (FSM)

Why test using FSMs?

◮ Black-box testing

◮ Detect flaws in specification

◮ Formal verification of a system’s implementations

◮ May model programs, protocols, hardware, ...

In the literature

◮ The W-method (Chow 1978)

◮ Several derivations: Wp-method, HSI-method, G-method, ...

FSMs

Definition
Formally, a FSM M is a tuple

M = (X ,Y ,S , s0, δ, λ), where

◮ X is the input alphabet,

◮ Y is the output alphabet,

◮ S is the set of states,

◮ s0 ∈ S is the initial state,

◮ δ : X × S → S is the state transition function,

◮ λ : X × S → Y is the output function.

Example

s0

s1

s2 s3

a, b/1

b/0a/0

b/1
a/1 a/1

b/1

s4

a, b/0

Figure: Finite state machines

Comparing FSMs

State equivalence

Given: M (specification) and M ′ (implementation):

◮ s ≈ρ s ′ if λ̂(ρ, s) = λ̂′(ρ, s ′)

◮ s ≈R s ′ if λ̂(ρ, s) = λ̂′(ρ, s ′), ∀ρ ∈ R

◮ s ≈ s ′ if λ̂(ρ, s) = λ̂′(ρ, s ′), ∀ρ ∈ X ∗

Target: find a set π such that

s0 ≈ s ′0 iff s0 ≈π s ′0

Examples:

◮ s0 ≈a r0

◮ s0 6≈b r0

◮ s0 ≈ r1

s0

a, b/0

r0

r1

a/0

a, b/0

b/1

Review - W-method

Definitions

◮ n is the number of states in S

◮ m is an estimated upper bound to the number of states in S ′,

◮ P is a cover set of S : for each s ∈ S, there exists ρ ∈ P, with

δ̂(ρ, s0) = s, and ρa ∈ P, for all a ∈ X

◮ W is a characterization set of S : for each pair r , s ∈ S, there

exists ρ ∈ W , with r 6≈ρ s

Test suite: π = PZ

◮ Z = Xm−nW

◮ Xm−n is the set of input words with length up to m − n

Incremental testing

Why incremental testing?

◮ Current methods are monolithic

◮ Generated test suites are exponential
(depends on the number of states)

◮ Testing FSMs with a large number of states is impractical

◮ Retesting modified systems

Main idea

◮ Break a system model into a set of subsystems

◮ Test each subsystem (submachine) independently

◮ Test the integrated system (combined FSM) at low cost

Combined FSM - Definitions

Submachine of M : Ṅ = (Ẋ , Ẏ , Ṡ , ṡ0, δ̇, λ̇)

◮ Ẋ = X , Ẏ ⊂ Y , Ṡ ⊂ S

◮ δ̇(a, s) = δ(a, s), λ̇(a, s) = λ(a, s), for every a ∈ X

N-combined FSM

◮ N is a set of submachines of M

◮ SN is the set of all submachine states

◮ SM = S \ SN is the set of additional states

◮ IN as the set of all submachines entry points

Combined FSM - Example

N

s0

s1

s2 s3

s4

s5 s6

a, b/1

b/0a/0

b/1
a/1 a/1

b/1 a/1a/1

b/1

b/1

a, b/0

Figure: A combined FSM

◮ 7 states in total

◮ only 2 additional states

◮ SN = {s0, s1, s2, s3, s4}

◮ IN = {s0, s4}

◮ SM = {s5, s6}

Testing combined FSMs

Testing new combined machines

◮ Each submachine is implemented and tested previously

◮ Only additional states of the combined FSM need to be tested

◮ We may test FSMs with a large number of states

Retesting modified specifications

◮ Only affected submachines need to be retested

◮ Different combined FSM may share one submachine
implementation

A new testing method

The C-method

◮ Based on the W-method and on the G-method

◮ Assumes that the specification and the implementation are
combined FSMs

Introduction of new concepts

◮ Cover sets ⇒ Partial cover sets:
- cover only a subset of states
- used to test only additional states

◮ Characterization sets ⇒ Separator:
- no need to distinguish every pair of states
- generalizes the characterization sets

C-method - Concepts

Preliminary concepts: basic notion

◮ A set of input words R is an (A,B)-separator:
R can distinguish states of A and B

◮ Neighborhood nbh(C , d):
states reached from states C using at most d input symbols

◮ Partition [C�R]:
the set of equivalence classes induced by ≈R over states C

◮ Relative concatenation A ⊗
s
B:

concatenates sequences according to the state reached from s

C-method - The algorithm

Input:

◮ M : a N-combined FSM

◮ m: bound on number of implementation aditional states (S ′

M ≤ m)

Algorithm

1. P ←− obtain a partial cover set P for SM

2. R ←− obtain a (SM ∪ IN , SN)-separator

3. n←− |[SM�R]|

4. A←− nbh(IN , m−n−1)

5. T ←− obtain a (A, SN)-separator

6. R (SM)←− R, R (SN)←− R ∪ T

7. For each s ∈ S , Z(s)←− Xm−n ⊗
s
R

8. Return π ←− P ⊗ Z

Example

Specification and a candidate implementation

N

s0

s1

s2 s3

s4

s5 s6

a, b/1

b/0a/0

b/1
a/1 a/1

b/1 a/1
a/1

b/1

b/1

a, b/0

N ′

r4

r5

r6 r7

r9

r0
r1

r8

r10

r2
r3

a, b/1

a, b/1

b/0
a/0

b/1

b/1

a/1 a/1

b/0
b/0

a/0

a/0

a/1

b/1

a/1

a/1

a, b/0b/1

b/1

Notes

◮ Specification M is a N-combined FSM

◮ A candidate implementation M ′ is any N ′-combined FSM

◮ An implementation is a black-box, but bounds on the number of
states may be estimated: S ′

N ≤ 7, S ′

M ≤ 4

Example - comparison with the W-method

W-method

◮ Characterization set
W = {aaaa, bb}

C-method

◮ Smaller separators
R = T = {aaaa}

Example - comparison with the W-method

W-method

◮ Characterization set
W = {aaaa, bb}

◮ Complete cover set P:
test all states

C-method

◮ Smaller separators
R = T = {aaaa}

◮ Partial cover set P:
test only additional states

Example - comparison with the W-method

W-method

◮ Characterization set
W = {aaaa, bb}

◮ Complete cover set P:
test all states

◮ Parameters m = 11, n = 7

C-method

◮ Smaller separators
R = T = {aaaa}

◮ Partial cover set P:
test only additional states

◮ Parameters m = 4, n = 2

Example - comparison with the W-method

W-method

◮ Characterization set
W = {aaaa, bb}

◮ Complete cover set P:
test all states

◮ Parameters m = 11, n = 7

◮ Calculates set X11−7,
with 31 words

C-method

◮ Smaller separators
R = T = {aaaa}

◮ Partial cover set P:
test only additional states

◮ Parameters m = 4, n = 2

◮ Calculates set X4−2,
with 7 words

Example - comparison with the W-method

W-method

◮ Characterization set
W = {aaaa, bb}

◮ Complete cover set P:
test all states

◮ Parameters m = 11, n = 7

◮ Calculates set X11−7,
with 31 words

◮ Test suite π = PZ ,
with 256 prefix-free words

.

.

.

C-method

◮ Smaller separators
R = T = {aaaa}

◮ Partial cover set P:
test only additional states

◮ Parameters m = 4, n = 2

◮ Calculates set X4−2,
with 7 words

◮ Test suite π = P ⊗ Z,
with 20 prefix-free words

Example - comparison with the W-method

W-method

◮ Characterization set
W = {aaaa, bb}

◮ Complete cover set P:
test all states

◮ Parameters m = 11, n = 7

◮ Calculates set X11−7,
with 31 words

◮ Test suite π = PZ ,
with 256 prefix-free words

.

.

.

C-method

◮ Smaller separators
R = T = {aaaa}

◮ Partial cover set P:
test only additional states

◮ Parameters m = 4, n = 2

◮ Calculates set X4−2,
with 7 words

◮ Test suite π = P ⊗ Z,
with 20 prefix-free words

◮ Additionally, the submachines
may be tested with 24 test cases,
for a total of 44 words

Comparison with W-method - Results

Suppose

◮ |SM | = ℓ, |SN | = j , |S ′
M | = m, |S ′

N | = k

◮ PW , PC : complete and partial cover sets, respectively

◮ πW , πC : test suites generated by W-method and C -method,
respectively

Then

1. |PW |
|PC |

≥ 1 + |X |
|X |+1

j
ℓ

2. |πC | ∈ O(l(j + ℓ)2|X |m−ℓ+1)

3. |πW | ∈ O((j + ℓ)3|X |m−ℓ+k−j+1)

Conclusion

Final remarks

◮ We introduced a new method to test FSMs

◮ The C-method may be used for:
- incremental testing of FSMs
- retesting modified systems with previously working
implementation

◮ The results indicate that the C-method is scalable: it is
possible to test combined FSM with a large number of states

Future works

◮ Extend the C-method to nondeterministic and partially
specified FSMs.

Questions...

Lehilton Pedrosa (lehilton@gmail.com)

Arnaldo Moura (arnaldo@ic.unicamp.br)

lehilton@gmail.com
arnaldo@ic.unicamp.br

Basic concepts

Extended functions

◮ transition function δ̂ : X ∗ × S → S

◮ output function λ̂ : X ∗ × S → Y ∗

Examples:

◮ δ̂(aabb, s0) = s3

◮ λ̂(aabb, s0) = 1010

s0

s1

s2 s3

a, b/1

b/0a/0

b/1
a/1 a/1

b/1

C-method - Separators

Separators

◮ R ⊂ X ∗, A,B ⊂ S

◮ R is a (A,B)-separator iff for every
r ∈ A, s ∈ B , such that r 6≈ s, we
have s 6≈R r .

Examples:

◮ SN = {s0, s1, s2, s3, s4}

◮ SM = {s5, s6}

◮ R = {aaaa}

◮ R is a (SN ,SM)-separator

◮ R is not a (SN ,SN)-separator

N

s0

s1

s2 s3

s4

s5 s6

a, b/1

b/0a/0

b/1
a/1 a/1

b/1 a/1
a/1

b/1

b/1

a, b/0

C-method - Neighborhood

Neighborhood of states

◮ An auxiliary concept

◮ notation nbh(C , d):
states that can be reached from a

state of C through a word with

length of at most d

Example:

◮ IN = {s0, s4}

◮ nbh(IN , 1) = {s0, s1, s4}

N

s0

s1

s2 s3

s4

s5 s6

a, b/1

b/0a/0

b/1
a/1 a/1

b/1 a/1
a/1

b/1

b/1

a, b/0

C-method - Induced partitions

Partitions induced by a set of words

◮ The equivalence relation ≈R

induces partition over a set of
states C

◮ notation [C�R]: the set of

equivalence classes induced by ≈R

over C

Examples:

◮ SN = {s0, s1, s2, s3, s4}

◮ SM = {s5, s6}

◮ R = {aaaa}

◮ [SN�R] = {{s0}, {s1}, {s2, s3}, {s4}}

◮ [SM�R] = {{s5}, {s6}}

N

s0

s1

s2 s3

s4

s5 s6

a, b/1

b/0a/0

b/1
a/1 a/1

b/1 a/1
a/1

b/1

b/1

a, b/0

C-method - Relative concatenation

Relative concatenation

◮ Each state (or subset of states) is
tested with different test cases

◮ State attribution: B : S → P(X ∗)

◮ notation
A ⊗

s
B = {αβ|α ∈ A, β ∈ B(δ̂(α, s))}

Examples:

◮ SN = {s0, s1, s2, s3, s4}

◮ SM = {s5, s6}

◮ R (SN) = {a}, R (SM) = {b}

◮ A = {a, b, bb}

◮ A ⊗ R = {ab, ba, bba}

N

s0

s1

s2 s3

s4

s5 s6

a, b/1

b/0a/0

b/1
a/1 a/1

b/1 a/1
a/1

b/1

b/1

a, b/0

Comparison example - test suite construction

Using W-method

◮ |S ′| ≤ m = 11

◮ W = {aaaa, bb}

◮ n = |S | = 7

◮ P={εa,b,aa,ab,aaa,aab,ba,bb,
baa,bab,baaa,baab,baba,babb}
.
.
.

◮ Z = X11−7W

◮ π = PZ

π contains 256 prefix-free words

.

.

Using C-method

◮ |S ′

M | ≤ m = 4

◮ R = {aaaa} (SM ∪ IN , SN)-separator

◮ n = |[SM�R]| = 2

◮ P={ε,a,b,aa,ab,aaa,aab,ba,bb}

◮ A = nbh(IN , 4−2−1) = {s0, s1, s4}

◮ T = {aaaa} (A, SN)-separator

◮ R (SN) = R (SM) = R

◮ Z(s) = X4−2R, for every s ∈ S

◮ π = P ⊗ Z

π contains 20 prefix-free words

◮ Additionally, we may test the submachines
with 24 test cases, for a total of 44 words

