University of Campinas - UNICAMP Institute of Computing - IC
 São Paulo - Brazil

A new Method for Incremental Testing of Finite State Machines ${ }^{1}$

Lehilton Lelis Chaves Pedrosa
lehilton.pedrosa@students.ic.unicamp.br

Arnaldo Vieira Moura
arnaldo@ic.unicamp.br

15-april-2010

Testing of Finite State Machines (FSM)

Why test using FSMs?

- Black-box testing
- Detect flaws in specification
- Formal verification of a system's implementations
- May model programs, protocols, hardware, ...

In the literature

- The W-method (Chow 1978)
- Several derivations: Wp-method, HSI-method, G-method, ...

FSMs

Definition

Formally, a FSM M is a tuple

$$
M=\left(X, Y, S, s_{0}, \delta, \lambda\right), \quad \text { where }
$$

- X is the input alphabet,
- Y is the output alphabet,
- S is the set of states,
- $s_{0} \in S$ is the initial state,
- $\delta: X \times S \rightarrow S$ is the state transition function,
- $\lambda: X \times S \rightarrow Y$ is the output function.

Example

Figure: Finite state machines

Comparing FSMs

State equivalence
Given: M (specification) and M^{\prime} (implementation): $a, b / 0$

- $s \approx_{\rho} s^{\prime} \quad$ if $\widehat{\lambda}(\rho, s)=\widehat{\lambda}^{\prime}\left(\rho, s^{\prime}\right)$
- $s \approx_{R} s^{\prime}$ if $\widehat{\lambda}(\rho, s)=\widehat{\lambda}^{\prime}\left(\rho, s^{\prime}\right), \forall \rho \in R$
- $s \approx s^{\prime} \quad$ if $\widehat{\lambda}(\rho, s)=\widehat{\lambda}^{\prime}\left(\rho, s^{\prime}\right), \forall \rho \in X^{*}$

Target: find a set π such that

$$
s_{0} \approx s_{0}^{\prime} \quad \text { iff } \quad s_{0} \approx_{\pi} s_{0}^{\prime}
$$

Examples:

- $s_{0} \approx{ }_{a} r_{0}$
- $s_{0} \not \approx_{b} r_{0}$

- $s_{0} \approx r_{1}$

Review - W-method

Definitions

- n is the number of states in S
- m is an estimated upper bound to the number of states in S^{\prime},
- P is a cover set of S : for each $s \in S$, there exists $\rho \in P$, with $\widehat{\delta}\left(\rho, s_{0}\right)=s$, and $\rho a \in P$, for all $a \in X$
- W is a characterization set of S : for each pair $r, s \in S$, there exists $\rho \in W$, with $r \not \approx{ }_{\rho} s$

Test suite: $\pi=P Z$

- $Z=X_{m-n} W$
- X_{m-n} is the set of input words with length up to $m-n$

Incremental testing

Why incremental testing?

- Current methods are monolithic
- Generated test suites are exponential (depends on the number of states)
- Testing FSMs with a large number of states is impractical
- Retesting modified systems

Main idea

- Break a system model into a set of subsystems
- Test each subsystem (submachine) independently
- Test the integrated system (combined FSM) at low cost

Combined FSM - Definitions

Submachine of $M: \dot{N}=\left(\dot{X}, \dot{Y}, \dot{S}, \dot{s}_{0}, \dot{\delta}, \dot{\lambda}\right)$

- $\dot{X}=X, \quad \dot{Y} \subset Y, \quad \dot{S} \subset S$
- $\dot{\delta}(a, s)=\delta(a, s), \quad \dot{\lambda}(a, s)=\lambda(a, s), \quad$ for every $a \in X$

N-combined FSM

- N is a set of submachines of M
- S_{N} is the set of all submachine states
- $S_{M}=S \backslash S_{N}$ is the set of additional states
- I_{N} as the set of all submachines entry points

Combined FSM - Example

- 7 states in total
- only 2 additional states
- $S_{N}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\}$
- $I_{N}=\left\{s_{0}, s_{4}\right\}$
- $S_{M}=\left\{s_{5}, s_{6}\right\}$

Figure: A combined FSM

Testing combined FSMs

Testing new combined machines

- Each submachine is implemented and tested previously
- Only additional states of the combined FSM need to be tested
- We may test FSMs with a large number of states

Retesting modified specifications

- Only affected submachines need to be retested
- Different combined FSM may share one submachine implementation

A new testing method

The C-method

- Based on the W-method and on the G-method
- Assumes that the specification and the implementation are combined FSMs

Introduction of new concepts

- Cover sets \Rightarrow Partial cover sets:
- cover only a subset of states
- used to test only additional states
- Characterization sets \Rightarrow Separator:
- no need to distinguish every pair of states
- generalizes the characterization sets

C-method - Concepts

Preliminary concepts: basic notion

- A set of input words R is an (A, B)-separator: R can distinguish states of A and B
- Neighborhood $\operatorname{nbh}(C, d)$: states reached from states C using at most d input symbols
- Partition $[C / R]$: the set of equivalence classes induced by \approx_{R} over states C
- Relative concatenation $A \otimes \mathcal{B}$: concatenates sequences according to the state reached from s

C-method - The algorithm

Input:

- M: a N-combined FSM
- m : bound on number of implementation aditional states $\left(S_{M}^{\prime} \leq m\right)$

Algorithm

1. $P \longleftarrow$ obtain a partial cover set P for S_{M}
2. $R \longleftarrow$ obtain a $\left(S_{M} \cup I_{N}, S_{N}\right)$-separator
3. $n \longleftarrow\left|\left[S_{M} / R\right]\right|$
4. $A \longleftarrow \operatorname{nbh}\left(I_{N}, m-n-1\right)$
5. $T \longleftarrow$ obtain a $\left(A, S_{N}\right)$-separator
6. $\mathcal{R}\left(S_{M}\right) \longleftarrow R, \quad \mathcal{R}\left(S_{N}\right) \longleftarrow R \cup T$
7. For each $s \in S, Z(s) \longleftarrow X_{m-n} \underset{s}{\otimes} \mathcal{R}$
8. Return $\pi \longleftarrow P \otimes Z$

Example

Specification and a candidate implementation

Notes

- Specification M is a N-combined FSM
- A candidate implementation M^{\prime} is any N^{\prime}-combined FSM
- An implementation is a black-box, but bounds on the number of states may be estimated: $S_{N}^{\prime} \leq 7, S_{M}^{\prime} \leq 4$

Example - comparison with the W-method

W-method

- Characterization set $W=\{a a a a, b b\}$

C-method

- Smaller separators

$$
R=T=\{a a a a\}
$$

Example - comparison with the W-method

W-method

- Characterization set $W=\{a a a a, b b\}$
- Complete cover set P : test all states

C-method

- Smaller separators $R=T=\{a a a\}$
- Partial cover set P : test only additional states

Example - comparison with the W-method

W-method

- Characterization set $W=\{a a a a, b b\}$
- Complete cover set P : test all states
- Parameters $m=11, n=7$

C-method

- Smaller separators $R=T=\{a a a\}$
- Partial cover set P : test only additional states
- Parameters $m=4, n=2$

Example - comparison with the W-method

W-method

- Characterization set $W=\{a a a a, b b\}$
- Complete cover set P : test all states
- Parameters $m=11, n=7$
- Calculates set X_{11-7}, with 31 words

C-method

- Smaller separators $R=T=\{a a a\}$
- Partial cover set P : test only additional states
- Parameters $m=4, n=2$
- Calculates set X_{4-2}, with 7 words

Example - comparison with the W-method

W-method

- Characterization set $W=\{a a a a, b b\}$
- Complete cover set P : test all states
- Parameters $m=11, n=7$
- Calculates set X_{11-7}, with 31 words
- Test suite $\pi=P Z$, with 256 prefix-free words

C-method

- Smaller separators $R=T=\{$ aaa $\}$
- Partial cover set P : test only additional states
- Parameters $m=4, n=2$
- Calculates set X_{4-2}, with 7 words
- Test suite $\pi=P \otimes Z$, with 20 prefix-free words

Example - comparison with the W-method

W-method

- Characterization set $W=\{a a a a, b b\}$
- Complete cover set P : test all states
- Parameters $m=11, n=7$
- Calculates set X_{11-7}, with 31 words
- Test suite $\pi=P Z$, with 256 prefix-free words

C-method

- Smaller separators $R=T=\{$ aaaa $\}$
- Partial cover set P : test only additional states
- Parameters $m=4, n=2$
- Calculates set X_{4-2}, with 7 words
- Test suite $\pi=P \otimes Z$, with 20 prefix-free words
- Additionally, the submachines may be tested with 24 test cases, for a total of 44 words

Comparison with W-method - Results

Suppose

- $\left|S_{M}\right|=\ell, \quad\left|S_{N}\right|=j, \quad\left|S_{M}^{\prime}\right|=m, \quad\left|S_{N}^{\prime}\right|=k$
- P_{W}, P_{C} : complete and partial cover sets, respectively
- π_{W}, π_{C} : test suites generated by W -method and C-method, respectively

Then

1. $\frac{\left|P_{w}\right|}{\left|P_{C}\right|} \geq 1+\frac{|X|}{|X|+1} \frac{j}{\ell}$
2. $\left|\pi_{C}\right| \in O\left(\iota(j+\ell)^{2}|X|^{m-\ell+1}\right)$
3. $\left|\pi_{W}\right| \in O\left((j+\ell)^{3}|X|^{m-\ell+k-j+1}\right)$

Conclusion

Final remarks

- We introduced a new method to test FSMs
- The C-method may be used for:
- incremental testing of FSMs
- retesting modified systems with previously working implementation
- The results indicate that the C-method is scalable: it is possible to test combined FSM with a large number of states

Future works

- Extend the C-method to nondeterministic and partially specified FSMs.

Questions...

Lehilton Pedrosa (lehilton@gmail.com)
Arnaldo Moura (arnaldo@ic.unicamp.br)

Basic concepts

Extended functions

- transition function $\widehat{\delta}: X^{*} \times S \rightarrow S$
- output function $\widehat{\lambda}: X^{*} \times S \rightarrow Y^{*}$

Examples:

- $\widehat{\delta}\left(a a b b, s_{0}\right)=s_{3}$
- $\widehat{\lambda}\left(a a b b, s_{0}\right)=1010$

C-method - Separators

Separators

- $R \subset X^{*}, \quad A, B \subset S$
- R is a (A, B)-separator iff for every $r \in A, s \in B$, such that $r \not \approx s$, we have $s \not \nsim R_{R} r$.

Examples:

- $S_{N}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\}$
- $S_{M}=\left\{s_{5}, s_{6}\right\}$

- $R=\{a a a a\}$
- R is a $\left(S_{N}, S_{M}\right)$-separator
- R is not a $\left(S_{N}, S_{N}\right)$-separator

C-method - Neighborhood

Neighborhood of states

- An auxiliary concept
- notation nbh (C, d) :
states that can be reached from a state of C through a word with length of at most d

Example:

- $I_{N}=\left\{s_{0}, s_{4}\right\}$
$-\operatorname{nbh}\left(I_{N}, 1\right)=\left\{s_{0}, s_{1}, s_{4}\right\}$

C-method - Induced partitions

Partitions induced by a set of words

- The equivalence relation \approx_{R} induces partition over a set of states C
- notation $[C / R]$: the set of equivalence classes induced by \approx_{R} over C

Examples:

- $S_{N}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\}$
- $S_{M}=\left\{s_{5}, s_{6}\right\}$
- $R=\{a a a a\}$
- $\left[S_{N} / R\right]=\left\{\left\{s_{0}\right\},\left\{s_{1}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{4}\right\}\right\}$
- $\left[S_{M} / R\right]=\left\{\left\{s_{5}\right\},\left\{s_{6}\right\}\right\}$

C-method - Relative concatenation

Relative concatenation

- Each state (or subset of states) is tested with different test cases
- State attribution: $\mathcal{B}: S \rightarrow \mathcal{P}\left(X^{*}\right)$
- notation

$$
\underset{s}{A} \mathcal{B}=\{\alpha \beta \mid \alpha \in A, \beta \in \mathcal{B}(\widehat{\delta}(\alpha, s))\}
$$

Examples:

- $S_{N}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\}$

- $S_{M}=\left\{s_{5}, s_{6}\right\}$
- $\mathcal{R}\left(S_{N}\right)=\{a\}, \quad \mathcal{R}\left(S_{M}\right)=\{b\}$
- $A=\{a, b, b b\}$
- $A \otimes \mathcal{R}=\{a b, b a, b b a\}$

Comparison example - test suite construction

Using W-method

- $\left|S^{\prime}\right| \leq m=11$
- $W=\{a a a a, b b\}$
- $n=|S|=7$
- $P=\{\varepsilon a, b, a a, a b, a a a, a a b, b a, b b$, baa,bab,baaa,baab,baba,babb\}
- $Z=X_{11-7} W$
- $\pi=P Z$ π contains 256 prefix-free words

Using C-method

- $\left|S_{M}^{\prime}\right| \leq m=4$
- $R=\{$ aaaa $\} \quad\left(S_{M} \cup I_{N}, S_{N}\right)$-separator
- $n=\left|\left[S_{M} / R\right]\right|=2$
- $P=\{\varepsilon, a, b, a a, a b, a a a, a a b, b a, b b\}$
- $A=\operatorname{nbh}\left(I_{N}, 4-2-1\right)=\left\{s_{0}, s_{1}, s_{4}\right\}$
- $T=\{$ aaaa $\} \quad\left(A, S_{N}\right)$-separator
- $\mathcal{R}\left(S_{N}\right)=\mathcal{R}\left(S_{M}\right)=R$
- $Z(s)=X_{4-2} R, \quad$ for every $s \in S$
- $\pi=P \otimes Z$
π contains 20 prefix-free words
- Additionally, we may test the submachines with 24 test cases, for a total of 44 words

