
Synthesis of Greedy Algorithms Using Dominance
Relations

Srinivas Nedunuri, William R. Cook
University of Texas at Austin

Douglas R. Smith
Kestrel Institute

April 14, 2010

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 1 / 42

institution-logo

What’s the problem?

There is currently no straightforward process for constructing greedy
algorithms!

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 2 / 42

institution-logo

What’s our solution

We have defined an algorithm class called Greedy Global Search
(GGS) 1

GGS supplies a program schema (template) containing operators
whose semantics is axiomatically defined

Operators must be instantiated by the user (developer) in accordance
with the axioms.

1S. Nedunuri, D.R. Smith, W.R. Cook, “A class of greedy algorithms and its relation
to greedoids”, Submitted to Intl. Colloq. on Theoretical Aspects of Computing, 2010

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 3 / 42

institution-logo

This talk will cover:

How to calculate instantiations for the operators that satisfy the
axioms

Showing the calculation reduces to simple proofs (that could
potentially be automated)

In cases where the calculation is not straightforward we introduce a
tactic that aids in the process

The result is a greedy algorithm that is correct by construction

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 4 / 42

institution-logo

Example: Machine Scheduling

Schedule jobs to minimize sum of completion times

A
B

C
D

E

A B C D E

Jobs

Schedule

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 5 / 42

institution-logo

First specify the problem!

Structure of Specification

An output condition (postcondition), o : D × R → Boolean

A cost function, c : D × R → C

(along with definitions for the types D,R and C)

D 7→ Job� Duration
R 7→ [Job]
o 7→ λ(x , z) · asSet(z) = dom(x)

c 7→ λ(x , z) ·
∑#z

i=1 ct(z , i)

ct(z , i) =
∑i

j=1 x(z[j])

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 6 / 42

institution-logo

GGS solves these problems using search

Takes the solution space (potentially infinite) and partitions it

Each element of the partition is called a subspace, and is recursively
partitioned until a singleton space is encountered, called a solution2

This recursive procedure is implemented by a program schema

Z^_0

subspaces

Extracted Solution

. . .

ẑ0 op constructs
the initial space

l op defines the
subspaces

χ op extracts a
solution (if one
exists)

2based on N. Agin, “Optimum Seeking with Branch and Bound”, Mgmt. Sci. 1966
Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 7 / 42

institution-logo

Step 2: Instantiate the operators for the Scheduling
problem

ẑ0,l, χ
The initial space (ẑ0) is just an empty list

Form a subspace (l) by adding an as yet unscheduled task to the
current partial solution

extract a solution (χ) by just returning the current list

Formal Definitions

ẑ0 7→ λx · []
l 7→ λ(x , ẑ , ẑ ′) · ∃a ∈ x − asSet(ẑ) · ẑ ′ = ẑ++[a]
χ 7→ λ(z , ẑ) · z = ẑ

These are expressed as predicates and not as partial functions to make it
easier to verify they satisfy the axioms

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 8 / 42

institution-logo

Step 2: Instantiate the operators for the Scheduling
problem

ẑ0,l, χ
The initial space (ẑ0) is just an empty list

Form a subspace (l) by adding an as yet unscheduled task to the
current partial solution

extract a solution (χ) by just returning the current list

Formal Definitions

ẑ0 7→ λx · []
l 7→ λ(x , ẑ , ẑ ′) · ∃a ∈ x − asSet(ẑ) · ẑ ′ = ẑ++[a]
χ 7→ λ(z , ẑ) · z = ẑ

These are expressed as predicates and not as partial functions to make it
easier to verify they satisfy the axioms

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 8 / 42

institution-logo

Remember the contract:

If you instantiate the types D,R,C and operators o, c, ẑ0, χ,l
In the program schema

In a way that satisfies the GGS axioms

Then you have a correct program that will solve your problem (meet
the specification)

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 9 / 42

institution-logo

Remember the contract:

If you instantiate the types D,R,C and operators o, c, ẑ0, χ,l
In the program schema

In a way that satisfies the GGS axioms

Then you have a correct program that will solve your problem (meet
the specification)

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 9 / 42

institution-logo

Remember the contract:

If you instantiate the types D,R,C and operators o, c, ẑ0, χ,l
In the program schema

In a way that satisfies the GGS axioms

Then you have a correct program that will solve your problem (meet
the specification)

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 9 / 42

institution-logo

Remember the contract:

If you instantiate the types D,R,C and operators o, c, ẑ0, χ,l
In the program schema

In a way that satisfies the GGS axioms

Then you have a correct program that will solve your problem (meet
the specification)

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 9 / 42

institution-logo

Constraint Satisfaction Problems and the ⊕ operator

We will focus on a class of problems (constraint satisfaction) in which the
search space is split (partitioned) by assigning values to variables

Definition: Partial Solution or Space (ẑ)

An assignment to some of the variables. Can be extended into a
(complete) solution by assigning to all the variables

Let ẑ ⊕ e denote the result of combining a partial solution ẑ with an
extension e using a left-associative operator ⊕
When ẑ ⊕ e is a (feasible) complete solution, e is called the (feasible)
completion of ẑ .

Machine scheduling example

The ⊕ operator is just ẑ ⊕ e = ẑ++e

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 10 / 42

institution-logo

Constraint Satisfaction Problems and the ⊕ operator

We will focus on a class of problems (constraint satisfaction) in which the
search space is split (partitioned) by assigning values to variables

Definition: Partial Solution or Space (ẑ)

An assignment to some of the variables. Can be extended into a
(complete) solution by assigning to all the variables

Let ẑ ⊕ e denote the result of combining a partial solution ẑ with an
extension e using a left-associative operator ⊕
When ẑ ⊕ e is a (feasible) complete solution, e is called the (feasible)
completion of ẑ .

Machine scheduling example

The ⊕ operator is just ẑ ⊕ e = ẑ++e

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 10 / 42

institution-logo

Are we done?

Once the operators are instantiated, we have a program that is
correct, but its not very efficient!

There are several refinements to the search that we can introduce

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 11 / 42

institution-logo

Dominance Relations

What are dominance relations?

Enables the comparison of one partial solution with another to
determine if one of them can be discarded

Given ẑ and ẑ ′ if the best possible solution in ẑ is better than the best
possible solution in ẑ ′ then ẑ ′ can be discarded

Z^ Z^’Dominates?

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 12 / 42

institution-logo

Axioms capture this

A1: Find a δx satisfying:

ẑ δx Z ⇒ (∃z ∈ ẑ , o(x , z), ∀ẑ ′ ∈ Z , ∀z ′ ∈ ẑ ′ · o(x , z ′)⇒ ∧ c(x , z) ≥ c(x , z ′))

If a partial solution ẑ dominates a set of partial solutions Z then: there is
some solution z that can be obtained by extending ẑ which is cheaper than
any solution obtained from any partial solution in Z

A2: Find a z∗ satisfying:

i(x) ∧ (∃z ∈ ŷ · o(x , z))⇒
(∃z∗ · χ(z∗, ŷ) ∧ o(x , z∗) ∧ c(x , z∗) = c∗(ŷ)) ∨ ∃ẑ∗ lx ŷ · ẑ∗ δx ss(ŷ)

An optimal feasible solution z∗ must be extractable from a partial solution
ŷ (that contains any feasible solutions) or a subspace ẑ∗ of ŷ must
dominate all the subspaces of ŷ . ẑ∗ is the greedy choice

There are others but these are ones specific to greedy global search

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 13 / 42

institution-logo

Axioms capture this

A1: Find a δx satisfying:

ẑ δx Z ⇒ (∃z ∈ ẑ , o(x , z), ∀ẑ ′ ∈ Z , ∀z ′ ∈ ẑ ′ · o(x , z ′)⇒ ∧ c(x , z) ≥ c(x , z ′))

If a partial solution ẑ dominates a set of partial solutions Z then: there is
some solution z that can be obtained by extending ẑ which is cheaper than
any solution obtained from any partial solution in Z

A2: Find a z∗ satisfying:

i(x) ∧ (∃z ∈ ŷ · o(x , z))⇒
(∃z∗ · χ(z∗, ŷ) ∧ o(x , z∗) ∧ c(x , z∗) = c∗(ŷ)) ∨ ∃ẑ∗ lx ŷ · ẑ∗ δx ss(ŷ)

An optimal feasible solution z∗ must be extractable from a partial solution
ŷ (that contains any feasible solutions) or a subspace ẑ∗ of ŷ must
dominate all the subspaces of ŷ . ẑ∗ is the greedy choice

There are others but these are ones specific to greedy global search

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 13 / 42

institution-logo

Axioms capture this

A1: Find a δx satisfying:

ẑ δx Z ⇒ (∃z ∈ ẑ , o(x , z), ∀ẑ ′ ∈ Z , ∀z ′ ∈ ẑ ′ · o(x , z ′)⇒ ∧ c(x , z) ≥ c(x , z ′))

If a partial solution ẑ dominates a set of partial solutions Z then: there is
some solution z that can be obtained by extending ẑ which is cheaper than
any solution obtained from any partial solution in Z

A2: Find a z∗ satisfying:

i(x) ∧ (∃z ∈ ŷ · o(x , z))⇒
(∃z∗ · χ(z∗, ŷ) ∧ o(x , z∗) ∧ c(x , z∗) = c∗(ŷ)) ∨ ∃ẑ∗ lx ŷ · ẑ∗ δx ss(ŷ)

An optimal feasible solution z∗ must be extractable from a partial solution
ŷ (that contains any feasible solutions) or a subspace ẑ∗ of ŷ must
dominate all the subspaces of ŷ . ẑ∗ is the greedy choice

There are others but these are ones specific to greedy global search

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 13 / 42

institution-logo

First break A1 down

Dominance can be proven by intersecting two relations called
semi-congruence and extension-dominance

if ẑ is semi-congruent to ẑ ′, then all correct extensions of ẑ ′ are also
correct extensions of ẑ

Semi-congruence tries to push feasibility into a partial solution

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 14 / 42

institution-logo

Step 4: Calculate the Semi-Congruence Condition

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Extension-dominance condition for Scheduling Problem

o(x , ẑ ⊕ e)
= {defn of o applied to a partial soln}
∃z·χ(z,ẑ⊕e)∧o(x,z)

= {defn of χ, o}
∃z · z = ẑ ∧ asSet(z) = dom(x)

= {quantifier elimination}
asSet(ẑ) = dom(x)

= {o(x , ẑ ′ ⊕ e) ie.asSet(ẑ ′) = dom(x)}
asSet(ẑ) = asSet(ẑ ′)

The proofs are intended to be simple enough that an automated theorem
prover (suitably equipped) could carry them out

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 15 / 42

institution-logo

Step 4: Calculate the Semi-Congruence Condition

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Extension-dominance condition for Scheduling Problem

o(x , ẑ ⊕ e)
= {defn of o applied to a partial soln}
∃z·χ(z,ẑ⊕e)∧o(x,z)

= {defn of χ, o}
∃z · z = ẑ ∧ asSet(z) = dom(x)

= {quantifier elimination}
asSet(ẑ) = dom(x)

= {o(x , ẑ ′ ⊕ e) ie.asSet(ẑ ′) = dom(x)}
asSet(ẑ) = asSet(ẑ ′)

The proofs are intended to be simple enough that an automated theorem
prover (suitably equipped) could carry them out

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 15 / 42

institution-logo

Step 4: Calculate the Semi-Congruence Condition

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Extension-dominance condition for Scheduling Problem

o(x , ẑ ⊕ e)
= {defn of o applied to a partial soln}
∃z·χ(z,ẑ⊕e)∧o(x,z)

= {defn of χ, o}
∃z · z = ẑ ∧ asSet(z) = dom(x)

= {quantifier elimination}
asSet(ẑ) = dom(x)

= {o(x , ẑ ′ ⊕ e) ie.asSet(ẑ ′) = dom(x)}
asSet(ẑ) = asSet(ẑ ′)

The proofs are intended to be simple enough that an automated theorem
prover (suitably equipped) could carry them out

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 15 / 42

institution-logo

Step 4: Calculate the Semi-Congruence Condition

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Extension-dominance condition for Scheduling Problem

o(x , ẑ ⊕ e)
= {defn of o applied to a partial soln}
∃z·χ(z,ẑ⊕e)∧o(x,z)

= {defn of χ, o}
∃z · z = ẑ ∧ asSet(z) = dom(x)

= {quantifier elimination}
asSet(ẑ) = dom(x)

= {o(x , ẑ ′ ⊕ e) ie.asSet(ẑ ′) = dom(x)}
asSet(ẑ) = asSet(ẑ ′)

The proofs are intended to be simple enough that an automated theorem
prover (suitably equipped) could carry them out

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 15 / 42

institution-logo

Step 4: Calculate the Semi-Congruence Condition

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Extension-dominance condition for Scheduling Problem

o(x , ẑ ⊕ e)
= {defn of o applied to a partial soln}
∃z·χ(z,ẑ⊕e)∧o(x,z)

= {defn of χ, o}
∃z · z = ẑ ∧ asSet(z) = dom(x)

= {quantifier elimination}
asSet(ẑ) = dom(x)

= {o(x , ẑ ′ ⊕ e) ie.asSet(ẑ ′) = dom(x)}
asSet(ẑ) = asSet(ẑ ′)

The proofs are intended to be simple enough that an automated theorem
prover (suitably equipped) could carry them out

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 15 / 42

institution-logo

Step 4: Calculate the Semi-Congruence Condition

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Extension-dominance condition for Scheduling Problem

o(x , ẑ ⊕ e)
= {defn of o applied to a partial soln}
∃z·χ(z,ẑ⊕e)∧o(x,z)

= {defn of χ, o}
∃z · z = ẑ ∧ asSet(z) = dom(x)

= {quantifier elimination}
asSet(ẑ) = dom(x)

= {o(x , ẑ ′ ⊕ e) ie.asSet(ẑ ′) = dom(x)}
asSet(ẑ) = asSet(ẑ ′)

The proofs are intended to be simple enough that an automated theorem
prover (suitably equipped) could carry them out

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 15 / 42

institution-logo

Step 4: Calculate the Semi-Congruence Condition

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Extension-dominance condition for Scheduling Problem

o(x , ẑ ⊕ e)
= {defn of o applied to a partial soln}
∃z·χ(z,ẑ⊕e)∧o(x,z)

= {defn of χ, o}
∃z · z = ẑ ∧ asSet(z) = dom(x)

= {quantifier elimination}
asSet(ẑ) = dom(x)

= {o(x , ẑ ′ ⊕ e) ie.asSet(ẑ ′) = dom(x)}
asSet(ẑ) = asSet(ẑ ′)

The proofs are intended to be simple enough that an automated theorem
prover (suitably equipped) could carry them out

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 15 / 42

institution-logo

Step 4 (contd)

For the extension-dominance condition, turns out its sufficient to
determine when ĉ(x , ẑ) ≤ ĉ(x , ẑ ′)

However, if we try to calculate such a condition as we have done for
semi-congruence we will end up with an expression that involves the

values of individual task task times

Is there a simpler form?

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 16 / 42

institution-logo

Introducing.. Exchange Tactic

Tactics provide hints to the developer about where to begin based on
the shape of the formula

Analogous in intent to tactics used in integration eg. “integration by
parts”, “integration by partial fractions”, “integration by change of
variable”, etc.

Try to derive a dominance relation by comparing a partial solution ŷ⊕a⊕α⊕
b to a variant obtained by exchanging a pair of terms, that is, ŷ ⊕b⊕α⊕ a

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 17 / 42

institution-logo

Back to Step 4: Apply the tactic and calculate

S TPartial Sched z^

ST...Partial Sched z^’

Extension-dominance condition for Scheduling Problem

c(x , ẑ) ≤ c(x , ẑ ′)
= {unfold defn of c}∑m

i=1 ct(ẑ , i) + ct(ẑ , a) + ct(ẑ , a + 1...b − 1) + ct(ẑ , b) +
∑n

i=b+1 ct(ẑ , i)
≤∑m

i=1 ct(ẑ ′, i) + ct(ẑ ′, a) + ct(ẑ ′, a + 1...b − 1) + ct(ẑ ′, b) +
∑n

i=b+1 ct(ẑ ′, i)

= {unfold defn of ct}
· · ·

= {use that ẑ(i) = ẑ ′(i) for all i 6= a, b & some simple algebra}
x(ẑa) ≤ x(ẑb)

That is, ath job before bth job is better than bth job before ath job if the
duration of the ath job is less than the duration of the bth job

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 18 / 42

institution-logo

Back to Step 4: Apply the tactic and calculate

S TPartial Sched z^

ST...Partial Sched z^’

Extension-dominance condition for Scheduling Problem

c(x , ẑ) ≤ c(x , ẑ ′)
= {unfold defn of c}∑m

i=1 ct(ẑ , i) + ct(ẑ , a) + ct(ẑ , a + 1...b − 1) + ct(ẑ , b) +
∑n

i=b+1 ct(ẑ , i)
≤∑m

i=1 ct(ẑ ′, i) + ct(ẑ ′, a) + ct(ẑ ′, a + 1...b − 1) + ct(ẑ ′, b) +
∑n

i=b+1 ct(ẑ ′, i)

= {unfold defn of ct}
· · ·

= {use that ẑ(i) = ẑ ′(i) for all i 6= a, b & some simple algebra}
x(ẑa) ≤ x(ẑb)

That is, ath job before bth job is better than bth job before ath job if the
duration of the ath job is less than the duration of the bth job

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 18 / 42

institution-logo

Back to Step 4: Apply the tactic and calculate

S TPartial Sched z^

ST...Partial Sched z^’

Extension-dominance condition for Scheduling Problem

c(x , ẑ) ≤ c(x , ẑ ′)
= {unfold defn of c}∑m

i=1 ct(ẑ , i) + ct(ẑ , a) + ct(ẑ , a + 1...b − 1) + ct(ẑ , b) +
∑n

i=b+1 ct(ẑ , i)
≤∑m

i=1 ct(ẑ ′, i) + ct(ẑ ′, a) + ct(ẑ ′, a + 1...b − 1) + ct(ẑ ′, b) +
∑n

i=b+1 ct(ẑ ′, i)

= {unfold defn of ct}
· · ·

= {use that ẑ(i) = ẑ ′(i) for all i 6= a, b & some simple algebra}
x(ẑa) ≤ x(ẑb)

That is, ath job before bth job is better than bth job before ath job if the
duration of the ath job is less than the duration of the bth job

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 18 / 42

institution-logo

Back to Step 4: Apply the tactic and calculate

S TPartial Sched z^

ST...Partial Sched z^’

Extension-dominance condition for Scheduling Problem

c(x , ẑ) ≤ c(x , ẑ ′)
= {unfold defn of c}∑m

i=1 ct(ẑ , i) + ct(ẑ , a) + ct(ẑ , a + 1...b − 1) + ct(ẑ , b) +
∑n

i=b+1 ct(ẑ , i)
≤∑m

i=1 ct(ẑ ′, i) + ct(ẑ ′, a) + ct(ẑ ′, a + 1...b − 1) + ct(ẑ ′, b) +
∑n

i=b+1 ct(ẑ ′, i)

= {unfold defn of ct}
· · ·

= {use that ẑ(i) = ẑ ′(i) for all i 6= a, b & some simple algebra}
x(ẑa) ≤ x(ẑb)

That is, ath job before bth job is better than bth job before ath job if the
duration of the ath job is less than the duration of the bth job

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 18 / 42

institution-logo

Back to Step 4: Apply the tactic and calculate

S TPartial Sched z^

ST...Partial Sched z^’

Extension-dominance condition for Scheduling Problem

c(x , ẑ) ≤ c(x , ẑ ′)
= {unfold defn of c}∑m

i=1 ct(ẑ , i) + ct(ẑ , a) + ct(ẑ , a + 1...b − 1) + ct(ẑ , b) +
∑n

i=b+1 ct(ẑ , i)
≤∑m

i=1 ct(ẑ ′, i) + ct(ẑ ′, a) + ct(ẑ ′, a + 1...b − 1) + ct(ẑ ′, b) +
∑n

i=b+1 ct(ẑ ′, i)

= {unfold defn of ct}
· · ·

= {use that ẑ(i) = ẑ ′(i) for all i 6= a, b & some simple algebra}
x(ẑa) ≤ x(ẑb)

That is, ath job before bth job is better than bth job before ath job if the
duration of the ath job is less than the duration of the bth job

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 18 / 42

institution-logo

Back to Step 4: Apply the tactic and calculate

S TPartial Sched z^

ST...Partial Sched z^’

Extension-dominance condition for Scheduling Problem

c(x , ẑ) ≤ c(x , ẑ ′)
= {unfold defn of c}∑m

i=1 ct(ẑ , i) + ct(ẑ , a) + ct(ẑ , a + 1...b − 1) + ct(ẑ , b) +
∑n

i=b+1 ct(ẑ , i)
≤∑m

i=1 ct(ẑ ′, i) + ct(ẑ ′, a) + ct(ẑ ′, a + 1...b − 1) + ct(ẑ ′, b) +
∑n

i=b+1 ct(ẑ ′, i)

= {unfold defn of ct}
· · ·

= {use that ẑ(i) = ẑ ′(i) for all i 6= a, b & some simple algebra}
x(ẑa) ≤ x(ẑb)

That is, ath job before bth job is better than bth job before ath job if the
duration of the ath job is less than the duration of the bth job

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 18 / 42

institution-logo

And finally

By using the tactic we got an expression that a theorem prover
(suitably equipped with a basic algebra) could simplify

By combining semi-congruence and extension-dominance, we have
verified Axiom A1

A similar process for constructively verifying A2 gives us that the
greedy choice (ẑ∗) is the task with the shortest processing time

This is the well-known Shortest Processing Time rule discovered by
W.E. Smith in 1956.

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 19 / 42

institution-logo

Another Example: Huffman Encoding

Example Input

Character Frequency

a 45,000

b 13,000

c 12,000

d 16,000

e 9,000

f 5,000

Example Output

Character Codeword

a 0

b 101

c 100

d 111

e 1101

f 1100

David Huffman devised a greeedy algorithm for this in 19523 (still used as
the backend of data compression programs)

3D.A. Huffman, ”A Method for the Construction of Minimum-Redundancy Codes”,
Proceedings of the I.R.E., September 1952

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 20 / 42

institution-logo

Step 1: specify the problem

Example: Huffman Encoding

D 7→ Char � Frequency
R 7→ Char � [Bit]
o 7→ λx , z · dom(z) = dom(x)

∧∀c 6= c ′ ∈ dom(z) · ¬prefixOf (z(c), z(c ′))
prefixOf (s, t) = ∃u · t = s++u ∨ s = t++u

c 7→ λx , z ·
∑

i∈dom(z) x(i) � ‖z(i)‖

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 21 / 42

institution-logo

Step 2: Instantiate the operators

R̂ , ẑ0,l, χ
A good way of ensuring a condition is to fold it into a data structure

the rules for constructing that data structure ensure that the condition
is automatically satisfied.
a binary tree in which the leaves are the letters, and the path from the
root to the leaf provides the code for that letter, ensures that the
resulting codes are automatically prefix-free
this gives us a type for partial solutions R̂ which is different from R

Initial config (ẑ0) is the ordered collection of leaves representing the
letters

Extract (χ) checks there is only one tree left and generates the path
to each leaf

Form a subspace (l) by merging together two trees

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 22 / 42

institution-logo

Formally:

R̂ 7→ [BinTree]
ẑ0 7→ λx · asList(dom(x))
l 7→ λ(x , ẑ , ẑ ′) · ∃s, t ∈ ẑ . ẑ ′ = [〈s, t〉 | (ẑ − s − t)]
χ 7→ λ(z , ẑ) · ‖ẑ‖ = 1 ∧ ∀p ∈ paths(ẑ) · z(last(p)) = first(p)

paths(〈s, t〉) = (map prefix0 paths(s))++(map prefix1 paths(t))
paths(l) = [l]
prefix0(p) = [0 | p], prefix1(p) = [1 | p]

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 23 / 42

institution-logo

Step 3: What should the ⊕ operator look like for Huffman?

Should be of type [BinTree]× T → [BinTree], for some T

Seems natural that T should somehow specify which trees in its left
argument to merge

⇒: ẑ ⊕ (i , j) = [〈ẑi , ẑj〉 | ẑ − ẑi − ẑj]

Example: merge s and t, merge u and v

s
w

t

Extension, e

Partial
solution

[s,w,t,u,v] u
v

a
c

b

Described by the expression (ẑ ⊕ (1, 3))⊕ (3, 4) = ẑ ⊕ (1, 3)⊕ (3, 4).
Extension is (1, 3)⊕ (3, 4).

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 24 / 42

institution-logo

Step 4: Calculate the dominance relation

Semi-congruence is straightforward as it was in the Scheduling
problem: ẑ semi-congruent to ẑ ′ if ‖ẑ‖ = ‖ẑ ′‖.
But if we try to calculate the extension-dominance condition the same
way we end up with an expression that involves the depths of
individual leaves in the trees.

Use the tactic again..

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 25 / 42

institution-logo

The Exchange tactic applied

Given a partial solution ŷ , suppose trees s and t are merged first, and at
some later point the tree containing s and t is merged with a tree formed
from merging u and v (tree satcubv), forming a partial solution ẑ .

s
w

t

Extension, e

Partial
solution

[s,w,t,u,v] u
v

a
c

b

Applying the exchange tactic, when is this better than a partial solution ẑ ′

resulting from swapping the mergers in ẑ , ie merging u and v first and
then s and t?

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 26 / 42

institution-logo

Back to Step 4: Now calculate

h = depth of s (resp. u) from the grandparent of u (resp. s) in ẑ (resp ẑ ′)

s
w

t

Extension, e

Partial
solution

[s,w,t,u,v] u
v

a
c

b

Calculate the extension- dominance condition for Huffman
c(ẑ) ≤ c(ẑ ′)

= {unfold defn of c as before}
· · ·

⇐ {algebra}∑|lvs(s)|
i=1 x(lvs(s)i) +

∑|lvs(t)|
i=1 x(lvs(t)i) ≤

∑|lvs(u)|
i=1 x(lvs(u)) +

∑|lvs(v)|
i=1 x(lvs(v)i)

∧h > 2

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 27 / 42

institution-logo

Phew! Almost There

Using a very similar technique to what we just did, we can
constructively verify Axiom A2

We will find that the greedy choice (ẑ∗) is just the pair of trees whose
sums of letter frequencies is the least.

This is the same criterion used by Huffman’s algorithm. Of course, for
efficiency, in the standard algorithm, the sums are maintained at the
roots of the trees as the algorithm progresses. We would
automatically arrive at a similar procedure after applying finite
differencing transforms

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 28 / 42

institution-logo

Summary & Conclusions

Have shown how to calculate instantiations for the dominance reln

Introduced a tactic (Exchange) for when things are not so obvious

Have used this approach to synthesize other greedy algorithms (MST,
Prof. Midas’ Driving Problem, etc)

Program synthesis is an effective way of generating efficient code that
is correct-by-construction

May be of value to the verification community?

Instead of calculating, operators are written down by inspection and
then verified
Verifying a small number of definitions is easier than verifying a
complete program. (Introduction to Algorithms4 devotes about 7 pages
to explaining the Huffman problem and proving the algorithm correct!)

The End!

4Cormen et. al, pp. 385-392, 2001
Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 29 / 42

institution-logo

Summary & Conclusions

Have shown how to calculate instantiations for the dominance reln

Introduced a tactic (Exchange) for when things are not so obvious

Have used this approach to synthesize other greedy algorithms (MST,
Prof. Midas’ Driving Problem, etc)

Program synthesis is an effective way of generating efficient code that
is correct-by-construction

May be of value to the verification community?

Instead of calculating, operators are written down by inspection and
then verified
Verifying a small number of definitions is easier than verifying a
complete program. (Introduction to Algorithms4 devotes about 7 pages
to explaining the Huffman problem and proving the algorithm correct!)

The End!

4Cormen et. al, pp. 385-392, 2001
Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 29 / 42

institution-logo

Our approach to program synthesis

Given: a pre/post condition specification of the problem

Synthesize: an efficient algorithm

Using: An off-the-shelf Algorithm Theory

..And: calculation of program components

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 30 / 42

institution-logo

The Greedy Global Search (GGS) algorithm class

Supplies a program schema (template) containing operators whose
semantics is axiomatically defined

Operators must be instantiated by the user (developer) in accordance
with the axioms.

Two kinds of operators: the basic space-forming ones and a more
advanced one which carries out the greedy choice

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 31 / 42

institution-logo

Program Schema for the GGS class

--given x:D returns optimal (wrt. c) z:R satisfying o(x,z)

function solve :: D -> {R}

solve x = gsolve x ẑ0(x) {}

function gsolve :: D -> {R̂} -> {R} -> {R}

gsolve x space soln =

let gsubs = {s | s∈subspaces x space

∧ ∀ss ∈ subspaces x space,s δx ss}

soln’ = opt c (soln ∪ {z | χ(z,space) ∧ o(x,z)})

in if gsubs = {} then soln’

else let greedy = arbPick gsubs in gsolve x greedy soln’

function subspaces :: D -> R̂-> {R̂}

subspaces x r̂ = {ŝ: ŝlx r̂}

function opt :: ((D,R) -> C) -> {R̂}-> {R̂}

opt c {s} = {s}

opt c {s,t} = if c(x,s)>c(x,t) then {s} else {t}

The program schema is not synthesized by the developer!

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 32 / 42

institution-logo

Program Schema for the GGS class

--given x:D returns optimal (wrt. c) z:R satisfying o(x,z)

function solve :: D -> {R}

solve x = gsolve x ẑ0(x) {}

function gsolve :: D -> {R̂} -> {R} -> {R}

gsolve x space soln =

let gsubs = {s | s∈subspaces x space

∧ ∀ss ∈ subspaces x space,s δx ss}

soln’ = opt c (soln ∪ {z | χ(z,space) ∧ o(x,z)})

in if gsubs = {} then soln’

else let greedy = arbPick gsubs in gsolve x greedy soln’

function subspaces :: D -> R̂-> {R̂}

subspaces x r̂ = {ŝ: ŝlx r̂}

function opt :: ((D,R) -> C) -> {R̂}-> {R̂}

opt c {s} = {s}

opt c {s,t} = if c(x,s)>c(x,t) then {s} else {t}

The program schema is not synthesized by the developer!

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 32 / 42

institution-logo

Running Example : Optimum Prefix-Free Codes

Devise an encoding, as a binary string, for each of the characters
in a given text file so as to minimize the overall size of the file.
For ease of decoding, the code is required to be prefix-free, that
is no encoding of a character is the prefix of the encoding of
another character (e.g. assigning “0” to ’a’ and “01” to ’b’ would
not be allowed).

David Huffman devised a greeedy algorithm for this in 19525 (still
used as the backend of image compression programs)

Introduction to Algorithms (Cormen et. al, 2001) devotes about 5
pages to explaining the algorithm and proving its correctness

5D.A. Huffman, ”A Method for the Construction of Minimum-Redundancy Codes”,
Proceedings of the I.R.E., September 1952

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 33 / 42

institution-logo

Running Example : Optimum Prefix-Free Codes

Devise an encoding, as a binary string, for each of the characters
in a given text file so as to minimize the overall size of the file.
For ease of decoding, the code is required to be prefix-free, that
is no encoding of a character is the prefix of the encoding of
another character (e.g. assigning “0” to ’a’ and “01” to ’b’ would
not be allowed).

David Huffman devised a greeedy algorithm for this in 19525 (still
used as the backend of image compression programs)

Introduction to Algorithms (Cormen et. al, 2001) devotes about 5
pages to explaining the algorithm and proving its correctness

5D.A. Huffman, ”A Method for the Construction of Minimum-Redundancy Codes”,
Proceedings of the I.R.E., September 1952

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 33 / 42

institution-logo

The operators to be instantiated

Operator Type Description

ẑ0 D→ R̂ forms the initial space (root node)

χ D × R̂ → Bool can the given solution can be extracted from

the given partial solution?

l D × R̂ × R̂ → Bool is the 1st space a subspace of the 2nd?

δx D × R̂ × R̂ → Bool does the 1st subspace dominate the 2nd?

The first 3 can usually be written down by inspection of the problem, and
subsequently verified that they satisfy the axioms.

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 34 / 42

institution-logo

What axioms?

A1. i(x) ∧ o(x , z)⇒ z ∈ ẑ0(x)
A2. i(x)⇒ (z ∈ ŷ ⇔ ∃ẑ · ẑ l∗x ŷ ∧ χ(z, ẑ))
A3. ẑ δx Z ⇒ (∃z ∈ ẑ, o(x , z), ∀ẑ ′ ∈ Z ,∀z ′ ∈ ẑ ′ · o(x , z ′)⇒ ∧ c(x , z) ≥ c(x , z ′))
A4. i(x) ∧ (∃z ∈ ŷ · o(x , z))⇒

(∃z∗ · χ(z∗, ŷ) ∧ o(x , z∗) ∧ c(x , z∗) = c∗(ŷ)) ∨ ∃ẑ∗ lx ŷ · ẑ∗ δx ss(ŷ)

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 35 / 42

institution-logo

Semi-Congruence and Extension-Dominance

Definition: Semi-Congruence

is a relation x ⊆ R̂2 such that

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Informally, if ẑ is semi-congruent with ẑ ′ then any feasible completion of ẑ ′

is a feasible completion of ẑ .
Then we need to say something about when one space is “better” than
another.

Definition: Extension-Dominance

is a relation δ̂x ⊆ R̂2 such that

∀e, ẑ, ẑ ′ · ẑ δ̂x ẑ ′ ⇒ o(ẑ ⊕ e) ∧ o(ẑ ′ ⊕ e)⇒ c(ẑ ⊕ e) ≤ c(ẑ ′ ⊕ e)

If ẑ weakly dominates ẑ ′, then any feasible completion of ẑ is at least as
good as the same feasible completion of ẑ ′

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 36 / 42

institution-logo

Semi-Congruence and Extension-Dominance

Definition: Semi-Congruence

is a relation x ⊆ R̂2 such that

∀e, ẑ, ẑ ′ · ẑ x ẑ ′ ⇒ o(ẑ ′ ⊕ e)⇒ o(ẑ ⊕ e)

Informally, if ẑ is semi-congruent with ẑ ′ then any feasible completion of ẑ ′

is a feasible completion of ẑ .
Then we need to say something about when one space is “better” than
another.

Definition: Extension-Dominance

is a relation δ̂x ⊆ R̂2 such that

∀e, ẑ, ẑ ′ · ẑ δ̂x ẑ ′ ⇒ o(ẑ ⊕ e) ∧ o(ẑ ′ ⊕ e)⇒ c(ẑ ⊕ e) ≤ c(ẑ ′ ⊕ e)

If ẑ weakly dominates ẑ ′, then any feasible completion of ẑ is at least as
good as the same feasible completion of ẑ ′

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 36 / 42

institution-logo

Dominance Relations (contd.)

To get a dominance test, combine the two

Theorem (Dominance)

∀ẑ , ẑ ′ · ẑ δ̂x ẑ ′ ∧ ẑ ẑ ′ ⇒ c∗(ẑ) ≤ c∗(ẑ ′)

ie., if ẑ is semi-congruent with ẑ ′ and ẑ extension-dominates ẑ ′ then the
cost of the best solution in ẑ at least as good as the best solution in ẑ ′

When c∗(ẑ) ≤ c∗(ẑ ′) we say ẑ dominates ẑ ′, written ẑ δx ẑ ′

A quick and dirty way to get an extension-dominance condition:

Theorem (Cost Distribution)

If c distributes over ⊕ and c(ẑ) ≤ c(ẑ ′) then ẑ δ̂x ẑ ′

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 37 / 42

institution-logo

Dominance Relations (contd.)

To get a dominance test, combine the two

Theorem (Dominance)

∀ẑ , ẑ ′ · ẑ δ̂x ẑ ′ ∧ ẑ ẑ ′ ⇒ c∗(ẑ) ≤ c∗(ẑ ′)

ie., if ẑ is semi-congruent with ẑ ′ and ẑ extension-dominates ẑ ′ then the
cost of the best solution in ẑ at least as good as the best solution in ẑ ′

When c∗(ẑ) ≤ c∗(ẑ ′) we say ẑ dominates ẑ ′, written ẑ δx ẑ ′

A quick and dirty way to get an extension-dominance condition:

Theorem (Cost Distribution)

If c distributes over ⊕ and c(ẑ) ≤ c(ẑ ′) then ẑ δ̂x ẑ ′

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 37 / 42

institution-logo

Back to Step 4: Apply the tactic and calculate

Extension-dominance condition for Scheduling Problem

Now we can derive the extension-dominance condition (m is |dom(z .f)|):
c(z) ≤ c(z ′)

= {unfold defn of c}∑m
i=1 ct(z, i) + ct(z, a) + ct(z, a + 1...b − 1) + ct(z, b) +

∑n
i=b+1 ct(z, i)

≤∑m
i=1 ct(z ′, i) + ct(z ′, a) + ct(z ′, a + 1...b − 1) + ct(z,′ b) +

∑n
i=b+1 ct(z ′, i)

= {unfold defn of ct}∑m
i=1

∑i
j=1x x(zj) +

∑a−1
j=1 x(zj) + x(za) + ct(z, a + 1...b − 1)

+(
∑a−1

j=1 x(zj) + s.p +
∑b−1

j=a+1 x(zj) + x(zb) +
∑n

i=b+1 ct(z, i)

≤∑m
i=1

∑i
j=1 x(z ′j) +

∑a−1
j=1 x(z ′j) + x(zb) + ct(z ′, a + 1...b − 1)

+(
∑a−1

j=1 x(z ′j) + t.p +
∑b−1

j=a+1 x(z ′j)) + x(za) +
∑n

i=b+1 ct(z ′, i)

= {algebra and z.i = z ′.i , i 6= a, b}
2(x(zs)) + x(zb) ≤ 2(x(zb)) + x(za)

=
x(za) ≤ x(zb)

That is, ??? is better than ??? if the duration of the ath task is less than
the duration of the bth task

Thanks to the tactic, the proof has been reduced to something simple
enough that a theorem prover (suitably equipped with a basic algebra)
could solve

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 38 / 42

institution-logo

Back to Step 4: Apply the tactic and calculate

Extension-dominance condition for Scheduling Problem

Now we can derive the extension-dominance condition (m is |dom(z .f)|):
c(z) ≤ c(z ′)

= {unfold defn of c}∑m
i=1 ct(z, i) + ct(z, a) + ct(z, a + 1...b − 1) + ct(z, b) +

∑n
i=b+1 ct(z, i)

≤∑m
i=1 ct(z ′, i) + ct(z ′, a) + ct(z ′, a + 1...b − 1) + ct(z,′ b) +

∑n
i=b+1 ct(z ′, i)

= {unfold defn of ct}∑m
i=1

∑i
j=1x x(zj) +

∑a−1
j=1 x(zj) + x(za) + ct(z, a + 1...b − 1)

+(
∑a−1

j=1 x(zj) + s.p +
∑b−1

j=a+1 x(zj) + x(zb) +
∑n

i=b+1 ct(z, i)

≤∑m
i=1

∑i
j=1 x(z ′j) +

∑a−1
j=1 x(z ′j) + x(zb) + ct(z ′, a + 1...b − 1)

+(
∑a−1

j=1 x(z ′j) + t.p +
∑b−1

j=a+1 x(z ′j)) + x(za) +
∑n

i=b+1 ct(z ′, i)

= {algebra and z.i = z ′.i , i 6= a, b}
2(x(zs)) + x(zb) ≤ 2(x(zb)) + x(za)

=
x(za) ≤ x(zb)

That is, ??? is better than ??? if the duration of the ath task is less than
the duration of the bth task

Thanks to the tactic, the proof has been reduced to something simple
enough that a theorem prover (suitably equipped with a basic algebra)
could solve

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 38 / 42

institution-logo

XXX

Semi-congruence condition for Scheduling

o(x , ẑ ⊕ e)

= {push o up into the partial solution R̂}
∃z · χ(z , ẑ ⊕ e) ∧ o(x , z)
= {defn of χ, o}
∃z · z = ẑ ∧ asSet(z) = dom(x)
= {quantifier elimination}
asSet(ẑ) = dom(x)
= {o(x , ẑ ′ ⊕ e) ie.asSet(ẑ ′) = dom(x)}
asSet(ẑ) = asSet(ẑ ′)

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 39 / 42

institution-logo

Step 4: Calculate the semi-congruence relation

We can do this straightforwardly as we did for the Scheduling problem.
The result is ‖ẑ‖ = ‖ẑ ′‖

Calculate the semi-congruence condition for Huffman

o(x , ẑ ⊕ e)

= {lift o up to R̂}
∃z · χ(z, ẑ ⊕ e) ∧ o(x , z)
= {defn of χ, o}
∃z · ‖ẑ ⊕ e‖ = 1 ∧ ∀p ∈ paths(ẑ ⊕ e) · z(last(p)) = first(p) ∧ dom(z) = x ∧ · · ·
= {intro defn}
‖ẑ ⊕ e‖ = 1 ∧ dom(z) = x ∧ · · ·
where z = {last(p) 7→ first(p) | p ∈ paths(ẑ ⊕ e)}
⇐ {o(x , ẑ ′ ⊕ e)⇒ dom(z ′) = x where z = {last(p) 7→ first(p) | p ∈ paths(ẑ ′ ⊕ e)}}
‖ẑ ⊕ e‖ = 1 ∧ asSet(lvs(ẑ)) = asSet(lvs(ẑ ′))
= {split does not alter set of leaves}
‖ẑ ⊕ e‖ = 1
= {‖ẑ ⊕ e‖ = ‖ẑ‖ − ‖e‖ , ‖ẑ ′ ⊕ e‖ = 1}
‖ẑ‖ = ‖ẑ ′‖

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 40 / 42

institution-logo

Back to Step 4: Apply the tactic and theorem

d(T)i = depth of leaf i in a tree T

h = depth of s (resp. u) from the grandparent of u (resp. s) in ẑ
(resp ẑ ′)

Calculate the extension- dominance condition for Huffman
c(ẑ) ≤ c(ẑ ′)

= {unfold defn of c}∑|lvs(s)|
i=1 (d(s)(i) + h) · x(lvs(s)i) +

∑|lvs(t)|
i=1 (d(t)(i) + h) · x(lvs(t)i)

+
∑|lvs(u)|

i=1 (d(u)(i) + 2) · x(lvs(u)i) +
∑|lvs(v)|

i=1 (d(v)(i) + 2) · x(lvs(v)i)
≤∑|lvs(u)|

i=1 (d(u)(i) + h) · x(lvs(u)i) +
∑|lvs(v)|

i=1 (d(v)(i) + h) · x(lvs(v)i)

+
∑|lvs(s)|

i=1 (d(s)(i) + 2) · x(lvs(s)i) +
∑|lvs(t)|

i=1 (d(t)(i) + 2) · x(lvs(t)i)
= {algebra}

(h − 2) ·
∑|lvs(s)|

i=1 x(lvs(s)i) + (h − 2) ·
∑|lvs(t)|

i=1 x(lvs(t)i)

≤ (h − 2) ·
∑|lvs(u)|

i=1 x(lvs(u)i) + (h − 2) ·
∑|lvs(v)|

i=1 x(lvs(v)i)
⇐ {algebra}∑|lvs(s)|

i=1 x(lvs(s)i) +
∑|lvs(t)|

i=1 x(lvs(t)i) ≤
∑|lvs(u)|

i=1 x(lvs(u)) +
∑|lvs(v)|

i=1 x(lvs(v)i)
∧h > 2

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 41 / 42

institution-logo

So how does this help?

How does this help us derive a dominance relation between two subspaces
after a split of a space (e.g. [〈s, t〉 | (ŷ − s − t)] and [〈u, v〉 | (ŷ − u − v)])
? The following theorem shows that the above condition serves as a
dominance relation between the two subspaces

Theorem

Given a GGS theory for a constraint satisfaction problem,
(∃α · (ŷ ⊕ a⊕ α⊕ b) δx (ŷ ⊕ b ⊕ α⊕ a))⇒ ŷ ⊕ a δx ŷ ⊕ b

Nedunuri,Cook,Smith () 2nd NASA Formal Methods Symposium April 14, 2010 42 / 42

