

Using Integer Clocks to Verify
Timing-Sync Sensor Network Protocol

Xiaowan Huang, Anu Singh, Scott Smolka
Stony Brook University

Introduction
 Goal

 Model check the TPSN protocol.
 Tool

 The Uppaal model checker for real-time systems
modeled as networks of timed automata.

 Problem
 Constraints of clocks in timed automata: a clock can

only be assigned a constant value.
 Requirement of arithmetic operations of clock values

in the TPSN protocol.

TPSN Protocol
 To provide network-wide time synchronization in a

wireless sensor network.

 Two steps
 Level-Discovering: Establish a hierachical structure in

the network.
 Synchronization: Perform pair wise synchronization

along the edges of this structure.
 Result

 All nodes in the network synchronize their clock with a
reference node (the root).

Level-Discovering Phase

 Assign the root node level 0.
 The root broadcasts a level_discovery packet

carrying its identity and level information to its
immediate neighbors.

 The immediate neighbors of the root receive
this packet and assign themselves a level,
one greater than the level they have received.

 Repeat the process until every node in the
network is assigned a level.

Synchronization Phase

A

B T3

T4T1

T2

Two way messge exchange between a child (A) and its
parent (B)

synchronization
_pulse acknowledgement

T2 and T3 are measured in
B's clock

T1 and T4 are measured in
A's clock

Synchronization Phase(2)

 Let Δ be the clock drift between A and B.

 Let d be the propagation delay.
 Assume Δ and d do not change in a short time

span.


 A performs clock adjustment: t = t + Δ

T2 - T1 = d + Δ (1)
T4 - T3 = d - Δ (2)
 ==> Δ = ((T2-T4)-(T1-T3))/2

The Uppaal Model Checker

 An integrated tool for specification, simulation and
verification of real-time systems.

 Input of Uppaal: the XTA (eXtended Timed
Automata) format.

 Clocks in Uppaal:
 Can only be assigned an integer expression
 Can only be compared with an integer expression or

another clock
 Clocks can not be read
 Clocks can not advance by an arbitrary amount

Integer Clock

 To make clocks readable: use integer
variables
 typedef int intclock;

 To make clocks advance periodically: use a
Unviserval Pulse Generator (UPG) process to
broadcast a time_pulse signal to all processes
in the system.

The UPG Process

broadcast chan time_pulse;
process universal_pulse_generator()
{
 clock t;
 state S {t <= 1};
 init S;
 trans
 S -> S { guard t == 1;
 sync time_pulse!;
 assign t = 0; };
}

Integer Clock User

 Processes deploying integer clocks.
 For every state and every integer clock, the

integer clock user process must specify a
transition that responds to the time_pulse
event (to advance the integer clock).

 Drawbacks: an increase in model complexity,
but the code to implement integer clocks is
straightforward.

Integer Clock User
chan AtoB;
meta int msg;
process A()
{
 const int wait = 3;
 meta intclock x;
 state INIT, SENT;
 init INIT;
 trans
 INIT->INIT { sync time_pulse?; assign x=x+1; },
 SENT->SENT { sync time_pulse?; assign x=x+1; },
 INIT->SENT { guard x >= wait;
 sync AtoB!; assign msg=x; };
}

Modeling TPSN

 Three Uppaal states are used for level-
discovery phase and four are used for
synchronization phase.

 Additional features
 Time Drift and Resynchronization: node's clock

has drifts from ideal clock. The whole network
need to be resynchronized periodically before
nodes' clocks diverge too much from the root.

 Node dying/reviving.

Simulation Result

Verification Result

 No Deadlock:
A[] not deadlock

 Synchronized:
A[](<>ni.state == synchronized)

 Relative Time Bounded:
A[] abs(ni.local_clock–n0.local_clock)< X

 Relative Time Close:
A[](<>abs(ni.local_clock– n0.local_clock)<Y)

Verification Result (2)

Size of
Network

No Deadlock Synchronized Relative Time
Bounded

Relative Time
Close

3 0.61sec /
21MB

2.06 sec /
24 MB

0.62 sec /
21 MB

 2.11 sec /
24 MB

4 6.5 sec /
22MB

68.0 sec /
31 MB

6.7 sec /
22 MB

70.2 sec /
 31 MB

5 6.1 min /
126 MB

214.9 min /
181 MB

6.3 sec /
126 MB

236.4 min /
181 MB

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

