Using Integer Clocks to Verify
Timing-Sync Sensor Network Protocol

Xiaowan Huang, Anu Singh, Scott Smolka
Stony Brook University

Introduction

= Goal

= Model check the TPSN protocol.
= Tool

= The Uppaal model checker for real-time systems
modeled as networks of timed automata.

= Problem

= Constraints of clocks in timed automata: a clock can
only be assigned a constant value.

= Requirement of arithmetic operations of clock values
In the TPSN protocol.

TPSN Protocol

= To provide network-wide time synchronization in a
wireless sensor network.

= Two steps

= Level-Discovering: Establish a hierachical structure In
the network.

= Synchronization: Perform pair wise synchronization
along the edges of this structure.

= Result

= All nodes in the network synchronize their clock with a
reference node (the root).

Level-Discovering Phase

Assign the root node level 0.

The root broadcasts a level _discovery packet
carrying its identity and level information to its
Immediate neighbors.

he iImmediate neighbors of the root receive
this packet and assign themselves a level,
one greater than the level they have received.

Repeat the process until every node in the
network Is assigned a level.

Synchronization Phase

B T2 T3
T2 and T3 are measured in
B's clock
synchronization
_pulse acknowledgement
A T1 and T4 are measured in
A's clock
T1 T4

Two way messge exchange between a child (A) and its
parent (B)

Synchronization Phase(2)

Let A be the clock drift between A and B.
Let d be the propagation delay.

Assume A and d do not change in a short time

span.
“T2 - Tl =d + A (1)

T4 - T3 =d - A (2)

==> A = ((T2-T4)-(T1-T3))/2

A performs clock adjustment: t =t + A

The Uppaal Model Checker

= An Integrated tool for specification, simulation and
verification of real-time systems.

= Input of Uppaal: the XTA (eXtended Timed
Automata) format.

= Clocks in Uppaal:

= Can only be assigned an integer expression

= Can only be compared with an integer expression or
another clock

= Clocks can not be read
= Clocks can not advance by an arbitrary amount

Integer Clock

= To make clocks readable: use integer
variables

= typedef int intclock;

= To make clocks advance periodically: use a
Unviserval Pulse Generator (UPG) process to
broadcast a time_pulse signal to all processes
In the system.

The UPG Process

broadcast chan time pulse;
process universal pulse generator()
{
clock t;
state S {t <= 1};
init S;
trans
S ->S { quard t == 1;
sync time pulsel!;
assign t = 0; };

Integer Clock User

= Processes deploying integer clocks.

= For every state and every integer clock, the
Integer clock user process must specify a
transition that responds to the time_pulse
event (to advance the integer clock).

= Drawbacks: an increase in model complexity,
but the code to implement integer clocks is
straightforward.

Integer Clock User

chan AtoB;
meta int msgqg;
process A()
{
const int wait = 3;
meta intclock Xx;
state INIT, SENT;
init INIT;
trans
INIT->INIT { sync time pulse?; assign x=x+1; },
SENT->SENT { sync time pulse?; assign x=x+1; },
INIT->SENT { qguard x >= wait;
sync AtoB!; assign msg=x; };

Modeling TPSN

= Three Uppaal states are used for level-
discovery phase and four are used for
synchronization phase.

= Additional features

= Time Drift and Resynchronization: node's clock
has drifts from ideal clock. The whole network
need to be resynchronized periodically before
nodes' clocks diverge too much from the root.

= Node dying/reviving.

=
o
)
D
0
-
O
o
L
)
=
p

Time Drift

| | ol i I I |
; J
g J
B ¢S
BRI \ ;g
” X ; _ N r LL\
I i
v W ._ﬁ ..H_
O—QANM< \ [
ccCcccc ' s
Y 3 ﬁ -
P
P TR
P
— : NSt -
SEEEsEEEEEEs .,m. IIIIIIIII e I-.lllllﬂ
s ¢ r
. i r
' i
4 ,_
. I r
: f
" r 4
3 A 1\
N .__ _‘1
' ¢ s
5 J 5
| . ror -
_ ;o
i La o
. ! ¢
1,_ _.ﬁj
- g r
' 400
. £
: r
i P
, . J
N L
R
- vﬂ LL
bJ
- — > —
||||||||||||||||||| 1 FIIIIIIIIIIIIIIl..‘IIIIIﬂ
| J E
. T -
. ;
' ,._
~ r r
J &
*) L._.
.ﬂ \\
J P
5 x \\\
" g F
— ' 4 —
. I e
5, L.w ke
e
. r
,L 11
i
s r
" I
' ..ﬂ. 111
v s
;L
- s -
L im |||||||| 2
n ,.‘ w..
[LR r
L !
4 !
g Cf
.1 /H
4 qﬁh.
r [
| | | | | | |
o o o o o o o @] o
< © N - - o @ ¥

100J Ylm pasedwod 3000 aAle|al

300 400 500 600
root clock

200

100

Verification Result

= No Deadlock:
A[] not deadlock

= Synchronized:
A[] (<>ni.state == synchronized)

= Relative Time Bounded:
A[] abs(ni.local clock—ne.local clock)< X

= Relative Time Close:
A[] (<>abs(ni.local clock— no.local clock)<Y)

Verification Result (2)

0.61sec/ 2.06 sec/ 0.62 sec / 2.11 sec /

21MB 24 MB 21 MB 24 MB

4 6.5 sec/ 68.0 sec/ 6.7 sec/ 70.2 sec/
22MB 31 MB 22 MB 31 MB

5 6.1 min/ 214.9 min / 6.3 sec/ 236.4 min /

126 MB 181 MB 126 MB 181 MB

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

