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Introduction

= Goal

= Model check the TPSN protocol.
= Tool

= The Uppaal model checker for real-time systems
modeled as networks of timed automata.

= Problem

= Constraints of clocks in timed automata: a clock can
only be assigned a constant value.

= Requirement of arithmetic operations of clock values
In the TPSN protocol.



TPSN Protocol

= To provide network-wide time synchronization in a
wireless sensor network.

= Two steps

= Level-Discovering: Establish a hierachical structure In
the network.

= Synchronization: Perform pair wise synchronization
along the edges of this structure.

= Result

= All nodes in the network synchronize their clock with a
reference node (the root).



Level-Discovering Phase

Assign the root node level 0.

The root broadcasts a level _discovery packet
carrying its identity and level information to its
Immediate neighbors.

he iImmediate neighbors of the root receive
this packet and assign themselves a level,
one greater than the level they have received.

Repeat the process until every node in the
network Is assigned a level.




Synchronization Phase

B T2 T3
T2 and T3 are measured in
B's clock
synchronization
_pulse acknowledgement
A T1 and T4 are measured in
A's clock
T1 T4

Two way messge exchange between a child (A) and its
parent (B)



Synchronization Phase(2)

Let A be the clock drift between A and B.
Let d be the propagation delay.

Assume A and d do not change in a short time

span.
“T2 - Tl =d + A (1)

T4 - T3 =d - A (2)

==> A = ((T2-T4)-(T1-T3))/2

A performs clock adjustment: t =t + A



The Uppaal Model Checker

= An Integrated tool for specification, simulation and
verification of real-time systems.

= Input of Uppaal: the XTA (eXtended Timed
Automata) format.

= Clocks in Uppaal:

= Can only be assigned an integer expression

= Can only be compared with an integer expression or
another clock

= Clocks can not be read
= Clocks can not advance by an arbitrary amount



Integer Clock

= To make clocks readable: use integer
variables

= typedef int intclock;

= To make clocks advance periodically: use a
Unviserval Pulse Generator (UPG) process to
broadcast a time_pulse signal to all processes
In the system.



The UPG Process

broadcast chan time pulse;
process universal pulse generator()
{
clock t;
state S {t <= 1};
init S;
trans
S ->S { quard t == 1;
sync time pulsel!;
assign t = 0; };



Integer Clock User

= Processes deploying integer clocks.

= For every state and every integer clock, the
Integer clock user process must specify a
transition that responds to the time_pulse
event (to advance the integer clock).

= Drawbacks: an increase in model complexity,
but the code to implement integer clocks is
straightforward.



Integer Clock User

chan AtoB;
meta int msgqg;
process A()
{
const int wait = 3;
meta intclock Xx;
state INIT, SENT;
init INIT;
trans
INIT->INIT { sync time pulse?; assign x=x+1; },
SENT->SENT { sync time pulse?; assign x=x+1; },
INIT->SENT { qguard x >= wait;
sync AtoB!; assign msg=x; };



Modeling TPSN

= Three Uppaal states are used for level-
discovery phase and four are used for
synchronization phase.

= Additional features

= Time Drift and Resynchronization: node's clock
has drifts from ideal clock. The whole network
need to be resynchronized periodically before
nodes' clocks diverge too much from the root.

= Node dying/reviving.
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Verification Result

= No Deadlock:
A[] not deadlock

= Synchronized:
A[] (<>ni.state == synchronized)

= Relative Time Bounded:
A[] abs(ni.local clock—ne.local clock)< X

= Relative Time Close:
A[] (<>abs(ni.local clock— no.local clock)<Y)



Verification Result (2)

0.61sec/ 2.06 sec/ 0.62 sec / 2.11 sec /

21MB 24 MB 21 MB 24 MB

4 6.5 sec/ 68.0 sec/ 6.7 sec/ 70.2 sec/
22MB 31 MB 22 MB 31 MB

5 6.1 min/ 214.9 min / 6.3 sec/ 236.4 min /

126 MB 181 MB 126 MB 181 MB



Thank You!
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