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When Failure is Not an Option

Failure is not an option for

• Safety Critical Systems (e.g., X-rays machines)

• Medical Devices (e.g., infusion pumps, …)

• Embedded Software (e.g., cars, airplanes)

• Security Vulnerabilities  (e.g., nuclear plants)

• …

Formal software verification is essential to 
guarantee absence of failures

• Automated techniques include model checking 
and static analysis …

• which can be used to validate, for example,  safety 
and security, behavior prior to program execution

• and provide objective evidence of safe behavior
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Assume Guarantee Reasoning

M1 || A  ² S      M2 ² A

M1 || M2 ² S

How to automatically find a sufficiently good assumption?!

System M1 in parallel with system M2 satisfies specification S

iff there exists an assumption A such that 

• M1 in parallel with A satisfies S

• M2 satisfies the assumption A
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Related Work

Safety properties

• Giannakopoulou et al. ASE 2002 – computing weakest assumption

• Cobliegh et al. TACAS 2003 – using L* to learn “good-enough” assumption

• Barringer et al. SAVCBS 2003 – AG proof rules, soundness, completeness

• many follow up works to improve algorithms, complexity, applicability, etc.

Liveness properties

• Farzan et al. TACAS 2008  – L$ a learning algorithm for omega-regular 
languages

• THIS PAPER

– Assume-Guarantee proof rules for reactive (omega-regular) systems

– Soundness and (in)completeness

– Two new learning algorithms for infinitary (finite + infinite) languages

– A unifying framework for learning-based automated AG (see paper)
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Outline

Background

• Model of concurrency: LTS, composition, specifications, etc.

• Active learning of regular languages: L*

• Learning-based Automated Assume Guarantee Framework

Non-Circular Assume Guarantee Rule (AG-NC)

• Soundness and in-completeness for omega-regular languages

• Soundness and completeness for -regular languages

• Learning algorithms for -regular languages

Circular Assume Guarantee Rule (AG-C)

• Soundness and completeness

Conclusion and Future Work
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Labeled Transition System (LTS)

M = (Q, I, , T)

• Q -- non-empty set of states

• I Q an initial state

• -- set of actions (a.k.a, the alphabet)

• T Q Q – a transition relation

a

a

b

c d

e

M

(M) = {a,b,c,d,e,f}

FA or Buchi

acceptance condition
+
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Operational Semantics

CSP Semantics

• handshake (synchronize) over shared actions

• otherwise, proceed independently (asynchronously)

Composition M1 || M
2

is

• State of M
1

|| M
2

is of the form (s1,s2),  where si is a state of Mi

s1 t1 a ( M2) 
a

(s1,s2)        (t1,s2)
a

s2 t2 a ( M1) 
a

(s1,s2)        (s1,t2)
a

s1 t1 s2 t2
a

(s1,s2)        (t1,t2)
a

a
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Example of Composition

1 2 3 4
a b c

1’ 2’ 3’ 4’
a d c

M1   = {a,b,c} M2   = {a,d,c}

1,1’ 2,2’
a

3,2’b

2,3’d’

3,3’

d’

b

4,4’
c

M1 k M2 = {a,b,d,c}
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L*  (Angluin 1987, Rivest & Schapire 1993)

s 2 U ?

yes/no

L(A) = U ?

No. 2 U ∆ L(A) 

yes. L(A) = U

Membership

Query 

Candidate

Query

L* learner Minimally Adequate Teacher (MAT)

U -- regular languageΣ(U)

DFA A

L(A) = U
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Assume Guarantee with Learning

Model Checking

A || M1 ² p

M2 ² A

A

true

true

Negative feedback 

N

M1 || M2 ² p

Positive feedback 

N

Y

M1 || M2 2 p

² M2

false, 

false, ² M1 || :p
Y

L*
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Outline

Background

• Model of concurrency: LTS, composition, specifications, etc.

• Active learning of regular languages: L*

• Learning-based Automated Assume Guarantee Framework

Non-Circular Assume Guarantee Rule (AG-NC)

• Soundness and in-completeness for omega-regular languages

• Soundness and completeness for -regular languages

• Learning algorithms for -regular languages

Circular Assume Guarantee Rule (AG-C)

• Soundness and completeness

Conclusion and Future Work
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AG-NC: Non-Circular Assume Guarantee Rule

(L1 || LA) ¹ LS L2 ¹ LA

(L1 || L2) ¹ LS

A = ( S) 

Complete for Safety (regular) properties ( )

Incomplete for Liveness (omega-regular) properties ( )

L ¹ S iff L¼ΣS µ S
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Proof of Incompleteness (by Counterexample)

= {a, b} = {a, c} S = {a, b}

L1 = (a+b) L2 = a*c LS = (a+b)*b

Assumption alphabet: = {a}

BUT, there is no assumption LA µ ! to apply AG-NC

a,b c
c

a

|| ²
b

b
a,b

A ; A a!L2 ⋠ A1 L1 || A2 ⋠LS
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AG-NC: Infinite Trace Containment

(L1 || LA) ¹! LS L2 ¹! LA

(L1 || L2) ¹! LS

A = ( S) 

NOT SOUND!

L ¹! S iff !(L¼ΣS) µ !(S)
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Proof of Unsoundness (by Counterexample)

= {a, b} = {a, c} S = {a, b}

L1 = (a+b) L2 = a*c LS = b

= {a}

BUT, LA = ; satisfies all premises of (modified) AG-NC

a,b c
c

a

|| 2
b
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AG-NC: Relaxing Assumption Alphabet

(L1 || LA) ¹ LS L2 ¹ LA

(L1 || L2) ¹ LS

A = ( S) 

Assumption “knows” about internal actions of L1 and L2

Not “truly” compositional 

Complete for Safety (regular) properties ( )

Complete for Liveness (omega-regular) properties ( )
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AG-NC: Restoring Completeness

Theorem: Let L1 and LS be two languages, and an alphabet s.t. 

= S. Then, LA = {((L1 || {(LS))¼ ) is the weakest

assumption such that L1 || LA ¹ LS

AG-NC is complete for any class of languages closed under 

projection and complement

AG-NC is complete for 

AG-NC is complete for 

Need a learning algorithm for !

Corollaries:



19

Automated AG for Omega-Regular 

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Learning Infinitary Language U: Approach 1

Use L* and L$ simultaneously to learn a DFA  D and a BA B such 
that     L(DFA) = *(U) and L(BA) = !(U)

Assume M is a MAT for U

Use M to answer membership queries until both learners generate a 
candidate query

Use M to verify the candidate query: L(D) [ L(B) = U

• on success, stop

• if counterexample is finite, send to L* and resume until next DFA candidate

• if counterexample is infinite, send to L$ and resume until next BA candidate

Two learners. Possibly a lot of redundancy.
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Learning Infinitary Language U: Approach 2

Use L$ to learn U.¿!, where ¿ is a “fresh” symbol not in §U

Assume M is a MAT for U

To answer a membership query infinite word s

• if s = t.¿! and t 2 §U
1 then ask M whether t 2 U and forward answer back

• Otherwise, answer “no”

To answer a candidate query with candidate BA C

• if L(C) * §U
1.¿! return ¼ 2 L(C) n §U

1.¿!

• otherwise, forward candidate query *(L(A)¼ , !(L(A)¼ ) to M

Single learner, BUT larger alphabet
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Circular AG-rule (AG-C): Summary

L1 || LA1 ¹ LS L2 || LA2 ¹ LS {(LA1) || {(LA2) ¹ LS

L1 || L2 ¹ LS

ΣA1= ΣA2= (Σ1∩Σ2) ∪ ΣS

Complete for Safety (regular) properties (Σ1)

Complete for Liveness (omega-regular) properties (Σ!)

BUT need to learn 2 assumptions AND assumption alphabet is larger
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Learning-Based AG (LAG) Framework

Conformance Rule A Learner(s) Oracle(s) Checker

Regular Trace AG-NC DFA P1 = P (L¤) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment [?]

Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment [?] P (L¤) Q2 = Q(L2; LS ;§C)

1-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

1-regular Trace AG-C DFA £ BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L) Q2 = Q(L2; LS ;§C)

!-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

!-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L!) Q2 = Q(L2; LS ;§C)

Conformance Rule A Learner(s) Oracle(s) Checker

Regular Trace AG-NC DFA P1 = P (L¤) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment [?]

Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment [?] P (L¤) Q2 = Q(L2; LS ;§C)

1-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

1-regular Trace AG-C DFA £ BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L) Q2 = Q(L2; LS ;§C)

!-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

!-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L!) Q2 = Q(L2; LS ;§C)

Conformance Rule A Learner(s) Oracle(s) Checker

Regular Trace AG-NC DFA P1 = P (L¤) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment [1]

Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment [2] P (L¤) Q2 = Q(L2; LS ;§C)

1-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

1-regular Trace AG-C DFA £ BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L) Q2 = Q(L2; LS ;§C)

!-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

!-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L!) Q2 = Q(L2; LS ;§C)

[1] Cobleigh, Giannakopoulou, Pasareanu, TACAS’03

[2] Barringer, Giannakopoulou, Pasareanu, SAVCBS’03

The last four rows are contributions of THIS PAPER
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Conclusion and Future Work

Compositional approach to verification is fundamental for scalability!

Automated AG for Liveness (omega-regular) properties

• Non-Circular Rule: soundness, (in)completeness

• Circular rule – remains sound and complete

• Two new learning algorithms for infinitary languages

Unified Framework for Learning-based Assume Guarantee Reasoning

Future Work

• implementation and empirical evaluation

• experiments with other learning algorithms
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THE END
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