
© 2010 Carnegie Mellon University

Automated Assume-

Guarantee Reasoning for

Omega-Regular Systems and

Specifications

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel and Sagar Chaki
April 13, 2010
Second NASA Formal Methods Symposium

2

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

3

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

When Failure is Not an Option

Failure is not an option for

• Safety Critical Systems (e.g., X-rays machines)

• Medical Devices (e.g., infusion pumps, …)

• Embedded Software (e.g., cars, airplanes)

• Security Vulnerabilities (e.g., nuclear plants)

• …

Formal software verification is essential to
guarantee absence of failures

• Automated techniques include model checking
and static analysis …

• which can be used to validate, for example, safety
and security, behavior prior to program execution

• and provide objective evidence of safe behavior

4

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Assume Guarantee Reasoning

M1 || A ² S M2 ² A

M1 || M2 ² S

How to automatically find a sufficiently good assumption?!

System M1 in parallel with system M2 satisfies specification S

iff there exists an assumption A such that

• M1 in parallel with A satisfies S

• M2 satisfies the assumption A

5

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Related Work

Safety properties

• Giannakopoulou et al. ASE 2002 – computing weakest assumption

• Cobliegh et al. TACAS 2003 – using L* to learn “good-enough” assumption

• Barringer et al. SAVCBS 2003 – AG proof rules, soundness, completeness

• many follow up works to improve algorithms, complexity, applicability, etc.

Liveness properties

• Farzan et al. TACAS 2008 – L$ a learning algorithm for omega-regular
languages

• THIS PAPER

– Assume-Guarantee proof rules for reactive (omega-regular) systems

– Soundness and (in)completeness

– Two new learning algorithms for infinitary (finite + infinite) languages

– A unifying framework for learning-based automated AG (see paper)

6

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Outline

Background

• Model of concurrency: LTS, composition, specifications, etc.

• Active learning of regular languages: L*

• Learning-based Automated Assume Guarantee Framework

Non-Circular Assume Guarantee Rule (AG-NC)

• Soundness and in-completeness for omega-regular languages

• Soundness and completeness for -regular languages

• Learning algorithms for -regular languages

Circular Assume Guarantee Rule (AG-C)

• Soundness and completeness

Conclusion and Future Work

7

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Labeled Transition System (LTS)

M = (Q, I, , T)

• Q -- non-empty set of states

• I Q an initial state

• -- set of actions (a.k.a, the alphabet)

• T Q Q – a transition relation

a

a

b

c d

e

M

(M) = {a,b,c,d,e,f}

FA or Buchi

acceptance condition
+

8

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Operational Semantics

CSP Semantics

• handshake (synchronize) over shared actions

• otherwise, proceed independently (asynchronously)

Composition M1 || M
2

is

• State of M
1

|| M
2

is of the form (s1,s2), where si is a state of Mi

s1 t1 a (M2)
a

(s1,s2) (t1,s2)
a

s2 t2 a (M1)
a

(s1,s2) (s1,t2)
a

s1 t1 s2 t2
a

(s1,s2) (t1,t2)
a

a

9

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Example of Composition

1 2 3 4
a b c

1’ 2’ 3’ 4’
a d c

M1 = {a,b,c} M2 = {a,d,c}

1,1’ 2,2’
a

3,2’b

2,3’d’

3,3’

d’

b

4,4’
c

M1 k M2 = {a,b,d,c}

10

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

L* (Angluin 1987, Rivest & Schapire 1993)

s 2 U ?

yes/no

L(A) = U ?

No. 2 U ∆ L(A)

yes. L(A) = U

Membership

Query

Candidate

Query

L* learner Minimally Adequate Teacher (MAT)

U -- regular languageΣ(U)

DFA A

L(A) = U

11

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Assume Guarantee with Learning

Model Checking

A || M1 ² p

M2 ² A

A

true

true

Negative feedback

N

M1 || M2 ² p

Positive feedback

N

Y

M1 || M2 2 p

² M2

false,

false, ² M1 || :p
Y

L*

12

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Outline

Background

• Model of concurrency: LTS, composition, specifications, etc.

• Active learning of regular languages: L*

• Learning-based Automated Assume Guarantee Framework

Non-Circular Assume Guarantee Rule (AG-NC)

• Soundness and in-completeness for omega-regular languages

• Soundness and completeness for -regular languages

• Learning algorithms for -regular languages

Circular Assume Guarantee Rule (AG-C)

• Soundness and completeness

Conclusion and Future Work

13

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

AG-NC: Non-Circular Assume Guarantee Rule

(L1 || LA) ¹ LS L2 ¹ LA

(L1 || L2) ¹ LS

A = (S)

Complete for Safety (regular) properties ()

Incomplete for Liveness (omega-regular) properties ()

L ¹ S iff L¼ΣS µ S

14

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Proof of Incompleteness (by Counterexample)

= {a, b} = {a, c} S = {a, b}

L1 = (a+b) L2 = a*c LS = (a+b)*b

Assumption alphabet: = {a}

BUT, there is no assumption LA µ ! to apply AG-NC

a,b c
c

a

|| ²
b

b
a,b

A ; A a!L2 ⋠ A1 L1 || A2 ⋠LS

15

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

AG-NC: Infinite Trace Containment

(L1 || LA) ¹! LS L2 ¹! LA

(L1 || L2) ¹! LS

A = (S)

NOT SOUND!

L ¹! S iff !(L¼ΣS) µ !(S)

16

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Proof of Unsoundness (by Counterexample)

= {a, b} = {a, c} S = {a, b}

L1 = (a+b) L2 = a*c LS = b

= {a}

BUT, LA = ; satisfies all premises of (modified) AG-NC

a,b c
c

a

|| 2
b

17

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

AG-NC: Relaxing Assumption Alphabet

(L1 || LA) ¹ LS L2 ¹ LA

(L1 || L2) ¹ LS

A = (S)

Assumption “knows” about internal actions of L1 and L2

Not “truly” compositional

Complete for Safety (regular) properties ()

Complete for Liveness (omega-regular) properties ()

18

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

AG-NC: Restoring Completeness

Theorem: Let L1 and LS be two languages, and an alphabet s.t.

= S. Then, LA = {((L1 || {(LS))¼) is the weakest

assumption such that L1 || LA ¹ LS

AG-NC is complete for any class of languages closed under

projection and complement

AG-NC is complete for

AG-NC is complete for

Need a learning algorithm for !

Corollaries:

19

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Learning Infinitary Language U: Approach 1

Use L* and L$ simultaneously to learn a DFA D and a BA B such
that L(DFA) = *(U) and L(BA) = !(U)

Assume M is a MAT for U

Use M to answer membership queries until both learners generate a
candidate query

Use M to verify the candidate query: L(D) [L(B) = U

• on success, stop

• if counterexample is finite, send to L* and resume until next DFA candidate

• if counterexample is infinite, send to L$ and resume until next BA candidate

Two learners. Possibly a lot of redundancy.

20

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Learning Infinitary Language U: Approach 2

Use L$ to learn U.¿!, where ¿ is a “fresh” symbol not in §U

Assume M is a MAT for U

To answer a membership query infinite word s

• if s = t.¿! and t 2 §U
1 then ask M whether t 2 U and forward answer back

• Otherwise, answer “no”

To answer a candidate query with candidate BA C

• if L(C) * §U
1.¿! return ¼ 2 L(C) n §U

1.¿!

• otherwise, forward candidate query *(L(A)¼ , !(L(A)¼) to M

Single learner, BUT larger alphabet

21

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Circular AG-rule (AG-C): Summary

L1 || LA1 ¹ LS L2 || LA2 ¹ LS {(LA1) || {(LA2) ¹ LS

L1 || L2 ¹ LS

ΣA1= ΣA2= (Σ1∩Σ2) ∪ ΣS

Complete for Safety (regular) properties (Σ1)

Complete for Liveness (omega-regular) properties (Σ!)

BUT need to learn 2 assumptions AND assumption alphabet is larger

22

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Learning-Based AG (LAG) Framework

Conformance Rule A Learner(s) Oracle(s) Checker

Regular Trace AG-NC DFA P1 = P (L¤) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment [?]

Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment [?] P (L¤) Q2 = Q(L2; LS ;§C)

1-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

1-regular Trace AG-C DFA £ BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L) Q2 = Q(L2; LS ;§C)

!-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

!-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L!) Q2 = Q(L2; LS ;§C)

Conformance Rule A Learner(s) Oracle(s) Checker

Regular Trace AG-NC DFA P1 = P (L¤) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment [?]

Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment [?] P (L¤) Q2 = Q(L2; LS ;§C)

1-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

1-regular Trace AG-C DFA £ BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L) Q2 = Q(L2; LS ;§C)

!-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

!-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L!) Q2 = Q(L2; LS ;§C)

Conformance Rule A Learner(s) Oracle(s) Checker

Regular Trace AG-NC DFA P1 = P (L¤) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment [1]

Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment [2] P (L¤) Q2 = Q(L2; LS ;§C)

1-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

1-regular Trace AG-C DFA £ BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L) Q2 = Q(L2; LS ;§C)

!-regular Trace AG-NC DFA £ BA P1 = P (L) Q1 = Q(L1; LS ;§NC) VNC(L1; L2; LS)

Containment

!-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1; LS ;§C) VC(L1; L2; LS)

Containment P (L!) Q2 = Q(L2; LS ;§C)

[1] Cobleigh, Giannakopoulou, Pasareanu, TACAS’03

[2] Barringer, Giannakopoulou, Pasareanu, SAVCBS’03

The last four rows are contributions of THIS PAPER

23

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Conclusion and Future Work

Compositional approach to verification is fundamental for scalability!

Automated AG for Liveness (omega-regular) properties

• Non-Circular Rule: soundness, (in)completeness

• Circular rule – remains sound and complete

• Two new learning algorithms for infinitary languages

Unified Framework for Learning-based Assume Guarantee Reasoning

Future Work

• implementation and empirical evaluation

• experiments with other learning algorithms

© 2010 Carnegie Mellon University

THE END

25

Automated AG for Omega-Regular

Arie Gurfinkel and Sagar Chaki

© 2010 Carnegie Mellon University

Contact Information

Presenter

Arie Gurfinkel

RTSS

Telephone: +1 412-268-5800

Email: arie@cmu.edu

U.S. mail:

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web:

www.sei.cmu.edu

http://www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

mailto:info@sei.cmu.edu

