A Machine-Checked Proof of
a State-Space Construction Algorithm

Nestor Catano! Radu . Siminiceanu?

LUniversity of Madeira, CMU-Portugal

2National Institute of Aerospace, Hampton, Virginia, US

UNIVERSIDADE da MADEIRA

NFM 2010

Catano, Siminiceanu 1/26

Outline

© Introduction
@ Saturation Algorithm
@ Saturation Properties

© Proof of Correctness
@ Correctness Theorem
@ PVS Formalisation

© Conclusion and Future Work

Catano, Siminiceanu 2/26

Introduction Saturation Algorithm

Saturation Properties

What is Saturation ?

’ A symbolic algorithm for building state spaces of discrete systems ‘

Not your “typical” reachability algorithm
@ not focused on states, but on (decision diagram) nodes
@ ‘“chaotic” fixed points

@ other “non-standard” data structures and conventions

o QOMDDs, Kronecker matrices
o storage: index-based nodes, partitioned caches/unique tables, ...
o first implemented in the SMART tool = Petri nets

@ much faster and leaner than Breadth-First-Search (BFS)

Catano, Siminiceanu 3/26

Introduction Saturation Algorithm

Saturation Properties

The Saturation Algorithm

Brief History

Evolved from standard BDD algorithm for state-space construction
@ 1999: exploit event locality, MDDs

2000: exploit Kronecker decomposition, chaining

2001: new iteration strategy (named Saturation)
2002: on-the-fly (a.k.a. “unbound”) version
2003: build counterexamples (+ EVMDDs)
2004: other extensions, generalizations

o lift Kronecker requirements (i.e. back to diagrams for tr. rel.)
o identity reduced MDDs
o partial reachability (with EVMDDs)

2009: C library

Catano, Siminiceanu 4/26

Introduction Saturation Algorithm

Saturation Properties

Saturation: Background and origins

BFS for Discrete state systems: (S,S% N)
o SY € S: initial state(s)
o NV : S — 25, the next-state function

Standard iteration strategy: S = S° UN(S®) UN3(SO) U ...
Weaknesses:

e function A is monolithic

@ applied to the entire current set of states

Catano, Siminiceanu 5/26

Introduction Saturation Algorithm
Saturation Properties

Kronecker Consistency

@ How to improve?
o split the transition function: A = Uszs Ne
o further split events by subsystem (level): Noe = Nex X ... X Nen
o Top(e) =1

@ What it does?

o Speeds up algorithm
— allows one to operate on sub-states
— fire below, then concatenate with above: perfectly “legal”

o Makes prover’s life miserable

Catano, Siminiceanu 6/26

Introduction Saturation Algorithm

Saturation Properties

Kronecker Consistency

@ Origin: Kronecker product of (transition probability) matrices:

D, & New

e€E K>k>1

e What is it? independence of local effects of N x (by level k)

Ne(s) = Ne,K(SK) X Ne,K,1(SK,1) X ... X /\/'e,l(sl)

Catano, Siminiceanu 7/26

! i . .
ntroduction Saturation Algorithm

Saturation Properties

Saturation: Description

A node p at level k is saturated if
it encodes a fixed point w.r.t. events e with Top(e) < k

Below(k, p) = NZ,(Below(k, p))

Algorithm in a nutshell:
e build the MDD encoding of S°
o for k =1 upto K, saturate all nodes at level k:
= exhaustively fire events e with Top(e) = k (transitive closure)
@ if a firing creates nodes at levels below k:
= saturate them immediately upon creation

@ when the root node is saturated: voila, the full state space

NB: mutual recursion between saturation and firing of events

Catano, Siminiceanu 8/26

Introduction

Saturation Algorithm
Saturation Properties

The two core routines: Fire() and Saturate()

Simplified /sanitized pseudo-code:

Fire(e k,p)

Saturate(k,p) O foreach local transition ik = ji
9 do Q@ f = Fire(e, k — 1, child(k.p,ix))
@ foreach e : Top(e) = k do if f#£0

(3]

@ Fire(ek,p) © Saturate(k —1,f)

@ while new states discovered @ u= Union(k-1, f, child(k,p.jk))
Q set child(k,p,jx) < u

NB: Auxiliary structures (caches, unique tables) and other MDD node
management routines are not captured here

Catano, Siminiceanu 9/26

N Correctness Theorem
Proof of Correctness PVS Formalisation

The Correctness Theorem

Original statement (Simplified Version)
“ Let (k|p) be a node with saturated children, and (/|q) be one of its
children with g #0 and | = k—1;
- let U stand for Below(/, q) before the call to Fire(e, /, q), for some
event e with / < Top(e)

- let V represent Below(/, f), where f = Fire(e, I, q);
= Then V= N</(e(U)).”

Catano, Siminiceanu 10/26

Correctness Theorem

Proof of Correctness PVS Formalisation

PVS Formalisation

@ PVS is a system for specifying and verifying properties of software
and hardware systems.

@ PVS’ logic is based on simply typed higher-order logic with
functions, product types, records, and recursive definitions.

@ PVS’ type systems is extended with sub-types.

Abuse(s) of notation

o N (U) is an abuse : because Top(e) = k >/
@ Semantics of A is actually not next-state
@ PVS discovered these

Challenge

@ PVS does not directly provide support to mutually recursive
functions definitions.

‘inconsistencies”

v

Catano, Siminiceanu 11/26

Correctness Theorem

Proof of Correctness PVS Formalisation

PVS Formalisation

General Approach

@ Formalize basic concepts related to Kronecker consistency.
o Events, MDDs, states, local states, next-state functions, local
next-state functions, etc.
@ Use definitions to formalize Saturate() and Fire() to reflect in Logic
invariant properties of Saturation algorithm

@ Conduct proofs following the pencil-and-paper proof

Catano, Siminiceanu 12/26

Correctness Theorem

Proof of Correctness PVS Formalisation

PVS Formalization

Formalizing Basic Concepts

local value?(m)(n) : bool = (m=0An=0)V
(m>0An>0An < nk(m))

local value(m) : type = (Local _value?(m))

state(k) : type = {s : Seq(k) | V(m : upto(k)) :
(m=0As'sq(m) =0)V
(m > 0As'sq(m) > 0As'sq(m) < nk(m)) }

4

Formalizing Basic Concepts

event : type+

Top : [event — posnat]

\

Catano, Siminiceanu 13/26

Correctness Theorem
PVS Formalisation

Proof of Correctness

PVS Formalization

Formalizing Basic Concepts

next(k) : type = [event — [state(k) — setof[state(k)]]]

Localnext(k) : type = [event — [Local _value(k) —
setof[local value(k)]]]

Kronecker?(k)(N)(£fs) : bool =
V(e : event,x,y : state(k)) :
N(e)(x)(y) < V(m : upto(k)) : £s'sq(m)(e)(x'sq(m))(y'sq(m))

Catano, Siminiceanu 14/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Axiomatic vs Definition Approach

Discussion

@ Definitions do not introduce inconsistencies.

Catano, Siminiceanu 15/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Axiomatic vs Definition Approach

Discussion

@ Definitions do not introduce inconsistencies.

@ The use of definitions may force PVS to generate additional proof
obligations all over the theorems and lemmas using the definitions,
cluttering the proofs.

@ Definitions may require to reflect the implementation of the
algorithm in Logic.

Catano, Siminiceanu 15/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Axiomatic vs Definition Approach

@ Axioms might introduce inconsistencies.

Catano, Siminiceanu 16/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Axiomatic vs Definition Approach

@ Axioms might introduce inconsistencies.

@ Axioms are more suitable than definitions when one is not interested
in generating code.

Catano, Siminiceanu 16/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Axiomatic vs Definition Approach

Lessons learned from this exercise

@ Non-axiomatic approach was attempted first
@ Too many TCCs, mostly from subtyping conditions

@ Forced to change definitions, add more (type-dependent)
parameters, etc.

@ This introduces more TCCs ...

@ Proof becomes unmanageable

Catano, Siminiceanu 17/26

Proof of Correctness Correctness Theorem
PVS Formalisation

Formalizing Saturate()

Is node (k|p) saturated?

Below(k, p) = NZ,(Below(k, p))

Is node (k|p) saturated?
saturated?(k : upto(L), p : OMDD)
(N : next(k), fs : (kronecker?(k)(N)))(w : nat) : bool =
Below(k,) = Apply(k)(N, £3)(w)(BeLou(k, p))

v

Reaching the Fixed-Point

© w represents the number of iterations after which N2, (Below(k, p))
does not generate any new state.

@ The existence of w is guaranteed by the finiteness of Below(k, p)
and because the firing of any N, € N< is an increasing function
(the set of reached states gets larger)

Catano, Siminiceanu 18/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Formalizing Fire()

Recursion’s Base Case

fire(l,e,N,fs,w,q) : OMDD

fire trivial : axiom
1 < Bottom(e) V 1 =0= fire(l,e,N,fs,w,q) =q

Catano, Siminiceanu 19/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Formalizing Fire()

Recursive Case

Fire() is recursively called on their children child(q,1)

Recursive Case

fire_recursive : axiom

Below(l,fire(1,e,N,fs,w,q)) =

{s : state(1) | 3(i : local_value(1l)): £s'sq(1)(e)(i)(s'sq(1)) A
Below(1l-1,fire(1-1,e,N;’, fs;’,w,child(q,1)))(ss(1,s,1-1)) }

Catano, Siminiceanu 20/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Formalizing Fire()

Mutual Recursion Fire() vs Saturate()

Fire() is always invoked on a saturated node (/|q) with / < Top(e) and
Saturate() is invoked just before returning from Fire().

Mutual Recursion Fire() vs Saturate()

fire saturated : axiom
saturated?(1,fire(1,e,N,fs,w,q))(N, £s)(w)

Catano, Siminiceanu 21/26

Correctness Theorem

Proof of Correctness PVS Formalisation

The PVS Correctness Proof

Auxiliary Result

< k1 Ne(B(k, p))) = Ujese N (1) X NZ s (Ne(B((k = 1I{Klp)[11)))) |

Auxiliary Result

kronecker_apply: theorem
Apply (k,k-1) (N,fs) (w) (Next (k,ev) (N, £fs) (Below(k,p))) (s)
=
(3(i : local_value(k)) :
fssq(k) (ev) (1) (s‘sq(k)) A
Apply(k — 1)(N, £5;) (w1) (Next(k — 1, ev) (N, £;)(
Below(k-1,child(p,i))))(s:(k, s, k-1)))

V.
General Idea

@ Induction on w

@ Kronecker Consistency

v

Catano, Siminiceanu 22/26

Correctness Theorem
PVS Formalisation

Proof of Correctness

The PVS Correctness Proof

The PVS Correctness Proof

- let U stand for Below(!/, q) before the call to Fire(e, /,q), for some
event e with / < Top(e)
- let V represent Below(/,), where f = Fire(e, /, q);
= Then, V = NZ,(Ne(U1))."

o

The PVS Correctness Proof
saturation_correctness: theorem
Below(l,fire(1,e,N,fs,w,q)) =
Apply (1) (N,£fs) (w) (Next(1l,e) (N,fs) (Below(1l,q)))

v

General Idea

@ Kronecker consistency
@ Finite domains, increasing functions

@ Induction on 1

o’
Catano, Siminiceanu 23/26

Correctness Theorem

Proof of Correctness PVS Formalisation

Proof Statistics

10 Theories
145 Proofs

10 Lemmas

2 main Theorems

http://www.uma.pt/ncatano/satcorrectness/saturation-proofs.htm)

Catano, Siminiceanu 24/26

Conclusion and Future Work

Conclusion and Future Work

Code Generation

@ Porting PVS theories to B Machines.
@ Using refinement tools (e.g., AtelierB) to generate certified C code.

@ Benchmarking (parts of) generated code with existing
implementation in SMART.

Catano, Siminiceanu 25/26

Conclusion and Future Work

Questions?

Catano, Sii

	Introduction
	Saturation Algorithm
	Saturation Properties

	Proof of Correctness
	Correctness Theorem
	PVS Formalisation

	 Conclusion and Future Work

