
Introduction
Proof of Correctness

Conclusion and Future Work

A Machine-Checked Proof of
a State-Space Construction Algorithm

Nestor Catano1 Radu I. Siminiceanu2

1University of Madeira, CMU-Portugal

2National Institute of Aerospace, Hampton, Virginia, US

NFM 2010

Catano, Siminiceanu A Machine-Checked Proof of Saturation 1/26

Introduction
Proof of Correctness

Conclusion and Future Work

Outline

1 Introduction
Saturation Algorithm
Saturation Properties

2 Proof of Correctness
Correctness Theorem
PVS Formalisation

3 Conclusion and Future Work

Catano, Siminiceanu A Machine-Checked Proof of Saturation 2/26

Introduction
Proof of Correctness

Conclusion and Future Work

Saturation Algorithm
Saturation Properties

What is Saturation ?

A symbolic algorithm for building state spaces of discrete systems

At-a-glance

Not your “typical” reachability algorithm

not focused on states, but on (decision diagram) nodes

“chaotic” fixed points

other “non-standard” data structures and conventions

QOMDDs, Kronecker matrices
storage: index-based nodes, partitioned caches/unique tables, ...
first implemented in the SMART tool ⇒ Petri nets

much faster and leaner than Breadth-First-Search (BFS)

Catano, Siminiceanu A Machine-Checked Proof of Saturation 3/26

Introduction
Proof of Correctness

Conclusion and Future Work

Saturation Algorithm
Saturation Properties

The Saturation Algorithm

Brief History

Evolved from standard BDD algorithm for state-space construction

1999: exploit event locality, MDDs

2000: exploit Kronecker decomposition, chaining

2001: new iteration strategy (named Saturation)

2002: on-the-fly (a.k.a. “unbound”) version

2003: build counterexamples (+ EVMDDs)

2004: other extensions, generalizations

lift Kronecker requirements (i.e. back to diagrams for tr. rel.)
identity reduced MDDs
partial reachability (with EVMDDs)

2009: C library

Catano, Siminiceanu A Machine-Checked Proof of Saturation 4/26

Introduction
Proof of Correctness

Conclusion and Future Work

Saturation Algorithm
Saturation Properties

Saturation: Background and origins

BFS for Discrete state systems: (S,S0,N)

S0 ∈ S: initial state(s)

N : S → 2S , the next-state function

Standard iteration strategy: S = S0 ∪N (S0) ∪N 2(S0) ∪ . . .

Weaknesses:

function N is monolithic

applied to the entire current set of states

Catano, Siminiceanu A Machine-Checked Proof of Saturation 5/26

Introduction
Proof of Correctness

Conclusion and Future Work

Saturation Algorithm
Saturation Properties

Kronecker Consistency

How to improve?

split the transition function: N =
S

e∈E Ne

further split events by subsystem (level): Ne = Ne,K × . . .×Ne,1

Top(e) = l

What it does?

Speeds up algorithm
– allows one to operate on sub-states
– fire below, then concatenate with above: perfectly “legal”
Makes prover’s life miserable

Catano, Siminiceanu A Machine-Checked Proof of Saturation 6/26

Introduction
Proof of Correctness

Conclusion and Future Work

Saturation Algorithm
Saturation Properties

Kronecker Consistency

Origin: Kronecker product of (transition probability) matrices:∑
e∈E

⊗
K≥k≥1

Ne,k

What is it? independence of local effects of Ne,k (by level k)

Ne(s) = Ne,K (sK)×Ne,K−1(sK−1)× . . .×Ne,1(s1)

Catano, Siminiceanu A Machine-Checked Proof of Saturation 7/26

Introduction
Proof of Correctness

Conclusion and Future Work

Saturation Algorithm
Saturation Properties

Saturation: Description

A node p at level k is saturated if
it encodes a fixed point w.r.t. events e with Top(e) ≤ k

Below(k , p) = N ∗≤k(Below(k , p))

Algorithm in a nutshell:

build the MDD encoding of S0

for k = 1 upto K , saturate all nodes at level k :

⇒ exhaustively fire events e with Top(e) = k (transitive closure)

if a firing creates nodes at levels below k :

⇒ saturate them immediately upon creation

when the root node is saturated: voilà, the full state space

NB: mutual recursion between saturation and firing of events

Catano, Siminiceanu A Machine-Checked Proof of Saturation 8/26

Introduction
Proof of Correctness

Conclusion and Future Work

Saturation Algorithm
Saturation Properties

The two core routines: Fire() and Saturate()

Simplified/sanitized pseudo-code:

Saturate(k,p)

1 do

2 foreach e : Top(e) = k do

3 Fire(e,k ,p)

4 while new states discovered

Fire(e,k,p)

1 foreach local transition ik
e→ jk

2 f = Fire(e, k − 1, child(k,p,ik))

3 if f 6= ∅
4 Saturate(k − 1,f)

5 u = Union(k-1, f, child(k,p,jk))

6 set child(k ,p,jk) ← u

NB: Auxiliary structures (caches, unique tables) and other MDD node
management routines are not captured here

Catano, Siminiceanu A Machine-Checked Proof of Saturation 9/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

The Correctness Theorem

Original statement (Simplified Version)

“ Let 〈k|p〉 be a node with saturated children, and 〈l |q〉 be one of its
children with q 6= 0 and l = k−1;

· let U stand for Below(l , q) before the call to Fire(e, l , q), for some
event e with l < Top(e)

· let V represent Below(l , f), where f = Fire(e, l , q);

⇒ Then, V = N ∗≤l(Ne(U)).”

Catano, Siminiceanu A Machine-Checked Proof of Saturation 10/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

PVS Formalisation

PVS

PVS is a system for specifying and verifying properties of software
and hardware systems.

PVS’ logic is based on simply typed higher-order logic with
functions, product types, records, and recursive definitions.

PVS’ type systems is extended with sub-types.

Abuse(s) of notation

Ne(U) is an abuse : because Top(e) = k > l

Semantics of N is actually not next-state

PVS discovered these “inconsistencies”

Challenge

PVS does not directly provide support to mutually recursive
functions definitions.

Catano, Siminiceanu A Machine-Checked Proof of Saturation 11/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

PVS Formalisation

General Approach

Formalize basic concepts related to Kronecker consistency.

Events, MDDs, states, local states, next-state functions, local
next-state functions, etc.

Use definitions to formalize Saturate() and Fire() to reflect in Logic
invariant properties of Saturation algorithm

Conduct proofs following the pencil-and-paper proof

Catano, Siminiceanu A Machine-Checked Proof of Saturation 12/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

PVS Formalization

Formalizing Basic Concepts

local value?(m)(n) : bool = (m = 0 ∧ n = 0) ∨
(m > 0 ∧ n > 0 ∧ n ≤ nk(m))

local value(m) : type = (local value?(m))

state(k) : type = {s : Seq(k) | ∀(m : upto(k)) :
(m = 0 ∧ s‘sq(m) = 0) ∨
(m > 0 ∧ s‘sq(m) > 0 ∧ s‘sq(m) ≤ nk(m)) }

Formalizing Basic Concepts

event : type+

Top : [event→ posnat]

Catano, Siminiceanu A Machine-Checked Proof of Saturation 13/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

PVS Formalization

Formalizing Basic Concepts

next(k) : type = [event→ [state(k)→ setof[state(k)]]]

Localnext(k) : type = [event→ [local value(k)→
setof[local value(k)]]]

Kronecker?(k)(N)(fs) : bool =
∀(e : event, x, y : state(k)) :
N(e)(x)(y)⇔ ∀(m : upto(k)) : fs‘sq(m)(e)(x‘sq(m))(y‘sq(m))

Catano, Siminiceanu A Machine-Checked Proof of Saturation 14/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Axiomatic vs Definition Approach

Discussion

Definitions do not introduce inconsistencies.

The use of definitions may force PVS to generate additional proof
obligations all over the theorems and lemmas using the definitions,
cluttering the proofs.

Definitions may require to reflect the implementation of the
algorithm in Logic.

Catano, Siminiceanu A Machine-Checked Proof of Saturation 15/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Axiomatic vs Definition Approach

Discussion

Definitions do not introduce inconsistencies.

The use of definitions may force PVS to generate additional proof
obligations all over the theorems and lemmas using the definitions,
cluttering the proofs.

Definitions may require to reflect the implementation of the
algorithm in Logic.

Catano, Siminiceanu A Machine-Checked Proof of Saturation 15/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Axiomatic vs Definition Approach

Discussion

Axioms might introduce inconsistencies.

Axioms are more suitable than definitions when one is not interested
in generating code.

Catano, Siminiceanu A Machine-Checked Proof of Saturation 16/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Axiomatic vs Definition Approach

Discussion

Axioms might introduce inconsistencies.

Axioms are more suitable than definitions when one is not interested
in generating code.

Catano, Siminiceanu A Machine-Checked Proof of Saturation 16/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Axiomatic vs Definition Approach

Lessons learned from this exercise

Non-axiomatic approach was attempted first

Too many TCCs, mostly from subtyping conditions

Forced to change definitions, add more (type-dependent)
parameters, etc.

This introduces more TCCs ...

Proof becomes unmanageable

Catano, Siminiceanu A Machine-Checked Proof of Saturation 17/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Formalizing Saturate()

Is node 〈k|p〉 saturated?

Below(k , p) = N ∗≤k(Below(k , p))

Is node 〈k|p〉 saturated?

saturated?(k : upto(L), p : OMDD)
(N : next(k), fs : (kronecker?(k)(N)))(w : nat) : bool =

Below(k, p) = Apply(k)(N, fs)(w)(Below(k, p))

Reaching the Fixed-Point

w represents the number of iterations after which N ∗≤k(Below(k, p))
does not generate any new state.

The existence of w is guaranteed by the finiteness of Below(k, p)
and because the firing of any Ne ∈ N≤k is an increasing function
(the set of reached states gets larger)

Catano, Siminiceanu A Machine-Checked Proof of Saturation 18/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Formalizing Fire()

Recursion’s Base Case

fire(l, e, N, fs, w, q) : OMDD

fire trivial : axiom
l < Bottom(e) ∨ l = 0⇒ fire(l, e, N, fs, w, q) = q

Catano, Siminiceanu A Machine-Checked Proof of Saturation 19/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Formalizing Fire()

Recursive Case

Fire() is recursively called on their children child(q,i)

Recursive Case

fire recursive : axiom
Below(l, fire(l, e, N, fs, w, q)) =
{s : state(l) | ∃(i : local value(l)) : fs‘sq(l)(e)(i)(s‘sq(l)) ∧
Below(l-1, fire(l-1, e, Nl′, fsl′, w, child(q, i)))(st(l, s, l-1)) }

Catano, Siminiceanu A Machine-Checked Proof of Saturation 20/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Formalizing Fire()

Mutual Recursion Fire() vs Saturate()

Fire() is always invoked on a saturated node 〈l |q〉 with l < Top(e) and
Saturate() is invoked just before returning from Fire().

Mutual Recursion Fire() vs Saturate()

fire saturated : axiom
saturated?(l, fire(l, e, N, fs, w, q))(N, fs)(w)

Catano, Siminiceanu A Machine-Checked Proof of Saturation 21/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

The PVS Correctness Proof

Auxiliary Result

N ∗≤ k−1(Ne(B(k , p))) =
⋃

i∈Sk N k
e (i)×N ∗≤ k−1(Ne(B(

〈
k − 1|

〈
k|p
〉
[i]
〉
)))

Auxiliary Result

kronecker_apply: theorem
Apply(k,k-1)(N,fs)(w)(Next(k,ev)(N,fs)(Below(k,p)))(s)
⇔

(∃(i : local value(k)) :
fs‘sq(k)(ev)(i)(s‘sq(k)) ∧
Apply(k− 1)(N′k, fs

′
k)(w1)(Next(k− 1, ev)(N′k, fs

′
k)(

Below(k-1, child(p, i))))(st(k, s, k-1)))

General Idea

Induction on w

Kronecker Consistency

Catano, Siminiceanu A Machine-Checked Proof of Saturation 22/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

The PVS Correctness Proof

The PVS Correctness Proof

· let U stand for Below(l , q) before the call to Fire(e, l , q), for some
event e with l < Top(e)

· let V represent Below(l , f), where f = Fire(e, l , q);

⇒ Then, V = N ∗≤l(Ne(U)).”

The PVS Correctness Proof

saturation_correctness: theorem
Below(l,fire(l,e,N,fs,w,q)) =
Apply(l)(N,fs)(w)(Next(l,e)(N,fs)(Below(l,q)))

General Idea

Kronecker consistency

Finite domains, increasing functions

Induction on l

Catano, Siminiceanu A Machine-Checked Proof of Saturation 23/26

Introduction
Proof of Correctness

Conclusion and Future Work

Correctness Theorem
PVS Formalisation

Proof Statistics

Statistics

10 Theories

145 Proofs

10 Lemmas

2 main Theorems

http://www.uma.pt/ncatano/satcorrectness/saturation-proofs.htm

Catano, Siminiceanu A Machine-Checked Proof of Saturation 24/26

Introduction
Proof of Correctness

Conclusion and Future Work

Conclusion and Future Work

Code Generation

Porting PVS theories to B Machines.

Using refinement tools (e.g., AtelierB) to generate certified C code.

Benchmarking (parts of) generated code with existing
implementation in SMART.

Catano, Siminiceanu A Machine-Checked Proof of Saturation 25/26

Introduction
Proof of Correctness

Conclusion and Future Work

Questions?

Catano, Siminiceanu A Machine-Checked Proof of Saturation 26/26

	Introduction
	Saturation Algorithm
	Saturation Properties

	Proof of Correctness
	Correctness Theorem
	PVS Formalisation

	 Conclusion and Future Work

