Second NASA Formal Methods Symposium Washington D.C. 2010

Hardware-independent proofs of numerical programs

Sylvie Boldo and Thi Minh Tuyen Nguyen

INRIA Saclay, France

April 14th, 2010

centre de recherche BACLAY - ÎLE-DE-FRANCE

3

Conclusion and future work

A first example

(日) (同) (三) (三)

}

}

A first example

```
void sign(double x){
   if (x > 0.0) printf("Positive");
else if (x < 0.0) printf("Negative");</pre>
                           printf("Zero");
   else
void main(){
  double a = 0 \times 1p - 53 + 0 \times 1p - 64; // a = 2^{-53} + 2^{-64}
   double b = 1.0 + a - 1.0;
   sign(b - a);
                                                                gcc test.c
                      Sec 112
```

(日) (同) (三) (三)

3

Conclusion and future work

A first example

Conclusion and future work

A first example

Conclusion and future work

A first example

All current processors support IEEE-754

A floating-point arithmetic standard

Some architecture-depend issues:

- x87 floating-point unit uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
- FMA(fused multiply-add) instruction supported by the PowerPC and the Intel Itanimum architecture
 - **•** calculates $(x \times y \pm z)$ with a single rounding

・ 同 ト ・ ヨ ト ・ ヨ

All current processors support IEEE-754

A floating-point arithmetic standard

Some architecture-depend issues:

- x87 floating-point unit uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
- FMA(fused multiply-add) instruction supported by the PowerPC and the Intel Itanimum architecture
 - **c**alculates $(x \times y \pm z)$ with a single rounding

* E > < E</p>

- All current processors support IEEE-754
 - A floating-point arithmetic standard
- Some architecture-depend issues:
 - x87 floating-point unit uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
 - FMA(fused multiply-add) instruction supported by the PowerPC and the Intel Itanimum architecture
 - **c**alculates $(x \times y \pm z)$ with a single rounding

不是下 不是下

- All current processors support IEEE-754
 - A floating-point arithmetic standard
- Some architecture-depend issues:
 - x87 floating-point unit uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
 - FMA(fused multiply-add) instruction supported by the PowerPC and the Intel Itanimum architecture
 - calculates $(x \times y \pm z)$ with a single rounding

NEM 2010

- All current processors support IEEE-754
 - A floating-point arithmetic standard
- Some architecture-depend issues:
 - x87 floating-point unit uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
 - FMA(fused multiply-add) instruction supported by the PowerPC and the Intel Itanimum architecture
 - calculates $(x \times y \pm z)$ with a single rounding
- \Longrightarrow introduce subtle inconsistencies between program executions

Conclusion and future work

Analyzing numerical program

Tools for analyzing numerical programs

- Abstract interpretation:
 - Fluctuat, Astrée, etc.
- Frama-C:
 - A framework for static analysis of C code
 - Flexible: Easy to add a new plug-in
 - Value analysis: plug-in based on abstract interpretation
 - Jessie: deductive verification
- In Jessie: Easy to change the interpretation of floating-point operation

Conclusion and future work

- **1** Floating-point arithmetic
- 2 Floating-point computations independent to hardwares and compilers
- 3 A case study
- 4 Conclusion and future work

1 Floating-point arithmetic

2 Floating-point computations independent to hardwares and compilers

3 A case study

4 Conclusion and future work

4 3 b

A >

-

Floating-point number

Definition

A floating-point number x in a format (p, e_{min}, e_{max}) is represented by the triple (s, m, e) so that

$$x = (-1)^s \times 2^e \times m$$

∎ s ∈ {0,1}

•
$$e_{min} \leq e \leq e_{max}$$

•
$$0 \le m < 2$$
, represented by p bits

Normal number vs. Subnormal number

Floating-point number

Definition

A floating-point number x in a format (p, e_{min}, e_{max}) is represented by the triple (s, m, e) so that

$$x = (-1)^s \times 2^e \times m$$

∎ s ∈ {0,1}

•
$$e_{min} \leq e \leq e_{max}$$

•
$$0 \le m < 2$$
, represented by p bits

Normal number vs. Subnormal number

Conclusion and future work

Rounding error

Absolute error vs. relative error

Absolute error

$$\epsilon(x) = |x - \circ(x)|$$

Relative error

$$\epsilon(x) = \left| \frac{x - \circ(x)}{x} \right|$$

 $\circ(x)$ is the rounding value of x

< 17 →

Conclusion and future work

Rounding error

Absolute error vs. relative error

Absolute error

$$\epsilon(x) = |x - \circ(x)|$$

Relative error

$$\epsilon(x) = \left| \frac{x - \circ(x)}{x} \right|$$

 $\circ(x)$ is the rounding value of x

< 17 →

Conclusion and future work

Rounding error

Absolute error vs. relative error

Absolute error

$$\epsilon(x) = |x - \circ(x)|$$

Relative error

$$\epsilon(x) = \left| \frac{x - \circ(x)}{x} \right|$$

 $\circ(x)$ is the rounding value of x

< 17 >

Conclusion and future work

Rounding error

Rounding error in normal range

Use relative error

$$\left|\frac{x - \circ(x)}{x}\right| \le 2^{-p}$$

Rounding error in subnormal range

Use absolute error

$$|x - \circ(x)| \le 2^{e_{\min}-p}$$

**Using round-to-nearest mode

Rounding error

IEEE-754 double precision (64-bit rounding)

• precision
$$p = 53$$

•
$$e_{min} = -1022$$
 and $e_{max} = 1023$

Rounding error in normal range

Use relative error

$$\left|\frac{x - \circ(x)}{x}\right| \le 2^{-53}$$

Rounding error in subnormal range Use absolute error $|x - o(x)| \le \alpha$ (with $\alpha = 2^{-1075}$)

**Using round-to-nearest mode

Conclusion and future work

Rounding error

x87 (80-bit rounding)

•
$$e_{min} = -16382$$
 and $e_{max} = 16383$

Rounding error in normal range

Use relative error

$$\left|\frac{x - \circ(x)}{x}\right| \le 2^{-64}$$

Rounding error in subnormal range Use absolute error $|x - \circ(x)| \le \beta$ (with $\beta = 2^{-16446}$)

・ 同 ト ・ ヨ ト ・ ヨ

**Using round-to-nearest mode

Conclusion and future work

Double rounding

• = • • =

A 1

Double rounding

Conclusion and future work

Double rounding

gcc -mfpmath=387 double_rounding.c

< 回 > < 三 > < 三 >

Double rounding

gcc -mfpmath=387 double_rounding.c

- - E > - E >

< A >

Double rounding

gcc -mfpmath=387 double_rounding.c

< ロ > < 同 > < 三 > < 三 >

Conclusion and future work

Rounding error in double rounding

Based on 64-bit and 80-bit rounding, with $\alpha = 2^{-1022}$

$$|x| \ge \alpha \Rightarrow \left| \frac{x - \circ_{64}(\circ_{80}(x))}{x} \right| \le \beta$$
$$|x| \le \alpha \Rightarrow |x - \circ_{64}(\circ_{80}(x))| \le \gamma$$

with $\beta = 2050 \times 2^{-64}$ $\gamma = 2049 \times 2^{-1086}$

< 回 > < 三 > < 三 >

1 Floating-point arithmetic

2 Floating-point computations independent to hardwares and compilers

3 A case study

4 Conclusion and future work

A >

- B

C expression

a = x * y + z

Sylvie Boldo and Thi Minh Tuyen Nguyen Hardware-independent proofs

<ロ> <同> <同> < 回> < 回>

C expression

where \Box is one of the following rounding:

- 64-bit rounding
- 80-bit rounding
- double rounding

-

NFM 2010
C expression

where \Box is one of the following rounding:

- 64-bit rounding
- 80-bit rounding
- double rounding

Theorem

For a real number x, let $\Box(x)$ be either $\circ_{64}(x)$, or $\circ_{80}(x)$, or the double rounding $\circ_{64}(\circ_{80}(x))$. With $\alpha = 2^{-1022}$, we have either

$$|x| \ge \alpha$$
 and $\left|\frac{x - \Box(x)}{x}\right| \le \beta$ and $|\Box(x)| \ge \alpha$

or

$$|x| \leq \alpha$$
 and $|x - \Box(x)| \leq \gamma$ and $|\Box(x)| \leq \alpha$.

with $\beta = 2050 \times 2^{-64}$ $\gamma = 2049 \times 2^{-1086}$

- * @ * * 注 * * 注 * うへで

NFM 2010

Theorem

For a real number x, let $\Box(x)$ be either $\circ_{64}(x)$, or $\circ_{80}(x)$, or the double rounding $\circ_{64}(\circ_{80}(x))$. With $\alpha = 2^{-1022}$, we have either

$$|x| \ge \alpha$$
 and $\left|\frac{x - \Box(x)}{x}\right| \le \beta$ and $|\Box(x)| \ge \alpha$

or

$$|x| \leq lpha$$
 and $|x - \Box(x)| \leq \gamma$ and $|\Box(x)| \leq lpha$.

with $\beta = 2050 \times 2^{-64}$ $\gamma = 2049 \times 2^{-1086}$

proved in Coq
(Available at http://www.lri.fr/~nguyen/research/rnd_64_80_post.html)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

A case study

Conclusion and future work

Rounding error in presence of FMA

< 17 >

→ Ξ →

A (1) > A (2) > A (2)

・ 同 ト ・ 三 ト ・ 三

< - 10 b

→ 3 → 4 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

If we define each result of an operation by the formulas of Theorem 1, and if we are able to deduce from these intervals an interval \mathcal{I} for the final result, then the really computed final result is in \mathcal{I} whatever the architecture and the compiler that preserves the order of operations.

Theorem

If we define each result of an operation by the formulas of Theorem 1, and if we are able to deduce from these intervals an interval \mathcal{I} for the final result, then the really computed final result is in \mathcal{I} whatever the architecture and the compiler that preserves the order of operations.

$$x_1 = a \times b$$

$$x_2 = x_1 + c$$

$$\vdots$$

$$x_n = x_{n-1} * d$$

Theorem

If we define each result of an operation by the formulas of Theorem 1, and if we are able to deduce from these intervals an interval \mathcal{I} for the final result, then the really computed final result is in \mathcal{I} whatever the architecture and the compiler that preserves the order of operations.

$$\begin{array}{c} x_1 = a \times b \\ x_2 = x_1 + c \\ \vdots \\ x_n = x_{n-1} * d \end{array} \begin{array}{c} \hline Theorem 1, & x_1 \in \mathcal{I}_1(a,b) \\ \hline Theorem 1, & x_2 \in \mathcal{I}_2(x_1,c) \\ \vdots \\ \hline Theorem 1, & x_n \in \mathcal{I}_n(x_{n-1},d) \end{array}$$

Frama-C

Theorem

If we define each result of an operation by the formulas of Theorem 1, and if we are able to deduce from these intervals an interval \mathcal{I} for the final result, then the really computed final result is in \mathcal{I} whatever the architecture and the compiler that preserves the order of operations.

$$\begin{array}{c} x_1 = a \times b \\ x_2 = x_1 + c \\ \vdots \\ x_n = x_{n-1} * d \end{array} \qquad \begin{array}{c} \hline Theorem \ 1 \\ Theorem \ 1 \\ x_2 \in \mathcal{I}_2(x_1, c) \\ \vdots \\ \hline Theorem \ 1 \\ x_n \in \mathcal{I}_n(x_{n-1}, d) \end{array} \qquad \begin{array}{c} \longrightarrow x_n \in \mathcal{I} \\ \hline \end{array}$$

Frama-C

Gappa

Theorem

If we define each result of an operation by the formulas of Theorem 1, and if we are able to deduce from these intervals an interval \mathcal{I} for the final result, then the really computed final result is in \mathcal{I} whatever the architecture and the compiler that preserves the order of operations.

Correct ∀ compiler and architecture

$$\begin{array}{c} x_1 = a \times b \\ x_2 = x_1 + c \\ \vdots \\ x_n = x_{n-1} * d \end{array}$$

$$\stackrel{\texttt{Theorem 1}}{\xrightarrow{}} x_1 \in \mathcal{I}_1(a,b)$$

$$\stackrel{\texttt{Theorem 1}}{\xrightarrow{}} x_2 \in \mathcal{I}_2(x_1,c)$$

$$\underbrace{ \overset{Theorem 1}{\longrightarrow}} x_n \in \mathcal{I}_n(x_{n-1}, d)$$

$$\longrightarrow x_n \in \mathcal{I}$$

Frama-C

Gappa

1 Floating-point arithmetic

2 Floating-point computations independent to hardwares and compilers

3 A case study

4 Conclusion and future work

4 3 b

A >

-

A case study

KB3D(NASA Langley Research Center)

- An aircraft conflict detection and resolution program
- Formally proved correct using PVS (C. Muñoz, G. Dowek...)
- Provided the calculations are exact

Our case study

- Use a small part of KB3D
- Make a decision corresponding to value -1 and 1 to decide if the plane will go to its left or its right

・回・ ・ヨ・ ・ヨ・

A case study

KB3D(NASA Langley Research Center)

- An aircraft conflict detection and resolution program
- Formally proved correct using PVS (C. Muñoz, G. Dowek...)
- Provided the calculations are exact

Our case study

- Use a small part of KB3D
- Make a decision corresponding to value -1 and 1 to decide if the plane will go to its left or its right

A B > A B >

```
int sign(double x) {
  if (x \ge 0) return 1;
 else return -1;
int eps_line(double sx, double sy, double vx, double vy) {
 int s1, s2;
 s1 = sign(sx * vx + sy * vy);
 s2=sign(sx*vy-sy*vx);
 return s1*s2;
int main(){
 double vx = -1.0:
 double sy = 1.0;
 double vy = 0x1.fffffffffff -1; // vy = 1-2^{-53}
 int result = eps_line(sx,sy,vx,vy);
  printf("Result = %d \mid n", result);
```

くぼう くほう くほう

NEM 2010

 $sign(x)_{\uparrow}$ int sign(double x) { 1 if $(x \ge 0)$ return 1; 0 else return -1; х -1 int eps_line(double sx, double sy, double vx, double vy) { **int** s1, s2; s1 = sign(sx * vx + sv * vy): s2=sign(sx*vy-sy*vx);return s1*s2; int main(){ double vx = -1.0: double sy = 1.0; double vy = 0x1.fffffffffff -1; // vy = $1-2^{-53}$ **int result** = eps_line(sx, sy, vx, vy); printf("Result = $%d \mid n$ ", result);

(E)

```
int sign(double x) {
if (x \ge 0) return 1;
else return -1;
```

int eps_line(double sx, double sy, double vx, double vy) {
 int s1,s2;
 s1=sign(sx*vx+sy*vy);
 s2=sign(sx*vy-sy*vx);
 return s1*s2;

int main(){

```
double sx = -0x1.000000000000000000 p0; // sx = -1 - 2^{-52}
double vx = -1.0;
double sy = 1.0;
double vy = 0x1.fffffffffffffp -1; // vy = 1 - 2^{-53}
int result = eps_line(sx,sy,vx,vy);
printf("Result = %d\n", result);
```

< 同 > < 三 > < 三 > -

```
int sign(double x) {
  if (x \ge 0) return 1;
  else return -1;
int eps_line(double sx, double sy, double vx, double vy) {
  int s1, s2;
  s1 = sign(sx * vx + sv * vy):
  s2=sign(sx*vy-sy*vx);
  return s1*s2;
int main(){
                                          // sx = -1 - 2^{-52}
  double sx = -0x1.00000000000000000;
  double vx = -1.0:
  double sy = 1.0;
  double vy = 0 \times 1. fffffffffff -1; // vy = 1 - 2^{-53}
  int result = eps_line(sx,sy,vx,vy);
  printf ("Result = %d \mid n", result);
```

A B + A B +

```
int sign(double x) {
  if (x \ge 0) return 1;
 else return -1;
int eps_line(double sx, double sy, double vx, double vy) {
 int s1, s2;
 s1 = sign(sx * vx + sv * vy):
 s2=sign(sx*vy-sy*vx);
 return s1*s2;
int main(){
 double vx = -1.0:
 double sy = 1.0;
 double vy = 0 \times 1. ffffffffffff -1; // vy = 1 - 2^{-53}
 int result = eps_line(sx,sy,vx,vy);
 printf(" Result = %d \mid n", result);
```

```
int sign(double x) {
  if (x \ge 0) return 1;
 else return -1;
                                   gcc eps_line.c
int eps_line(double sx, double sy, double
 int s1, s2;
 s1 = sign(sx * vx + sv * vy):
 s2=sign(sx*vy-sy*vx);
                                  Result = 1
 return s1*s2;
int main(){
 double vx = -1.0:
 double sy = 1.0;
 double vy = 0x1.fffffffffff -1; // vy = 1-2^{-53}
 int result = eps_line(sx, sy, vx, vy);
  printf("Result = %d \mid n", result);
```

- 4 同 6 - 4 三 6 - 4 三 6

NEM 2010

```
int sign(double x) {
  if (x \ge 0) return 1;
  else return -1;
                               gcc -mfpmath=387 eps_line.c
                         doubles
int eps_line(double sx,
  int s1, s2;
  s1 = sign(sx * vx + sv * vy):
  s2=sign(sx*vy-sy*vx);
                                        Result = -1
  return s1*s2;
int main(){
                                           // sx = -1 - 2^{-52}
  double sx = -0x1.00000000001p0;
  double vx = -1.0:
  double sy = 1.0;
  double vy = 0 \times 1.fffffffffff -1; // vy = 1 - 2^{-53}
  int result = eps_line(sx, sy, vx, vy);
  printf ("Result = %d \mid n", result);
```

4 B b 4 B b

NEM 2010

```
//@ logic integer l_sign(real x) = (x \ge 0.0) ? 1 : -1;
/*@ requires e1 \le x - exact(x) \le e2;
  @ ensures \abs(\result) <= 1 &&
             (| result != 0 \implies | result == | sign(| exact(x))); */
  0
int sign(double x, double e1, double e2) {
  if (x > e^2) return 1;
  if (x < e1) return -1;
  return 0;
}
/*@ requires
  0 \text{ sx} = (exact(sx)) \&\& sy = (exact(sy)) \&\&
  0 \text{ vx} = | exact(vx) \& vy = | exact(vy) \& 
  (abs(sx) \le 100.0 \&\& \ bs(sy) \le 100.0 \&\&
  (0 \ | abs(vx) | <= 1.0 \ \&\& \ abs(vy) | <= 1.0;
  @ ensures
  0 \ \text{result} = 0 \Longrightarrow
  0 \ | esult=l_sign(|exact(sx)| + exact(vx) + exact(sy)| + exact(vy))
  0
            * l_sign(\exact(sx)*\exact(vy)-\exact(sy)*\exact(vx));
  @*/
int eps_line(double sx, double sy, double vx, double vy){
  int s1=sign(sx*vx+sy*vy, -0x1.90641p-45, 0x1.90641p-45);
  int s2=sign(sx*vy-sy*vx, -0x1.90641p-45, 0x1.90641p-45);
  return s1*s2;
}
```

```
//@ logic integer l_sign(real x) = (x >= 0.0) ? 1 : -1;
/*@ requires e1 \le x - exact(x) \le e2;
  @ ensures \abs(\result) <= 1 &&
             (| result != 0 \implies | result == | sign(| exact(x))); */
  0
int sign(double x, double e1, double e2) {
  if (x > e^2) return 1;
  if (x < e1) return -1;
                                                            l_sign(x)
  return 0;
}
/*@ requires
  0 \text{ sx} = (\text{exact}(\text{sx})) \& \text{sy} = (\text{exact}(\text{sy})) \& \text{exact}(\text{sy})
                                                           0
                                                                         х
  0 \text{ vx} = | exact(vx) \& vy = | exact(vy) \& 
                                                            -1
  (0 \ | abs(sx) | <= 100.0 \& | abs(sy) | <= 100.0 \& 
  (0 \ | abs(vx) | <= 1.0 \ \&\& \ | abs(vy) | <= 1.0;
  @ ensures
  0 \ | esult=l_sign(|exact(sx)| + exact(vx) + exact(sy)| + exact(vy))
  0
            * l_sign(\exact(sx)*\exact(vy)-\exact(sy)*\exact(vx));
  @*/
int eps_line(double sx, double sy, double vx, double vy){
  int s1=sign(sx*vx+sy*vy, -0x1.90641p-45, 0x1.90641p-45);
  int s2=sign(sx*vy-sy*vx, -0x1.90641p-45, 0x1.90641p-45);
  return s1*s2;
}
```

```
//@ logic integer l_sign(real x) = (x >= 0.0) ? 1 : -1;
/*@ requires e1 \le x - exact(x) \le e2;
  @ ensures \abs(\result) <= 1 &&
            (| result != 0 \implies | result == | sign(| exact(x))); */
  0
int sign(double x, double e1, double e2) {
  if (x > e^2) return 1;
                                                        sign(x)
  if (x < e1) return -1;
  return 0;
                                                     e1
/*@ requires
                                                       0
                                                         e2
                                                                    x
  0 \text{ sx} = (exact(sx)) \&\& sy = (exact(sy)) \&\&
                                                        -1
  0 \text{ vx} = | exact(vx) \& vy = | exact(vy) \& 
  (0) \abs(sx) <= 100.0 & \abs(sy) <= 100.0 &
  (0 \ | abs(vx) | <= 1.0 \ \&\& \ | abs(vy) | <= 1.0;
  @ ensures
  0 \ | esult=l_sign(|exact(sx)| + exact(vx) + exact(sy)| + exact(vy))
  0
           * l_sign(\exact(sx)*\exact(vy)-\exact(sy)*\exact(vx));
  @*/
int eps_line(double sx, double sy, double vx, double vy){
  int s1=sign(sx*vx+sy*vy, -0x1.90641p-45, 0x1.90641p-45);
  int s2=sign(sx*vy-sy*vx, -0x1.90641p-45, 0x1.90641p-45);
  return s1*s2;
}
```

```
//@ logic integer l_sign(real x) = (x >= 0.0) ? 1 : -1;
/* requires e1<= x-\exact(x) <= e2;
  @ ensures \abs(\result) <= 1 &&
  0
             (| result |= 0 \implies | result \implies |_sign(| exact(x))); */
int sign(double x, double e1, double e2) {
  if (x > e^2) return 1;
                                                        sign(x)
  if (x < e1) return -1;
  return 0;
                                                     e1
}
/*@ requires
                                                       0
                                                          e2
                                                                    x
  0 \text{ sx} = |exact(sx)| \& sy = |exact(sy)|
                                                         -1
  0 \text{ vx} = | exact(vx) \& vy = | exact(vy) \& 
  (0 \ | abs(sx) | <= 100.0 \& | abs(sy) <= 100.0 \& 
  (0 \ | abs(vx) | <= 1.0 \ \&\& \ | abs(vy) | <= 1.0;
  @ ensures
  0 \ | esult=l_sign(|exact(sx)| + exact(vx) + exact(sy)| + exact(vy))
  0
            * l_sign(\exact(sx)*\exact(vy)-\exact(sy)*\exact(vx));
  @*/
int eps_line(double sx, double sy, double vx, double vy){
  int s1=sign(sx*vx+sy*vy, -0x1.90641p-45, 0x1.90641p-45);
  int s2=sign(sx*vy-sy*vx, -0x1.90641p-45, 0x1.90641p-45);
  return s1*s2;
}
```

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

```
//@ logic integer l_sign(real x) = (x >= 0.0) ? 1 : -1;
/*@ requires e1 \le x - exact(x) \le e2;
  @ ensures \abs(\result) <= 1 &&
             (| result != 0 \implies | result == | sign(| exact(x))); */
  0
int sign(double x, double e1, double e2) {
  if (x > e^2) return 1;
                                                        sign(x)
  if (x < e1) return -1;
  return 0;
                                                     e1
}
/*@ requires
                                                       0
                                                          e2
                                                                    x
  0 \text{ sx} = (exact(sx)) \& sy = (exact(sy))
  0 \text{ vx} = | exact(vx) \& vy = | exact(vy) \& 
  (0) \abs(sx) <= 100.0 & \abs(sy) <= 100.0 &
  (0) | abs(vx) | <= 1.0 \quad \&\& | abs(vy) | <= 1.0;
 @ ensures
  \bigcirc \result != 0 \Longrightarrow
  0 \ | exact(x) + exact(x) + exact(y) |
  0
           * l_sign(\exact(sx)*\exact(vy)-\exact(sy)*\exact(vx));
  @*/
int eps_line(double sx, double sy, double vx, double vy){
  int s1=sign(sx*vx+sy*vy, -0x1.90641p-45, 0x1.90641p-45);
  int s2=sign(sx*vy-sy*vx, -0x1.90641p-45, 0x1.90641p-45);
  return s1*s2;
}
```

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

<u>F</u> ile <u>C</u> onfiguration <u>P</u> roof						
Proof obligations	Alt-Ergo 0.9	CVC3 2.2 (SS)	Gappa 0.12.3	Statistic	H12: no_overflow_double(nearest_even, 0x1.9a0641p-45) result2: double H13: double_of_real_post(nearest_even, 0x1.9a0641p-45,	
Function eps_line Default behavior	0	0	8	1/1	result2) H14: no_overflow_double(nearest_even, -double_value	
✓ Function eps_line Safety	0	0	0	13/13	result3; result3: double H15: neg double post(nearest even, result2, result3)	
1. check FP overflow	0	۲	0		H16: no_overflow_double(nearest_even, 0x1.9a0641p-45)	L
2. check FP overflow	0	۲	0		result4: double	r
3. check FP overflow	0	۲	0		result4)	I
4. check FP overflow	0	0	0			I
5. check FP overflow	0	0	0		double value(result3) <= double value(result1) .	I
6. precondition for user call	0	Ø	0		double_exact(result1)	
7. precondition for user call	0	۲	0		/*@ requires	T.
8. check FP overflow	0	ø	0		@ sx == \exact(sx) && sy == \exact(sy) &&	l
9. check FP overflow	۲	۲	0		<pre>@ vx == \exact(vx) && vy == \exact(vy) &&</pre>	I
10. check FP overflow	0	0	0		(@ \abs(sx) <= 100.0 && \abs(sy) <= 100.0 && @ \abs(vx) <= 1.0 && \abs(vv) <= 1.0:	l
11. check FP overflow	0	0	0		@ ensures	l
12. precondition for user cal	. 🕑	0	0		@ \result != 0	l
13. precondition for user call	. 🕑	0	0		<pre>@ ==> \result == L_sign(\exact(sx)*\exact(vx)+ \exact(sv)*\exact(vv))</pre>	
▼ Function sign ▼ Default behavior	0	0	8	6/6	<pre>@ * l_sign(\exact(sx)*\exact(vy)-\exact(sy)* \exact(vx));</pre>	
1. postcondition	0	0	0		@*/	I
2. postcondition	0	0	0		int eps line(double sx, double sy,double vx, double vy){	I
3. postcondition	0	۲	0		int s1,s2;	I
4. postcondition	0	ø	0			I
5. postcondition	0	0	0		s2=sign(sx*vy-sy*vx, -0x1.9a0641p-45, 0x1.9a0641p-45);	ľ
6. postcondition	0	0	0			1
		_			return sl*s2;	

Ele <u>Configuration</u> <u>Proof</u> Proof obligations	<pre>/*@ requir @ ensure @ @*/ int sign(d if (x > if (x < return 0 }</pre>	es e1< s \ab (\r ouble e2) re e1) re ;	<pre><= x-\e os(\result x, dou eturn 2</pre>	exact(x) <= e2; sult) <= 1 && != 0 ⇒ \result == I_sign(\exact(x))); uble e1, double e2) { 1; -1;					
 3. check FP overflow 4. check FP overflow 5. check FP overflow 6. precondition for 7. precondition for 8. check FP overflow 9. check FP overflow 10. check FP overflow 10. check FP overflow 11. check FP overflow 12. precondition for 13. precondition for 14. precondition 15. postcondition 16. postcondition 16. postcondition 16. postcondition 16. postcondition 	user call user call user call user call user call user call user call		6/6	<pre>double_value(result3) <= double_value(result1) - double_exact(result1) /*@ requires @ sx == (exact(sx) && sy == (exact(sy) && @ vx == (exact(sx) && sy == (exact(sy) && @ vx == (exact(sx) && sy == (exact(sy) && @ vx == (exact(sx) && sy == (exact(sy) && @ vx == (exact(sx) && sy == (exact(sy) && @ vx == (exact(sx) && sy == (exact(sy) && @ vx == (exact(sx) && sy == (exact(sx) && & (exact(sy) && (exact(sx) && (exact(sx) && (exact(sy) && & (exact(sy) && (exact(sx) && (exact(sy) && (exact(sy) && (exact(sy) && (exact(sx) && (exact(sx) && (exact(sy) && (exact(sx) && (exact(</pre>					
Timeout 10 🗘 🗆 Pretty Printer file: eps_line.c VC: precondition for user call									

- **1** Floating-point arithmetic
- 2 Floating-point computations independent to hardwares and compilers
- 3 A case study
- **4** Conclusion and future work

< ∃ >

A >

-

Conclusion

An approach

- gives correct rounding errors whatever the architecture and the choices of the compiler
- is implemented in the Frama-C for all basic operations with the same conditions
- can be applied to single precision computation
- is proved correct in Coq

Drawback

- time to run a program verification (10s for a proof obligation)
- Incomplete: only proves rounding errors

Future work

- reduce time to run
- allow the compiler to do anything, including re-organizing the operations
 - Example: if $|e| \ll |x|$

$$(e+x)-x=0$$

$$\bullet e + (x - x) = e$$

- look into the assembly
 - know the order of the operations
 - know the precision used for each operation
 - know if the architecture supports FMA or not

Thank you for your attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで