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Abstract

Greedy algorithms exploit problem structure and constraints to achieve linear-time performance.
Yet there is still no completely satisfactory way of constructing greedy algorithms. For example, the
Greedy Algorithm of Edmonds depends upon translating a problem into an algebraic structure called
a matroid, but the existence of such a translation can be as hard to determine as the existence of a
greedy algorithm itself. An alternative characterization of greedy algorithms is in terms of dominance
relations, a well-known algorithmic technique used to prune search spaces. We demonstrate a pro-
cess by which dominance relations can be methodically derived for a number of greedy algorithms,
including activity selection, and prefix-free codes. By incorporating our approach into an existing
framework for algorithm synthesis, we demonstrate that it could be the basis for an effective engi-
neering method for greedy algorithms. We also compare our approach with other characterizations
of greedy algorithms.

1 Introduction

A greedy algorithm repeatedly makes a locally optimal choice. For some problems this can efficiently
lead to a globally optimal solution. Edmonds [Edm71] characterized greedy algorithms in terms of
matroids. In 1981, Korte and Lovasz generalized matroids to define greedoids [KLS91]. The question of
whether a greedy algorithm exists for a particular problem reduces to whether there exists a translation
of the problem into a matroid/greedoid. However, the characterization does not provide any guidance
on how to construct this translation. In addition, there are problems that have greedy solutions, such as
Activity Selection and Prefix-free Codes, [CLRSO01], that do not seem to fit within the matroid/greedoid
model. A number of other attempts have been made to characterize greedy algorithms, [BM93, Cur03,
Cha95, HMS93] but the challenge in all of these approaches is establishing the conditions required for a
given problem to meet that characterization. Thus, there has been very little work in helping a developer
actually construct greedy algorithms.

An alternative approach to constructing algorithms is to take a very general program schema and
specialize it with problem-specific information. The result can be a very efficient algorithm for the given
problem, [SPW95, SW08, NC09]. One such class of algorithms, Global Search with Optimality (GSO)
[Smi88], operates by controlled search, where at each level in the search tree there are a number of
choices to be explored. We have recently [NSC10] been working on axiomatically characterizing a class
of algorithms, called Greedy Global Search (GGS), that specializes GSO, in which this collection of
choices reduces to a single locally optimal choice, which is the essence of a greedy algorithm. Our
characterization is based on dominance relations [BS74], a well-known technique for pruning search
spaces. However, this still leaves open the issue of deriving a greedy dominance relation for a given
problem, which is what we address in this paper. We start with a specialized form of the dominance
relation in [NSC10] which is easier to work with. Our contribution is to introduce a tactic which enables
the two forms of dominance to be combined and also show how the main greediness axiom of GGS
theory can be constructively applied. We have used this approach to derive greedy solutions to a number
of problems, a couple of which are shown in this paper.

Although our derivations are currently done by hand, we have expressed them calculationally as
we hope to eventually provide mechanical assistance for carrying them out. In addition to providing a
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Algorithm 1 Program Schema for GGS Theory
--given x:D satisfying i returns optimal (wrt. cost fn c) z:R satisfying o(x,z)
function solve :: D -> {R}
solve x =
if ®(x,7(x) A i(x)) then (gsolve x ro(x) {}) else {}

function gsolve :: D -> {R} -> {R} -> {R}
gsolve x space soln =
let gsubs = {s | sEsubspaces x space A Vss € subspaces x space,s O, ss}
soln’ = opt ¢ (soln U{z | x(z,space) A o(x,2)})
in if gsubs = {} then soln’
else let greedy = arbPick gsubs in gsolve x greedy soln’

function opt :: ((D,R) -> C) -> {R}-> {R}

opt ¢ {s} = {s}

opt ¢ {s,t} = if c(x,s)>c(x,t) then {s} else {t}
function subspaces :: D -> R-> {R}

subspaces x 7 = {§: §<,7AD(x,5)}

process for a developer to systematically construct greedy algorithms, we also believe that our approach
has a potential pedagogical contribution. To that end, we show that, at least in the examples we consider,
our derivations are not only more systematic but also more concise than is found in algorithms textbooks.

2 Background
2.1 Greedy Global Search (GGS) Theory

GSO, the parent class of GGS, is axiomatically characterized in [Smi88]. The definition contains a
number of type and abstract operators, which must be instantiated with problem specific information.
GGS [NSC10] specializes GSO with an additional operator, and axioms. The operators of GGS theory,
which we informally describe here, are named 79, x, €, <,6,® along with an additional type R; they
parametrize the program schema associated with the GGS class (Alg. 1). D,R,C, 0 and ¢ come from the
problem specification which is described in Section 2.2.

Given a space of candidate solutions (also called a partial solution) to a given problem (some of
which may not be optimal or even correct), a GGS program partitions the space into subspaces (a process
known as splitting) as determined by a subspace relation <,. Of those subspaces that pass a filter (a
predicate ® which is some weakened efficiently evaluable form of the correctness condition, o ) one
subspace is greedily chosen, as determined by a dominance relation §,, and recursively searched!. If
a predicate x on the space is satisfied, a solution is extracted from it. If that solution is correct it is
compared with the best solution found so far, using the cost function c. The process terminates when no
space can be further partitioned. The starting point is an initial space, computed by a function 7y, known
to contain all possible solutions to the given problem. The result, if any, is an optimal solution to the
problem. Because spaces can be very large, even infinite, they are rarely represented extensionally, but
instead by a descriptor of some type R. A relation € determines whether a given solution is contained in
a space.

The process of algorithm development using this theory consists of the following steps:

1. Formally specify the problem. Instantiate the types of GGS theory.

2. Develop a domain theory (usually associativity and distributivity laws) for the problem.

!'Such an approach is also the basis of branch-and-bound algorithms, common in Al
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3. Instantiate the abstract search-control operators in the program schema. This is often done by a
mechanically-assisted constructive theorem proving process called calculation that draws on the
domain theory formulated in the previous step

4. Apply further refinements to the program such as finite differencing, context simplification, partial
evaluation, and datatype refinement to arrive at an efficient (functional) program.

Our focus in this paper is on Step 3, in particular how to derive the dominance relation, but we also
illustrate Steps 1 and 2. Step 4 is not the subject of this paper. Specware [S], a tool from Kestrel
Institute, provides support for carrying out such correctness preserving program transformations. Details
can be found in [Smi90].

2.2 Specifications

A problem specification (Step 1) is a 6-tuple (D,R,C,i,0,c), where D is an input type (the type of the
problem instance data), R an output type (the type of the result), C a cost type, i : D — Boolean is pre-
condition defining what constitutes a valid input, o : D X R — Boolean is an output or post condition
characterizing the relationship between valid inputs and valid outputs. The intent is that an algorithm
for solving this problem will take any input x : D that satisfies i and return a solution z : R that satisfies
o (making it a feasible solution) for the given x. Finally ¢ : D x R — C is a cost criterion that the result
must minimize. When unspecified, C defaults to Nat and i to true. A constraint satisfaction problem is
one in which D specifies a set of variables and a value set for each variable, R a finite map from values
to variables, and o requires at least that each of the variables be assigned a value from its given value-set
in a way that satisfies some constraint.

2.3 Dominance Relations

A dominance relation provides a way of comparing two spaces in order to show that one will always
have a cheaper best solution than the second. The first one is said to dominate the second, and the second
can be eliminated from the search. Dominance relations have a long history in operations research,
[BS74, Iba77]. For our purposes, let 7 be a partial solution in some type of partial solutions R, and let
7@ e be a partial solution obtained by “extending” the partial solution with some extension e : ¢ for some
problem-specific type ¢ using an operator @ : Rxt— R. The operator ¢ has some problem-specific
definition satisfying Vz-z € 7@ e = z € 2. Lift 0 up to R by defining o(x,2) = Iz - x(2,2) A o(x,z).
Similarly, lift ¢ by defining ¢(x,z) = ¢(x,z) exactly when 3!z - x(z,z). Then

Definition 1. Dominance is a relation 6 C D x R? such that:
Vx,2,7 - 8(x,2,7) = (Ve' - o(x,7 @ €)= Fe - o(x,7Pe) A c(x,2®e) < c(x,7 De'))

Thus, 6 (x,z,7') is sufficient to ensure that Z will always lead to at least one feasible solution cheaper
than any feasible solution in Z’. For readability, 6(x,Zz,Z’) is often written 20,z . Because dominance in
its most general form is difficult to demonstrate, we have defined a stronger form of dominance which is
easier to derive. This stronger form of dominance is based on two additional concepts: Semi-congruence
and extension dominance, which are now defined.

Definition 2. Semi-Congruence is a relation ~~C D X R? such that
Vx,Ve,2,7 -~ (x,2,7) = o(x,7 ©e) = o(x, 70 e)

That is, semi-congruence ensures that any feasible extension of 7' is also a feasible extension of Z. For
readability, ~ (x,Z,7') is written Z~-, 7.
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And

2

Definition 3. Extension Dominance is a relation &6 C D x R“ such that

¥r,e27 - 3(x57) = o(xZ®e) Ao(xT De) = c(xT@e) < c(x,F De)

That is, extension dominance ensures that one feasible completion of a partial solution is no more expen-
sive than the same feasible completion of another partial solution. For readability, 6(x z,Z) is written
Zéxz Note that both ~~, and 6 are pre-orders. The following theorem and proposition show how the
two concepts are combined.

Theorem 2.1. Let ¢* denote the cost of the best feasible solution in a space. If ~ is a semi-congruence
relation, and 8 is an extension dominance relation, then

Vx,2,7 - 2002 AT~ 7 = ¢ (%,2) < " (x,7)
Proof. See Appendix |

It is not difficult to see that 6, ~», is a dominance relation.The following proposition allows us
to quickly get an extension dominance relation for many problems. We assume we can apply the cost
function to partial solutions.

Proposition 1. If the cost domain C is a numeric domain (such as Integer or Real) and c(x,Z7 P e) can
be expressed as ¢(x,Z) + k(x,e) for some functions ¢ and k then 8, where 78,7 = ¢(x,2) < ¢(x,7) is an
extension dominance relation.

Proof. See Appendix O

In addition to the dominance requirement from Theorem 2.1, there is an additional condition on 8,
[NSC10]:

i(x)A\(Fz€T-0(x,2)) =
(3" - e(Z ) No(x,Z*) Ae(x,2") = " (F)) VIS <, VS <, 7 - 57 6,5 (2.1)

This states that, assuming a valid input x, an optimal feasible solution z* in a space 7 that contains feasible
solutions must be immediately extractable or a subspace 5* of 7 must dominate all the subspaces of 7.

24 Notation

The following notation is used throughout the paper: +— is to be read as “instantiates to”. A type decla-
ration of the form {a: T,b: U,---} where T and U are types denotes a product type in which the fields
are accessed by a,b, ... using a “dot” notation o0.a,0.b, etc. An instance of this type can be constructed
by {a =v,b=w,...} where v,w,--- are values of type T,U,--- resp. The notation o{a; =v,a; =w,...}
denotes the object identical to o except field a; has the value v, a; has w, etc. [T] is the type of lists of
elements of type T', as; accesses the ith element of a list as, [a] constructs a singleton list with the element
a, [a| as] creates a list in which the element a is prefixed onto the list as, and as++bs is the concatenation
of lists as and bs, as — bs is the list resulting from removing from as all elements that occur in bs. first
and last are defined so that for a non-empty list as = first(as)-++[last(as)]. Similarly, {T'} is the type of
sets of elements of type T'. T~ U is the type of finite maps from 7" to U .
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3 A Process For Deriving Greedy Algorithms

We first illustrate the process of calculating ~» and S by reasoning backwards from their definitions on a
simple example.

Example 1. Activity Selection Problem [CLRSO1]

Suppose we have aset S = {a;,a,...,a,} of n proposed activities that wish to use a resource,
such as a lecture hall, which can be used by only one activity at a time. Each activity a; has a
start time s; and finish time f; where 0 <s; < f; < . If selected, activity a; takes place in the
half-open time interval [s;, f;). Activities a; and a; are compatible if the intervals [s;, f;) and
[sj, fj) do not overlap. The activity selection problem is to select a maximum-size subset of
mutually compatible activities.

Step 1 is to formally specify the problem. The input is a set of activities and a solution is subset of that
set. Every activity is uniquely identified by an id and a start time (s) and finish time (f). The output
condition requires that activities must be chosen from the input set, and that no two activities overlap.
For convenience we define a precedence operator < :

D +— {Activity}
Activity ={id : Nat,s : Nat, f : Nat}

R +— {Activity}

o — A(x,z) - noOvp(x,z) ANz C x
noOvp(x,z) =Vi,je€z-i# j=i=jV j=3i
I j=if<]s

¢ = Alxz) -]

In order to devise a greedy algorithm, the question is what should the basis be for an optimal local choice?
Should we always pick the activity that starts first? Or the activity that starts last? Or the activity that
overlaps the least number of other activities? Or something else? We now show how to systematically
arrive at the answer.

Most of the types and operators of GGS theory are straightforward to instantiate. We will just set
R to be the same as R. The initial space is just the empty set. The subspace relation < splits a space
by selecting an unchosen activity if one exists and adding it to the existing partial solution. The extract
predicate ) can extract a solution at any time:

R — R

o — Ax-0

< — A(x7,7) -Jaex—-7-7=7U{a}
x — A7) z2=7

b - ?

6 — ?

The tricky bit is finding bindings for d and @ to complete the instantiation, which we will do in step 3.
First, in step 2 we explore the problem and try and formulate a domain theory. The composition operator
@ is just U. The < relation can be lifted up to sets of activities by defining the start and finish times of a
set of activities, namely (u®v).f = max{u.f,v.f} and (1®v).s = min{u.s,v.s}. The following theorem
will come in handy:

Theorem 3.1. n0Ovp(s) <3sy,...5, S5 -5 =Ujcic,SiAN(Vi- 1 <i<n=s5; < si1 AnoOvp(s;)) A
noOvp(s,)
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o(x,y®{a}®e)

= {defn}

noOvp(yU{a}Ue) A\yU{a}Ue Cx

< {Theorem 3.1 above}

y={a} 2 eAnoOvp(y) AnoOvp(e) N\yU{a}Ue Cx
< {noOvp(y) AnoOvp(e) ANyUe C x by assumption }
y={a} Renacx

< {y={d'} < e, apply transitivity }
y={a}haf<d.frhaex

Figure 3.1: Derivation of semi-congruence relation for Activity Selection

This says that any set of non-overlapping activities can be partitioned into internally non-overlapping
subsets that follow each other serially.

For Step 3, we instantiate Definition 2 and reason backwards from its consequent, while assuming the
antecedent. Each step of the derivation is accompanied by a hint (in {}) that justifies the step. Additional
assumptions made along the way form the required semi-congruence condition. First note that a solution
7 # 0 can be expressed as yU{d'} Ue or alternatively y& {d' } @ e, for some y,d’, e, such that, by Theorem
3.1,y = {d'} < e. Now consider the feasibility of a solution y@ {a} @ e, obtained by switching out a’ for
some a, assuming o(x,y® {d'} @ e) as shown in Fig. 3.1

That is, y® a can be feasibly extended with the same feasible set of activities as y @ a’ provided y
finishes before a starts and a finishes before @’ finishes and a is legal. By letting y a and y @D a' be
subspaces following a split of y this forms a semi-congruence condition between y@® a and y@ a’. Since
c is a distributive cost function, and all subspaces of a given space are the same size, the dominance
relation equals the semi-congruence relation, by Proposition 1. Next, instantiating condition 2.1, we
need to show that if y contains feasible solutions, then in the case that any solution immediately extracted
from y is not optimal, (ie. the optimal lies in a subspace of y) there is always a subspace y & a that
dominates every extension of y. Unfortunately, the dominance condition derived is too strong to be able
to establish the instantiation of 2.1. Logically, what we established is a sufficient dominance test. That
isy=<{atha.f<d.fracx=y®{a}dy®{d}. How can we weaken it? This is where the filter ®
comes in. The following theorem shows how to construct a simple dominance relation from a filter:

Theorem 3.2. Given a filter ® satisfying V7 - (3z €7 - o(x,2)) = ®(x,7), " P(x,7) = Vz - 26, 7.

The theorem says that a space that does not pass the necessary filter is dominated by any space.On
a subspace y® ', one such filter (that can be mechanically derived by a tool such as KIDS [Smi90]) is
y =< {d’'}. Now, we can combine both dominance tests with the 1st order variant of the rule (p = rAg =
r) = (pVq=r) ,reasoning backwards as we did above as shown in Fig. 3.2.

The binding for m above shows that 2.1 is satisfied by picking an activity in x — y with the earliest fin-
ish time, after overlapping activities have been filtered out. Note how in verifying 2.1 we have extracted
a witness which is the greedy choice. This pattern of witness finding is common across many examples.
The program schema in Alg. 1 can now be instantiated into a greedy solution to the Activity Selection
Problem.

In contrast to our derivation, the solution presented in [CLRSO01] starts off by assuming the tasks are
sorted in order of finishing time. Only after reading the pseudocode and a proof is the reason for this
clear (though how to have thought of it a priori is still not!). For us, the condition falls out of the process
of investigating a possible dominance relation. Note that had we partitioned the solution y& {d'} ® e
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daex—yNd ex—y - yDad,ydd
={y={a}rnaf<d.fracx=TFo{atoyo{d} & £{d} =@ {a} o 5@ {d'}}
Jaex—yVd ex—y-yL{d}v(=2{a}ha.f<d.f)

= {logic}

Jaex—y-y=2{a}A\Vd ex—y-y={d}=af<d.f

= {logic}

Jacx—y-y={a}A\Vd ex—yn{b|y={b}} -a.f<d.f
={definea<b=a.f <b.f}

Jaex—y - y={a}A\Vd ex—yn{b|y={b}} m<d =af<d.f
where m = min< x—yN{b |y < {b}}

= {law for monotone p: (Vx€ S -m<x= p(x)) = p(m)}
Jaex—y-y=<{a} Na.f <m.f where m =mincx—yN{b |y =<{b}}
= {law for anti-monotone p: (xS -m <xAp(x))=p(m)}

m.f <m.f where m = mincx—yN{b |y < {b}}

true

Figure 3.2:

differently as e < {a'} <y, we would have arrived at an another algorithm that grows the result going
backwards rather than forwards, which is an alternative to the solution described in [CLRSO1].

Next we apply our process to the derivation of a solution to a fairly non-trivial problem, that of
determining optimum prefix-free codes.

Example 2. Prefix-Free Codes

Devise an encoding, as a binary string, for each of the characters in a given text file so as to
minimize the overall size of the file. For ease of decoding, the code is required to be prefix-
free, that is no encoding of a character is the prefix of the encoding of another character (e.g.
assigning “0” to ’a’ and “01” to ’b’” would not be allowed).

D.A. Huffman devised an efficient greedy algorithm for this in 1952. We show how it can be system-
atically derived. Step 1 is to specify the problem. The input is a table of character frequencies, and the
result is a table of bit strings, one for each character in the input, satisfying the prefix free property.

D +— Char — Frequency

Char = Frequency = Nat

Char — [Boolean|

Ax,z. dom(z) = dom(x) AVc # ¢’ € dom(z) - —prefixOf (z(c),z(c'))
prefixOf (s,t) = Ju - t = s+HuVs=t+u

c = Axz ECEdom(z) HZ(C)H X)C(C)

Often a good way of ensuring a condition is to fold it into a data structure. Then the rules for
constructing that data structure ensure that the condition is automatically satisfied. It turns out that a
binary tree in which the leaves are the letters, and the path from the root to the leaf provides the code for
that letter, ensures that the resulting codes are automatically prefix-free”. One obvious way to construct

R
o

—
—

21t is possible to systematically derive this datatype by starting with an obvious datatype such as a set of binary strings and
folding in a required property such as prefix-freeness. However, we do not pursue that here
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___________ c
Extension, e /K’ b

Partial
solution
[s,w,t,uv]

Figure 3.3: An extension applied to a partial solution with 5 trees

such a tree is by merging together smaller trees. This will be the basis of the < relation: the different
subspaces arise from the #(¢ — 1) /2 choices of pairs of trees to merge, where 7 is the number of trees at
any point in the search. The starting point 7y is the ordered collection of leaves representing the letters.
The extract predicate ) checks there is only one tree left and generates the path to each leaf (character)
of the tree, which becomes the code for that character. With this information, we can instantiate the
remaining terms in GGS, except for 6 ({) is the non-elementaryBinTree constructor)

[BinTree]

Ax - asList(dom(x))

AxzZ) - Isrez? =[(s,1) | T—s5—1)]

A(z,2) - ||zl = L AVp € paths(Z) - z(last(p)) = first(p)
paths((s,t)) = (map prefix0 paths(s) )+ (map prefixI paths(t))
paths(l) = [I]

prefix0(p) = [0 p, prefixi(p) = [1] p]

O — true

6 — ?

1111

XA =y

One interesting difference between this problem and the Activity Selection problem is that every
subspace leads to a feasible solution. For that reason, ® is just frue. It is not obvious what the crite-
rion should be for a greedy choice. Should it be to combine the trees with the least number of leaves,
or those with the least height, or something else? To proceed with our process and apply Defs. 2 and
3, we will define @ as a left-associative binary operator whose net effect is to merge two BinTrees
from its left argument together into another BinTree. The right argument specifies which trees are to
be merged. That is, 2 (i, j) = [(Z,2j) | 2— 2% —2;]. For example, Fig 3.3 shows the merger of trees
s and ¢ and the merger of trees u# and v in a partial solution 7 to form two subtrees with roots a and b.
This is described by the expression (7@ (1,3)) ®(3,4) =7® (1,3) @ (3,4). The extension in this case is
(1,3) (3,4). A semi-congruence condition is shown in Fig. 3.4. Assuming o(x,7 & ¢) and a definition
of lvs(z) = map last (paths(Z)). (Note we omit the remainder of the output condition since it is implied by
the Binary Tree construction) This says that any two partial solutions of the same size are extensible with
the same feasible extension. This semi-congruence condition is trivially satisfied by any two subspaces
of a split. For the extension dominance condition, it is easy to show that c(x,Z® e) can be expressed as
¢(x,z) + k(x,e) for some k where ¢(x,2) = l-lzvsl(z)‘ d(z)(i) - x(Ivs(z);) where d(z) is a function returning
the depth of its argument leaf within the tree Z, and therefore by Prop. 1, it is sufficient to determine
conditions under which ¢(x,z) < ¢(x,7'). However, if we try to calculate such a condition as we have
done for semi-congruence we will end up with an expression that involves the depths of individual leaves
in the trees. Is there a simpler form? We have been investigating ways to provide a developer with hints
about how to proceed. We call these factics. In earlier work [NSCO09] we introduced tactics for the
derivation of operators for non-optimization problems. We now introduce a tactic for dominance rela-
tions. We have used this tactic to derive greedy solutions for a number of problems, including Machine
Scheduling, several variations on the Maximum Segment Sum Problem,[NC09], Minimum Spanning
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o(x,zde)

= {defn of 0 on R}

Jz- x(z,2De) No(x,2)

= {defn of x,0}

Jz-||lzPel| = 1AVp € paths(z®e) - z(last(p)) = first(p) Ndom(z) =xN---
= {intro defn}

|lzde|| =1Adom(z) =xA---

where z = {last(p) — first(p) | p € paths(Z®e)}

< {o(x,7 ®e) = dom(7') = x where z = {last(p) — first(p) | p € paths(7 G e)}}
|Z@® el = 1 AasSet(Ivs(Z)) = asSet(Ivs(Z))

= {split does not alter set of leaves}

[Z®ell =1

={lz@el =zl = llell,|[Z ®ell = 1}

21 = 1IZ']

Figure 3.4: Derivation of extension dominance relation for Huffman problem

c(2) < (@)
= {unfold defn of ¢}
EVV” ( (s)(@) +h)-x(lvs(s);) + ‘M(t (d(r)(i) +h) - x(Ivs(1):)
it ((xn+mwmw>>+zwmwwmwo>ﬂswm
<
E|lvs u ( (u)(l) +h> ~X(lVS< )1) _i_EIlVS v |(d<v><l) h) -X(IVS(V)i>

+ S0 (@) (1) +2) - x(tvs(s)i) + 325 (@ (0) (1) +2) - x(Wvs(e)i)
= {algebra}

(h=2)- S x(vs(s)i) + (h—2) - 325 x(ivs(2),)
< (h—2)- 3 x(tvs(u)) + (h—2) - 350 x(ivs(v),)
= {al gebra}
S x(tvs(s)e) + SO x(@vs(e)) < S x(ivs () + S0 x(tvs(v)) AR > 2

Figure 3.5:

Tree, and Professor Midas’ Driving Problem.

Ezchange Tactic: Try to derive a dominance relation by comparing a partial solution y® a® o B b (as-
suming some appropriate parenthesization of the expression) to a variant obtained by exchanging a pair
of terms, that is, y® b ® a @ a, with the same parenthesization

Given a partial solution ¥, suppose trees s and ¢ are merged first, and at some later point the tree con-
taining s and ¢ is merged with a tree formed from merging u and v (tree satcubv in Fig. 3.3), forming
a partial solution Z. Applying the exchange tactic, when is this better than a partial solution 7' resulting
from swapping the mergers in Z, ie merging « and v first and then s and ¢? Let d(T); be the depth of leaf
iin atree T, and let & be the depth of s (resp. u) from the grandparent of u (resp. s) in Z (resp 7'), (the
distance from c to the root of s in Fig. 3.3). The derivation of the extension dominance relation is shown
in Fig. 3.5.

That is, if the sum of the frequencies of the leaves of s and ¢ is no greater than the sum of the
frequencies of leaves of u and v then s and ¢ should be merged before u and v. (The condition & > 2
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simply means that no dominance relation holds when (u,v) is immediately merged with (s,z). It is clear
in that case that the tree is balanced). How does this help us derive a dominance relation between two
subspaces after a split? The following theorem shows that the above condition serves as a dominance
relation between the two subspaces [(s,7) | (y—s—¢)] and [(u,v) | —u—V)]:

Theorem 3.3. Given a GGS theory for a constraint satisfaction problem, (3o - (Y& a P o ®b) O, (Y
bdada)=yPad ydb

By using a witness finding technique to verify condition 2.1 as we did for Activity Selection, we
will find that the greedy choice is just the pair of trees whose sums of letter frequencies is the least.
This is the same criterion used by Huffman’s algorithm. Of course, for efficiency, in the standard al-
gorithm, a stronger dominance test is used: Eyzvsl(s)lx(lvs(s)i) < Eyzvsl(”)‘x(lvs(u)i) A El‘.lzvsl(')‘x(lvs(t)i) <

y:”l(v) | x(Ivs(v);) and the sums are maintained at the roots of the trees as the algorithm progresses. We
would automatically arrive at a similar procedure after applying finite differencing transforms, [Smi90,
NCO09]. In contrast to our stepwise derivation, in most presentations of Huffman’s algorithm, (e.g.
[CLRSO01]) the solution is presented first, followed by an explanation of the pseudocode, and then several
pages of lemmas and theorems justifying the correctness of the algorithm. The drawback of the conven-
tional approach is that the insights that went into the original algorithm development are lost, and have to
be reconstructed when variants of the problem arise. A process for greedy algorithm development, such
the one we have proposed here, is intended to remedy that problem.

4 Related Work

Curtis [Cur03] has a classification scheme for greedy algorithms. Each class has a some conditions that
must be met for a given algorithm to belong to that class. The greedy algorithm is then automatically
correct and optimal. Unlike Curtis, we are not attempting a classification scheme. Our goal is to simplify
the process of creating greedy algorithms. For that reason, we present derivations in a calculational style
whenever the exposition is clear. In contrast, Curtis derives the “meta-level” proofs, namely that the
conditions attached to a given algorithm class in the hierarchy are indeed correct, calculationally but the
“object-level” proofs, namely those showing a given problem formulation does indeed meet those con-
ditions, are done informally. We believe that this should be the other way around. The meta-level proofs
are (hopefully) carried out only a few times and are checked by many, but the object level proofs are car-
ried out by individual developers, and are therefore the ones which ought to be done calculationally, not
only to keep the developer from making mistakes but also with a view to providing mechanical assistance
(as was done in KIDS, a predecessor of Specware). Another difference between our work and Curtis is
that while Curtis’s work is targeted specifically at greedy algorithms, for us greedy algorithms are just a
special case of a more general problem of deriving effective global search algorithms. In the case that the
dominance relation really does not lead to a singleton choice at each split, it can still prove to be highly
effective. This was recently demonstrated on some Segment Sum problems we looked at, [NC09]. Al-
though the dominance relation we derived for those problem did not reduce to a greedy choice, it was
nonetheless key to reducing the complexity of the search (the width of the search tree was kept constant)
and led to a very efficient breadth-first solution that was much faster than comparable solutions derived
by program transformation.

Another approach has been taken by Bird and de Moor [BM93] who show that under certain con-
ditions a dynamic programming algorithm simplifies into a greedy algorithm. Our characterization in
[NSC10] can be considered an analogous specialization of (a form of) branch-and-bound. The difference
is that we do not require calculation of the entire program, but specific operators, which is a less onerous
task.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 106



Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

Helman [Hel89] devised a framework that unified branch-and-bound and dynamic programming.
The framework also incorporated dominance relations. However, Helman’s goal was the unification of
the two paradigms, and not the process by which algorithms can be calculated. In fact the unification,
though providing a very important insight that the two paradigms are related at a higher level, arguably
makes the derivation of particular algorithms harder.

Charlier [Cha95], also building on Smith’s work, proposed a new algorithm class for greedy algo-
rithms that embodied the matroid axioms. Using this class, he was able to synthesize Kruskal’s MST
algorithm and a solution to the 1/1/ 3 T; scheduling problem. However he reported difficulty with the
equivalent of the Augmentation (also called Exchange) axiom. The difficulty with a new algorithm class
is often the lack of a repeatable process for synthesizing algorithms in that class, and this would appear
to be what Charlier ran up against. In contrast, we build on top of the GSO class, adding only what is
necessary for our purposes. As a result we can handle a wider class of algorithms than would belong in
Charlier’s Greedy class, such as Prim’s and Huffman’s.
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5 Appendix: Proofs of Theorems

5.1 Proofs of Theorem 2.1 and Proposition 1:

Theorem 2.1: If ~~ is a semi-congruence relation, and J is a extension dominance relation, then
A A A N~ ~ ~ ~
VX, V2,7 - 202 N2~ 7 = ¢ (%,2) < (%,7)

Proof. By contradiction. (input argument x dropped for readability). Suppose that ng? A7~y 7 but
A7* €7, 0(Z*) Ne(Z*) < ¢*(2), that is ¢(Z*) < ¢(z) for any feasible z € 7. We can write 7* as 7 G e for
some e. Since z"* is cheaper than any feasible z € Z, specifically it is cheaper than z = Z® e, which by the
semi-congruence assumption and Definition 2, is feasible. But by the extension dominance assumption,
and Definition 3, this means ¢(z) < ¢(2"*), contradicting the initial assumption. O

Proposition 1: If the cost domain C is a numeric domain (such as Integer or Real) and ¢(x,Z D e)
can be expressed as ¢(x,Z) + k(x, e) for some functions ¢ and k then &, where 76,7 = ¢(x,z) < ¢(x,7) is
an extension dominance relation

Proof. By showing that Definition 3 is satisfied. c(Z®e) < c(Z @ e) = ¢(2) +k(e) < c(Z) +k(e) by
distributivity of ¢ which is just ¢(z) < ¢(Z') after arithmetic. O
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