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Abstract

We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchron-
ization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide
synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for
sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock
drift and network propagation delays. They must be able to read the value of a local clock and as-
sign it to another local clock. Such operations are not directly supported by the theory of Timed
Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification lan-
guage with the integer clock derived type. Integer clocks, which are essentially integer variables that
are periodically incremented by a global pulse generator, greatly facilitate the encoding of the opera-
tions required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of
TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchroniza-
tion and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks
can be used to capture clock drift and resynchronization during protocol execution.

1 Introduction

A sensor network is a collection of spatially distributed, autonomous sensing devices, used to perform a
cooperative task. Sensor networks are widely deployed for unmanaged and decentralized operations such
as military operations, surveillance, and health and environmental monitoring. Sensor networks differ
from traditional distributed networks in their stringent resource constraints, network dynamics, node
failure, and intermittent communication links. Consequently, protocols executing on sensor networks
must be robust and reliable.

Many high-level sensor applications depend on an underlying time-synchronization mechanism,
which provides network-wide time synchronization. Thus, protocols for time synchronization are critical
for sensor applications, and ensuring their correctness is of the utmost importance.

In this paper, we use the UPPAAL model checker [7] for Timed Automata to verify the correctness of
the Timing-sync Protocol for Sensor Networks (TPSN) [3]. TPSN is a time-synchronization protocol that
performs pair-wise node synchronization along the edges of a network spanning tree. The local clock of
a designated node, typically the root of the spanning tree, serves as the reference clock. Nodes may leave
or join the network. TPSN enjoys several advantages over other sensor network time-synchronization
protocols, including higher precision (less synchronization error) and the fact that its tree-based scheme
makes it well-suited for multi-hop networks.

Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arith-
metic on clock values in order to calculate clock drift and network propagation delays. They must be able
to read the value of a local clock and assign it to another local clock. Such operations are not directly
supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment
UPPAAL’s input language with the integer clock derived type. Integer clocks, which are essentially inte-
ger variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding
of the operations required to synchronize clocks as in the TPSN protocol.

With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol
achieves network-wide time synchronization and is devoid of deadlock. Our model additionally takes
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into account nodes entering and leaving the network. We also use the UPPAAL Tracer tool to illustrate
how integer clocks can be used to capture clock drift and resynchronization during protocol execution.

This paper is organized as follows. Section 2 offers a description of the TPSN [3] protocol. Sec-
tion 3 introduces the concept of integer clocks. Section 4 presents our UPPAAL model of TPSN; the
corresponding verification and simulation results are given in Section 5. Section 6 considers related
work, while Section 7 contains our concluding remarks. An online version of the paper, available from
www.cs.sunysb.edu/~sas/NFM10-full.pdf, contains an Appendix in which a complete UPPAAL
source-code listing of our TPSN model can be found.

2 The Timing-Sync Protocol for Sensor Networks

The Timing-sync Protocol for Sensor Networks (TPSN) aims to provide network-wide time synchroniza-
tion in a sensor network [3]. The TPSN protocol first establishes a hierarchical structure in the network.
It then achieves pair-wise synchronization along the edges of this structure such that all local clocks
synchronize to a reference node. A more detailed discussion of the two phases of TPSN is now given.

• Level-discovery phase: Level discovery occurs when the network is first deployed. In this phase,
a hierarchical structure (spanning tree) is established for the network in which every node is as-
signed a level. A distinguished node called the root node is assigned level 0 and initiates this
phase by broadcasting a level discovery packet containing the identity and level of the sender. The
immediate neighbors of the root node receive this packet and assign themselves a level one greater
than the level they have received; i.e., level 1. They then broadcast a new level discovery packet
containing their own level. This process is continued and eventually every node in the network is
assigned a level. After been assigned a level, a node neglects any future level discovery packets,
thereby ensuring that no flooding congestion takes place during this phase. Ultimately, a spanning
tree is created with the root node at level 0.

• Synchronization phase: The root node initiates the synchronization phase, during which pair-
wise synchronizations involving a level-i node and a level-(i−1) node are carried out using hand-
shake (two-way) message exchanges. Eventually, all nodes in the network synchronize their clocks
to that of the root node. Consider the synchronization of level-i node A and level-(i− 1) node B;
i.e., A is a child of B in the spanning tree and A is attempting to synchronize its clock with that
of B. The following sequence of messages comprise the handshake: A at local time T1 sends a
synchronization pulse packet containing its level number and the value of T1 to B. B receives this
packet at local time T2, where T2 = T1 + Δ + d, Δ is the clock drift between the two nodes, and
d is the propagation delay. B, at local time T3, sends back an acknowledgment packet to A con-
taining its level number and the values of T1, T2, and T3. Finally, A receives the acknowledgment
packet at local time T4. Assuming that the clock drift and the propagation delay do not change in
this small span of time, A can calculate the clock drift and propagation delay as:

Δ=
(T2−T1)− (T4−T3)

2
; d =

(T2−T1)+ (T4−T3)
2

Knowing the drift, A can correct its clock accordingly, so that it synchronizes to B.

The root node initiates the synchronization phase by broadcasting a time sync packet. Upon receiv-
ing this packet, nodes belonging to level 1 wait for a random amount of time before synchronizing
with the root node. Randomization is used to avoid contention at the MAC layer of the communi-
cations protocol stack. Upon receiving an acknowledgment, these nodes adjust their clock to the
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root node. Given that every level-2 node has at least one level-1 node in its neighbor set, nodes be-
longing to level-2 overhear this message exchange, upon which they wait for some random amount
of time before initiating the message exchange with level-1 nodes. This use of randomization is to
ensure that level-1 nodes have been synchronized before level-2 nodes begin the synchronization
phase. A node sends back an acknowledgment to a synchronization pulse only after it has synchro-
nized itself, thereby ensuring that multiple levels of synchronization do not occur in the network.
This process is carried out throughout the network, and consequently every node is eventually
synchronized to the root node.

• Special Cases: The TPSN algorithm employs heuristics to handle special cases such as a sensor
node joining an already established network, and nodes dying randomly. Node joining: This case
concerns a sensor node that joins an already-established network (in particular, after the level-
discovery phase is over) or that does not receive a level discovery packet owing to MAC-layer
collisions. In either case, it will not be assigned a level in the spanning tree. Every node, however,
needs to be a part of the spanning tree so that it can be synchronized with the root. When a
new node is deployed, it waits for some time to be assigned a level, failing which it timeouts and
broadcasts a level request message. Neighboring nodes reply to this request by sending their own
level. On receiving the levels from its neighbors, the new node assigns itself a level one greater
than the smallest level it has received, thereby joining the hierarchy. This is a local level-discovery
phase. Node dying: If a sensor node dies randomly, it may lead to a situation where a level-i
node does not possess a level-(i− 1) neighbor. In this case, the level-i node would not get back
an acknowledgment to its synchronization pulse packet, preventing it from synchronizing to the
root node. As part of collision handling, a node retransmits its synchronization pulse after some
random amount of time. After a fixed number of retransmissions of the synchronization pulse,
a node assumes that it has lost all its neighbors on the upper level, and therefore broadcasts a
level request message to discover its level. Assuming the network is connected, the node will have
at least one neighboring node and will receive a reply, after which The TPSN protocol considers
four retransmissions to be a heuristic for deciding non-availability of an upper-level neighbor.

If the node that dies is the root node, level-1 nodes will not receive an acknowledgment and hence
will timeout. Instead of broadcasting a level request packet, they run a leader-election algorithm
to determine a new root node. The newly elected root node re-initiates the level-discovery phase.

3 Integer Clocks

UPPAAL is an integrated tool environment for the specification, simulation and verification of real-time
systems modeled as networks of Timed Automata extended with data types. Primitive data types in
UPPAAL are: clock, bounded integer, boolean and channel. There are also two compound types: array
and structure, as in the C language. Timed Automata in UPPAAL are described as processes. A process
consists of process parameters, local declarations, states and transitions. Process parameters turn into
process-private constants when a process is instantiated. Local declarations describe the set of private
variables to which a running process has access. States correspond to the vertices of a Timed Automaton
in graphical form. Transitions are the edges connecting these vertices. A transition specifies a source and
destination state, a guard condition, a synchronization channel, and updates to private or global data. A
system in UPPAAL is the parallel composition of previously declared processes.
Clocks in Timed Automata A Timed Automaton is equipped with a finite set of clocks: variables
whose valuation is a mapping from variable name to a time domain. In the theory of Timed-Automata [1],
an assignment to a clock x is restricted to x→ R+, where R+ is a non-negative real domain. That is, a
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clock can only be assigned a constant value.
The UPPAAL model checker, which is based on the theory of Timed Automata, places similar restric-

tions on assignments to clocks. In UPPAAL, a clock is variable of type clock and can only be assigned
the value of an integer expression. Moreover, UPPAAL transition guards are limited to conjunctions of
simple clock conditions or data conditions, where a clock condition is a clock compared to an integer
expression or another clock, and a data condition is a comparison of two integer expressions.
Integer Clocks Many real-time systems require more clock manipulations than UPPAAL can provide.
For example, it is not possible in UPPAAL to read a clock value and send it as a message along a channel,
as is required, for example, in time-sychronization protocols such as TPSN and FTSP [8]. The reason is
that in UPPAAL, it is not possible to advance a clock by any arbitrary amount. Instead, when a transition
occurs, the resulting clock values, with the exception of those that are reset to zero by the transition, are
constrained only to lie within the region (convex polyhedron) formed by the conjunction of the invariant
associated with the transition’s source state and the transition guard. One therefore cannot in general
determine the exact value of a clock when a particular transition occurs.

To address this problem, we introduce the notion of an integer clock, which is simply an integer
variable whose value advances periodically. To enforce clock advance, we introduce a stand-alone Uni-
versal Pulse Generator (UPG) process which, at every time unit, broadcasts a signal (pulse) to all other
UPPAAL processes in the system. All processes having integer clocks are required to catch this signal
and increment their respective integer clocks. Using this mechanism, we mimic discrete-time clocks
that possess an exact desired value when a Timed Automaton transition occurs. Because integer clocks
are just integers whose valuations are under the control of the UPG, it is possible to directly perform
arithmetic operations on them as needed.

To improve code readability, we introduce the new derived type intclock as follows: typedef int
intclock; and the UPG process is given by:

broadcast chan time_pulse;
process universal_pulse_generator()
{ clock t;

state S { t <= 1 };
init S;
trans

S -> S { guard t == 1; sync time_pulse!; assign t = 0; }; }

Processes deploying integer clocks must, at every state, specify transitions (one per integer clock)
that respond to time_pulse events. For example, the following transition specifies a perfect (zero-drift)
integer clock x: S -> S { sync time_pulse?; assign x = x+1;}

In the following example, process A sends out its current clock value to another process B after
waiting a certain amount of time after initialization. Without using integer clocks, A’s clock cannot be
read.

chan AtoB;
meta int msg;
process A()
{

const int wait = 3;
meta intclock x;
state INIT, SENT;
init INIT;
trans

INIT -> INIT { sync time_pulse?; assign x = x+1; },/* time advance */
SENT -> SENT { sync time_pulse?; assign x = x+1; }, /* time advance */
INIT -> SENT { guard x >= wait; sync AtoB!; assign msg = x; };

}
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The drawback of using integer clocks is an increase (albeit modest) in model complexity, through the
addition of one process (the UPG) and the corresponding time-advance transitions, one for every state
of every process. The additional code needed to implement integer clocks is straightforward, and can be
seen as a small price to pay for the benefits integer clocks bring to the specification process.
Time Drift Time-synchronization protocols such as TPSN are needed in sensor networks due to the
phenomenon of time drift: local clocks advancing at slightly different rates. Time drift can be modeled
using integer clocks by allowing a process to either ignore or double-count a UPG pulse event after
a certain number of pulses determined by the time-drift rate (TDR). Integer clocks with time drift are
used in Section 4 to model a sensor network containing nodes with a positive TDR (pulse events are
double-counted periodically), a negative TDR (pulse events are ignored periodically), and a TDR of
zero (no time drift) for the root node. As we show in Section 5, the TPSN protocol achieves periodic
network-wide resynchronization with the root node.

For example, an integer clock having a TDR of 5 means that its value is incremented by 2 every 5
time units (and by 1 every other time unit). An integer clock having a TDR of -10 means that its value
remains unchanged every 10 time units. A TDR of 0 means that the integer clock strictly follows the
UPPAAL unit time-advance rate. The UPPAAL code for implementing integer clocks with TDR-based
time drift appears in function local_time_advance() of the TPSN specification; see Appendix A in
the online version of the paper.

4 Uppaal Model of TPSN

In this section, we use integer clocks to model TPSN in UPPAAL. In particular, we use integer clocks for
each node’s local time. We still, however, rely fundamentally on UPPAAL’s built-in clock type for other
modeling purposes, including, for example, the modeling of message channel delays. We consider a
sensor network whose initial topology is a ring of N nodes indexed from 0 to N−1. Each node therefore
has exactly two neighbors, and nodes are connected by communication channels. Node 0 is considered
to be the root node. Note that the choice of a ring for the initial topology is not essential. The TPSN
protocol constructs a spanning tree from the network topology, and the synchronization phase operates
over this spanning tree.

Nodes and channels are modeled as UPPAAL processes. A node process maintains information about
its neighbors, level in the spanning tree, parent, and local clock. Nodes send and receive packets through
the channels processes. We cannot simply use UPPAAL’s built-in chan type to model channels because
we need to model the delay in the network, which is required in the protocol. Upon sending or receiving
packets, a node switches its state and alter its data accordingly.

A node process takes three parameters, its id and the id of its two neighbors, and is declared in UP-
PAAL as follows: process node(int[0,N-1] id, int[0,N-1] neighbor1, int[0,N-1] neighbor2)

Channels also have ids. Channel k represents the communication media surrounding node k, and
therefore is only accessible to node k and its neighbors.
Using Integer Clocks The TPSN protocol involves clock-value reading (a parent node sends its local
time to a child node during the synchronization phase) and clock-value arithmetic (calculating Δ and
d). We use integer clocks to model these operations. In a node process, we declare an integer clock as:
meta intclock local_time;

A node process has seven states. There are therefore seven time-advance transitions in its specifica-
tion; e.g. initial -> initial { sync time_pulse?; assign local_time = local_time+1; }

Level-Discovery Phase Three UPPAAL states are used to model the level-discovery phase: initial,
discovered, discovered-neighbors. When the system starts, all nodes except the root enter the
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initial state. The root goes directly to the discovered state, which indicates that a node has ob-
tained its level in the hierarchy (zero for the root). After a certain delay, the root initiates the level-
discovery phase by broadcasting a level_discovery message to its neighbors and then enters the
discovered-neighbors state, means it has done the task to discover its neighbors’ level. A node in
the initial state enters the discovered state upon receiving a level_discovery message, or sim-
ply ignores this message if it is already in discovered or discovered-neighbors state. A node in
the discovered state waits for some delay and then emits a level_discovery, changing its state to
discovered-neighbors. As described in Section 2, this procedure will occur all over the network
until eventually all nodes are in the discovered-neighbors state, indicating the entire network is
level-discovered.

In our model, there are only two level-discovery transitions: from initial to discovered and from
discovered to discovered-neighbors. Consider, for example, the former, which occurs upon receipt
of a level_discovery message:

initial -> discovered {
select i:int[0,N-1];
guard level == UNDEF && neighbors[i];
sync lev_recv[i]?;
assign level = msg1[i]+1, parent = i;

},

If a node is not yet discovered (guard level == UNDEF) and the level_discovery message
(through channel lev_recv[i]) is sent by its neighbor (guard neighbor[i]), then it sets its level
to one greater than its neighbor’s level (msg1[i]+1); i.e. this neighbor becomes its parent.
Synchronization Phase We consider state discovered-neighbors to be the initial state of the syn-
chronization phase, and introduce four additional states: sync-ready, sync-sent, sync-received
and synchronized. The root, which is the absolute standard of time, broadcasts a time_sync mes-
sage to its neighbors, and then goes directly from discovered-neighbors to synchronized. The
time_sync message notifies the root’s children that they can now synchronize with their parent. The
root’s children then transit from discovered-neighbors to sync-ready (see Section 2). A node in
the sync-ready state will send a synchronization_pulse to its parent and then enter sync-sent.
The parent, which must be already synchronized, goes from synchronized to sync-received, where
it will remain for a certain amount of delay. When the delay is over, it returns to the synchronized state
and sends an acknowledgment message to the child. The child then adjusts its local clock using the
information carried in these messages and goes to the synchronized state. All of these messages are
actually broadcasted, which allows a child’s child to overhear the synchronization_pulse message
and turn itself into sync-ready. The state transition diagram for this phase is depicted in Figure 1.

discovered- 
neighbors 

sync-ready sync-sent 

synchronized sync-received 

Figure 1: State Transition Diagram for the Synchronization Phase
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For example, consider the transition a node makes from sync-sent to synchronized upon receipt
of an acknowledgment message:

sync_sent -> synchronized {
select i:int[0,N-1];
guard id != ROOT_ID && i == parent;
sync ack_recv[i]?;
assign adjust_local_time();

}

This transition occurs if the node is not the root (guard id != ROOT_ID) and the incoming ack-
nowledgment message is from its parent as determined during level-discovery (guard i==parent).
The transition’s affect is to adjust the node’s local time (an integer clock) by calling function ad-
just local time(), which simply calculates the time drift Δ and adds Δ to local_time.
Time Drift TPSN addresses time drift in a sensor network by periodically performing resynchro-
nization to ensure that each node’s local clock does not diverge too much from the root. Since we have
modeled local clocks using integer clocks, we cannot use arbitrary rational numbers for the TDR. Rather,
we let the root advance its local clock at the pace of the UPG-generated pulse events and non-root nodes
either skip or double-count a pulse after every certain number of pulses determined by an integer TDR.
Since the TDR is fixed for each node, time drift appears linear in the long run. Figure 2 illustrates
integer-clock-based time drift in a 5-node sensor network having respective TDRs [0,−8,10,16,−10].
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Figure 2: Integer-clock-based Time Drift

Resynchronization The resynchronization phase is almost identical to the synchronization phase ex-
cept that the root will periodically jump from the synchronized state to the discovered-neighbor state.
As in the synchronization phase, the root will soon re-enter the synchronized state and re-broadcast
time_sync. We also let nodes in the synchronized state return to the sync-ready state on receiv-
ing time_sync or synchronization_pulse. Thus, another time_sync message will trigger another
round of the synchronization phase, which is precisely the intent of resynchronization. The primary issue
here is to set the resynchronization interval long enough to ensure synchronization has first completed.
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System The system-level specification consists of N nodes, N channels, and the UPG processes:

n0 = node(0,1,2); n1 = node(1,0,3); n2 = node(2,0,4); n3 = node(3,1,4); n4 = node(4,2,3);
c0 = channel(0); c1 = channel(1); c2 = channel(2); c3 = channel(3); c4 = channel(4);
system n0, n1, n2, n3, n4, c0, c1, c2, c3, c4, universal_pulse_generator;

The choice of node-process parameters reflects the initial ring topology we are considering for the sys-
tem. The system definition can be easily scaled using the process-parameter mechanism, as long as one
carefully sets the neighbors of each node.

5 Simulation and Verification Results

We verified our model of the TPSN protocol given in Section 4, including the level-discovery, synchro-
nization and periodic-resynchronization phases, using the UPPAAL model checker. We regard the root
node as the node with the ideal clock (zero time drift) and all other nodes have (distinct and fixed) pos-
itive and negative TDRs. Since nodes are initially unsynchronized, each node is given a different initial
clock value. Our model is also parameterized by the minimum and maximum node-response delay (20
and 40, respectively), channel delay (4), and minimum and maximum resynchronization interval (10 and
20, respectively), for which we have provided appropriate values.
Simulation Results We used the UPPAAL TRACER tool, and a resynchronization interval of 200 time
units, to obtain simulation results for our model with periodic resynchronizations of the local clocks of
all nodes. Figure 3 is obtained by extracting the local clock values of all nodes from a random simulation
trace. This was accomplished by first saving the history of states to a trace file and then using the
external program UPPAAL TRACER to convert the data in the trace file into to a readable form. Figure 2
of Section 4 was obtained similarly.
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Figure 3: Integer Time Drift with a resynchronization interval of 200 time units

In Figure 3, plotting starts at time 30 since the root’s starting clock value is set to 30. Between
time 30 and 100, the network executes the level-discovery phase. The synchronization phase takes place
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approximately between time 100 and 120. From there, all local clocks advance at their own rate, which,
as can be seen, consists of four relative clocks each having a distinct TDR. At time 300, and then again at
time 500, the system performs a resynchronization, which brings non-root local-clock values very close
to 0. Notice that different nodes get synchronized at different times. Nodes 1 and 2 are synchronized at
the same time because they are adjacent to the root. Nodes 3 and 4 are synchronized after them because
of node response time and packet delay.
Verification Results We used UPPAAL to verify the following properties of our model. (Correctness
properties can be specified in UPPAAL using a subset of the CTL temporal logic.)

No Deadlock: A[]not deadlock
Absence of deadlock.

Synchronized: A[](<>ni.state == synchronized)
All nodes enter a synchronized state at least once. This implies that the level-discovery and syn-
chronization phases are correctly implemented.

Relative Time Bounded: A[]abs(ni.local clock−n0.local clock) < X
A node’s local time relative to the root is bounded at all times (X = 25), which implies correct
repeated resynchronization.

Relative Time Close: A[](<>abs(ni.local clock−n0.local clock) < Y )
A node’s relative time will always eventually get very close to 0 (Y = 5), another implication of
correct repeated resynchronization.

We used UPPAAL to perform model checking of these properties on networks having N = 3− 5
nodes. The corresponding verification results (CPU time and memory usage) are given in Table 1. In all
cases, UPPAAL reported that the four properties are true. (The second and fourth properties, which are
“infintiely often” properties, are verified only up to the time bound determined by the maximum UPPAAL
integer value of 32,767.) All results are obtained on a Linux PC with a 2GHz Intel Pentium CPU and
2GB memory. UPPAAL’s default settings were used.

N No Deadlock Synchronized Relative Time Bounded Relative Time Close
3 0.61sec/21MB 2.06sec/24MB 0.62sec/21MB 2.11sec/24MB
4 6.5sec/22MB 68.0sec/31MB 6.7sec/22MB 70.2sec/31MB
5 6.1min/126MB 214.9min/181MB 6.3min/126MB 236.4min/181MB

Table 1: Verification Results: Time and Memory Usage

6 Related Work

In [6], the FTSP flooding-time synchronization protocol) for sensor networks has been verified using
the SPIN model checker. Properties considered include synchronization of all nodes to a common root
node, and eventually, all nodes get synchronized, for networks consisting of 2-4 nodes. In [4], UPPAAL
has been used to verify a time-synchronization protocol for a time-division-multiple-access (TDMA)
communication model. The aim of this protocol is to ensure that the clocks of nearby (neighboring) nodes
are synchronized. UPPAAL has also been used to demonstrate the correctness of the LMAC medium
access control protocol for sensor networks [11], and the the minimum-cost forwarding (MCF) routing
protocol [12] for sensor networks [5].
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Time-triggered systems are distributed systems in which the nodes are independently-clocked but
maintain synchrony with one another. In [9], real-time verification of time-triggered protocols has been
performed using a combination of mechanical theorem proving, bounded model-checking and SMT
(satisfiability modulo theories) solving. Calendar automata, which use sparse-time constraints, are used
in [2] for the modeling and verification of the fault-tolerant, real-time startup protocol used in the Timed
Triggered Architecture [10].

7 Conclusions

We used the UPPAAL model checker for Timed Automata to obtain a number of critical verification
results for the TPSN time-synchronization protocol for sensor networks. Clock-synchronization algo-
rithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate
clock drift and network propagation delays. They must be able to read the value of a local clock and
assign it to another local clock. The introduction of the integer clock (with time drift) derived UPPAAL
type greatly facilitated the encoding of these operations, as they are not directly supported by the theory
of Timed Automata. We also used the UPPAAL TRACER tool to illustrate how integer clocks can be used
to capture clock drift and resynchronization during protocol execution.
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