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Abstract

Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them
many are caused by improper use of regular replacement. This paper presents a precise modeling
of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant,
using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able
to solve atomic string constraints, which can be applied to both the forward and backward image
computation in model checking and symbolic execution of text processing programs. We report
several interesting discoveries, e.g., certain fragments of the general problem can be handled using
less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a
string constraint solver. It is applied to detecting vulnerabilities in web applications.

1 Introduction

User input sanitation has been widely used by programmers to assure robustness and security of software.
Regular replacement is one of the most frequently used approaches by programmers. For example,
at both client and server sides of a web application, it is often used to perform format checking and
filtering of command injection attack strings. As software bugs in user input sanitation can easily lead to
vulnerabilities, it is desirable to employ automated analysis techniques for revealing such security holes.
This paper presents the finite state transducer models of a variety of regular replacement operations,
geared towards automated analysis of text processing programs.

One application of the proposed technique is symbolic execution [10]. In [3] we outlined a unified
symbolic execution framework for discovering command injection vulnerabilities. The target system
under test is executed as usual except that program inputs are treated as symbolic literals. A path condi-
tion is used to record the conditions to be met by the initial input, so that the program will execute to a
location. At critical points, e.g., where a SQL query is submitted, path conditions are paired with attack
patterns. Solving these constraints leads to attack signatures.

1 <?php
2 $msg = $ POST [ ”msg” ] ;
3 $ s a n i t i z e d = p r e g r e p l a c e ( ”/\< s c r i p t .∗?\> .∗?\<\/ s c r i p t .∗?\> / i ” , ” ” , $msg ) ;
4 s a v e t o d b ( $ s a n i t i z e d )
5 ?>

Listing 1: Vulnerable Sanitation against XSS Attack

In the following, we use an example to demonstrate the idea of the above research and motivate the
modeling of regular replacement in this paper. Consider a PHP snippet in Listing 1, which takes a mes-
sage as input and posts it to a bulletin. To prevent the Cross-Site Scripting (XSS) attack, the programmer
calls preg replace() to remove any pair of <script> and </script> tags. Unfortunately, the pro-
tection is insufficient. Readers can verify that <<script></script>script>alert(’a’)</script>
is an attack string. After preg replace(), it yields <script>alert(’a’)</script>.

We now show how the attack signature is generated, assuming the availability of symbolic execution.
By symbolically executing the program, variable $msg is initialized with a symbolic literal and let it be
x. Assume α is the regular expression <script.*?>.*?</script.*?> and ε is the empty string. After
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line 3, variable $sanitized has a symbolic value represented by string expression x−α→ε , and it is a
replacement operator that denotes the effects of preg replace, using the reluctant semantics (see “∗?”
in formula). Then at line 4 where the SQL query is submitted, a string constraint can be constructed as
below, using an existing attack pattern. The equation asks: can a JavaScript snippet be generated after
the preg replace protection?

x−α→ε ≡ <script.*?>alert(’a’)</script.*?>

To solve the above equation, we first model the reluctant regular replacement x−α→ε as a finite state
transducer (FST) and let it beA1. The right hand side (RHS) of the equation is a regular expression, and
let it be r. It is well known that the identity relation Id(r) = {(w,w) | w ∈ L(r)} is a regular relation that
can be recognized by an FST (let it be A2). Now let A be the composition of A1 and A2 (by piping the
output tape of A1 to input tape of A2). Projecting A to its input tape results in a finite state automaton
(FSA) that represents the solution of x.

Notice that a precise modeling that distinguishes the various regular replacement semantics is nec-
essary. For example, a natural question following the above analysis is: If we approximate the reluctant
semantics using the greedy semantics, could the static analysis be still effective? The answer is negative:
When the *? operators in Listing 1 are treated as *, the analysis reports no solution for the equation, i.e.,
a false negative report on the actually vulnerable program.

In this paper, we present the modeling of regular replacement operations. §2 covers preliminaries.
§3 and §4 present the modeling of various regular replacement semantics. §5 introduces tool support. §6
discusses related work. §7 concludes.

2 Preliminaries
This section formalizes several typical semantics of regular substitution, and then introduces a variation
of the standard finite state transducer model. We introduce some notations first. Let Σ represent the
alphabet and R the set of regular expressions over Σ. If ω ∈ Σ∗, ω is called a word. Given a regular
expression r ∈ R, its language is denoted as L(r). When ω ∈ L(r) we say ω is an instance of r. We
sometimes abuse the notation as ω ∈ r when the context is clear that r is a regular expression. A regular
expression r is said to be finite if L(r) is finite. Clearly, r ∈ R is finite if and only if there exists a
constant length bound n ∈ N s.t. for any ω ∈ L(r), |w| ≤ n. We assume # '∈ Σ is the begin marker
and $ '∈ Σ is the end marker. They will be used in modeling procedural regular replacement in §4. Let
Σ2 = Σ∪ {#,$}. Assume Ψ is a second alphabet which is disjoint with Σ. Given ω ∈ (Σ∪Ψ)∗, π(ω)
denotes the projection of ω to Σ s.t. all the symbols inΨ are removed from ω . Let 0≤ i< j≤ |ω |, ω [i, j]
represents a substring ofω starting from index i and ending at j−1 (index counts from 0). Similarly, ω [i]
refers to the element at index i. We use NFST, DFST to denote the nondeterministic and deterministic
FST, respectively. Similar are NFSA and DFSA for finite state automata.

There are three popular semantics of regular replacement, namely greedy, reluctant, and possessive,
provided by many programming languages, e.g., in java.utils.regex of J2SE. We concentrate on two
of them: the greedy and the reluctant. The greedy semantics tries to match a given regular expression
pattern with the longest substring of the input while the reluctant semantics works in the opposite way.
From the theoretical point of view, it is also interesting to define a declarative semantics for string
replacement. A declarative replacement γr→ω replaces every occurrence of a regular pattern r with ω .

Definition 2.1. Let γ ,ω ∈ Σ∗ and r ∈ R (with ε '∈ r). The declarative replacement, denoted as γr→ω , is
defined as:

γr→ω =
{

{γ} if γ '∈ Σ∗rΣ∗
{νr→ωωµr→ω | γ = νβµ and β ∈ r} otherwise
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The greedy and reluctant semantics are also called procedural, because both of them enforce a left-
most matching. The replacement procedure is essentially a loop which examines each index of a word,
from left to right. Once there is a match of the regular pattern r, the greedy replacement performs the
longest match, and the reluctant replaces the shortest.

Definition 2.2. Let γ ,ω ∈ Σ∗ and r ∈ R (with ε '∈ r). The reluctant replacement of r with ω in γ , denoted
as γ−r→ω , is defined recursively as γ−r→ω = {νωµ−r→ω} where γ = νβµ , ν '∈ Σ∗rΣ∗, β ∈ r, and for every
ν1,ν2,β1,β2,µ1,µ2 ∈ Σ∗ with ν = ν1ν2, β = β1β2, µ = µ1µ2: if ν2 '= ε then ν2β1 '∈ r and ν2βµ1 '∈ r;
and, if β2 '= ε then β1 '∈ r.

Note that in the above definition, “if ν2 '= ε then ν2β1 '∈ r and ν2βµ1 '∈ r” enforces left-most match-
ing”, i.e., there does not exist an earlier match of r than β ; similarly, “if β2 '= ε then β1 '∈ r” enforces
shortest matching, i.e., there does not exist a shorter match of r than β .

Definition 2.3. Let γ ,ω ∈ Σ∗ and r ∈R (with ε '∈ r). The greedy replacement, denoted as γ+
r→ω , is defined

recursively as γ+
r→ω = {νωµ+

r→ω} where γ = νβµ , ν '∈ Σ∗rΣ∗, β ∈ r, and for every ν1,ν2,β1,β2,µ1,µ2 ∈
Σ∗ with ν = ν1ν2, β = β1β2, µ = µ1µ2: if ν2 '= ε then ν2β1 '∈ r and if µ1 '= ε then ν2βµ1 '∈ r.

Example 2.4. Let γ = aaa with a ∈ Σ, (i) γaa→b = {ba,ab}, γ+
aa→b = {ba}, γ−aa→b = {ba}. (ii) γa+→b =

{b,bb,bbb}, γ+
a+→b = {b}, and γ−a+→b = {bbb}.

Notice that in the above definitions, ε '∈ r is required for simplicity. In practice, precise Perl/Java
regex semantics is followed for handling ε ∈ r. For example, in SUSHI, given γ = a, r = a∗, and ω = b,
γ−r→ω = {bab} and γ+

r→ω = {bb}. When β ∈ γ−r→ω , we often abuse the notation and write it as β = γ−r→ω ,
given the following lemma. Similar applies to γ+

r→ω .

Lemma 2.5. For any γ ,ω ∈ Σ∗ and r ∈ R: |γ+
r→ω | = |γ−r→ω | = 1.

In the following, we briefly introduce the notion of FST and its variation, using the terminology in
[7]. We demonstrate its application to modeling the declarative replacement.

Definition 2.6. Let Σε denote Σ∪{ε}. A finite state transducer (FST) is an enhanced two-taped nonde-
terministic finite state machine described by a quintuple (Σ,Q,q0,F,δ ), where Σ is the alphabet, Q the
set of states, q0 ∈ Q the initial state, F ⊆ Q the set of final states, and δ is the transition function, which
is a total function of type Q×Σε×Σε → 2Q.

It is well known that each FST accepts a regular relation which is a subset of Σ∗ × Σ∗. Given
ω1,ω2 ∈ Σ∗ and an FSTM , we say (ω1,ω2) ∈ L(M ) if the word pair is accepted byM . LetM3 be the
composition of two FSTs M1 and M2, denoted as M3 = M1||M2. Then L(M3) = {(µ ,ν) | (µ ,η) ∈
L(M1) and (η ,ν) ∈ L(M2) for some η ∈ Σ∗}. We introduce an equivalent definition of FST below.

Definition 2.7. An augmented finite state transducer (AFST) is an FST (Σ,Q,q0, F,δ )with the transition
function augmented to type Q×R → 2Q, where R is the set of regular relations over Σ.

In practice, we would often restrict the transition function of an AFST to the following two types: (1)
Q×R×Σ∗ → 2Q. In a transition diagram, we label the arc from qi to qj for transition qj ∈ δ (qi,r : ω)

   



  

Figure 1: An FST for sr→ω
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by r : ω ; and (2) Q×{Id(r) | r ∈ R}→ 2Q, where Id(r) = {(ω ,ω) | ω ∈ L(r)}. In a transition diagram,
an arc of type (2) is labeled as Id(r).

Now, we can use an AFST to model the declarative string replacement sr→ω for any ω ∈ Σ∗ and
r ∈ R (with ε '∈ r). Figure 1 shows the construction, which presents an AFST that accepts {(s,η) | s ∈
Σ∗ and η ∈ sr→ω}. In other words, given any two s,η ∈ Σ∗, we can use the AFST to check if η is a
string obtained from s by replacing every occurrence of patterns in r with ω . We alternatively use FST
and AFST for the time being without loss of generality.

3 DFST and Finite Replacement

This section shows that regular replacement with finite language pattern can be modeled using DFST,
under certain restrictions. We fix the notation of DFST first. Intuitively, for a DFST, at any state q ∈ Q
the input symbol uniquely determines the destination state and the symbol on output tape. If there is a
transition labeled with ε on the input, then this is the only transition from q.

Definition 3.1. An FSTA = (Σ,Q,s0,F,δ ) is deterministic if for any q ∈Q and any a ∈ Σ the following
is true. Let t1, t2 ∈ {a,ε}, b1,b2 ∈ Σε , and q1,q2 ∈ Q. q1 = q2, b1 = b2, and t1 = t2 if q1 ∈ δ (q, t1 : b1)
and q2 ∈ δ (q, t2 : b2).

Lemma 3.2. Let $ '∈ Σ be an end marker. Given a finite regular expression r ∈ R with ε '∈ r and ω2 ∈ Σ∗,
there exist DFST A − and A + s.t. for any ω ,ω1 ∈ Σ∗: ω1 = ω−r→ω2 iff (ω$,ω1$) ∈ L(A −); and,
ω1 = ω+

r→ω2 iff (ω$,ω1$) ∈ L(A
+).

We briefly describe how A + is constructed for ω+
r→ω2 , similar is A −. Given a finite regular ex-

pression r, and assume its length bound is n. Let Σ≤n =
⋃
0≤i≤nΣ

i. Then A + is defined as a quintuple
(Σ∪{$},Q,q0,F,δ ). The set of states Q = {q1, . . . ,q|Σ≤n|} has |Σ≤n| elements, and letB : Σ≤n→ Q be
a bijection. Let q0 = B(ε) be the initial state and the only final state. A transition (q,q′,a : b) is defined
as follows for any q ∈ Q and a ∈ Σ∪{$}, letting β = B−1(q): (case 1) if a '= $ and |β | < n, then b= ε
and q′ = B(βa); or (case 2) if a '= $ and |β | = n: if β '∈ rΣ∗, then b = β [0] and q′ = B(β [1 : |β |]a);
otherwise, let β = µν where µ is the longest match of r, then b = ω2 and q′ = B(νa); or (case 3) if
a= $, then b= β+

r→ω2$ and q
′ = q0.

Intuitively, the above algorithm simulates the left-most matching. It buffers the current string pro-
cessed so far, and the buffer size is the length bound of r. Once the buffer is full (case 2), it examines
the buffer and checks if there is a match. If not, it emits the first character and produces it as output;
otherwise, it produces ω2 on the output tape. Clearly,B is feasible because of the bounded length of r.

4 Procedural Replacement

The modeling of procedural replacement is much more complex than that of the declarative semantics.
The general idea is to compose a number of finite state transducers for generating and filtering begin
and end markers for the regular pattern in the input word. We start with the reluctant semantics. Given
reluctant replacement S−r→ω , the modeling consists of four steps.

4.1 Modeling Left-Most Reluctant Replacement

Step 1 (DFST Marker for End of Regular Pattern): The objective of this step is to construct a DFST
(called A1) that marks the end of regular pattern r, given S−r→ω . We first construct a deterministic FSA
A that accepts r s.t. A does not have any ε transition. We use (q,a,q′) to denote a transition from
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Figure 2: DFST End Marker
state q to q′ that is labeled with a ∈ Σ. Then we modify each final state f of FSA as below: (1) make
f a non-final state, (2) create a new final state f ′ and establish a transition ε from f to f ′, (3) for any
outgoing transition ( f ,a,s) create a new transition ( f ′,a,s) and remove that outgoing transition from f
(keeping the ε transition). Thus the ε transition is the only outgoing transition of f . Then convert the
FSA into a DFSTA1 as below: for an ε transition, its output is $ (end marker); for every other transition,
its output is the same as the input symbol.

Example 4.1. A1 in Figure 2 is the DFST generated for regular expression cb+a+.

Step 2 (Generic End Marker): Note that on the input tape, A1 only accepts r. We would like to
generalize A1 so that the new FST (called A2) will accept any word on its input tape. For example, A2
in Figure 2 is a generalization of A1, and (ccbbaa,ccbba$a$) ∈ L(A2).

Step 2 is formally defined as follows. GivenA1 = (Σ∪{$},Q1,q10,F1,δ1) as described in Step 1,A2
is a quintuple (Σ∪{$},Q2,q20,F2,δ2). A labeling functionB :Q2→ 2Q1 is a bijection s.t. B(q20) = {q10}.
For any t ∈Q2 and a∈ Σ: t ′ ∈ δ2(t,a : a) iffB(t ′) = {s′ | ∃s∈B(t) s.t. s′ ∈ δ1(s,a : a)} ∪ {q10}. Clearly,
B models a collection of states inA1 that can be reached by the substrings consumed so far onA2. Note
that there is at most one state reached by a substring, because A1 is deterministic. Hence, the collection
of states is always finite. The handling of the only ε transition inA2 is similar.

Example 4.2. A2 in Figure 2 is the result of applying the above algorithm on A1. Clearly, for A2,
B(1) = {1}, B(2) = {2,1}, and B(3) = {3,1}. Running (ccbb,ccbb) on A2 results a partial run to
state 3. For (ccbb,ccbb), there are five substring pairs to be observed: (ccbb,ccbb), (cbb,cbb), (bb,bb),
(b,b), and (ε ,ε). Among them, only (cbb,cbb) and (ε ,ε) can be extended to match r (i.e., cb+a+).
Clearly, if run them on A1, they would result in partial runs that end at states 3 (by (cbb,cbb)) and 1 (by
(ε ,ε)). This is the intuition of having B(3) = {3,1} in A2. The labeling function B keeps track of the
potential substrings of match by recording those states of A1 that could be reached by the substrings.

The following lemma states that A2 inserts an end marker $ after each occurrence of regular pattern
r, and there are no duplicate end markers inserted (even when empty string ε ∈ r).
Lemma 4.3. For any r ∈ R there exists a DFST A2 s.t. for any ω ∈ Σ∗, there is one and only one
ω2 ∈ (Σ∪ {$})∗ with (ω ,ω2) ∈ L(A2) and ω = π(ω2) such that ω2 satisfies the following: for any
0≤ x< |ω2|, ω2[x] = $ iff π(ω2[0,x]) ∈ Σ∗r; and for any 1≤ x< |ω2|, if ω2[x] = $, then ω2[x−1] '= $.
Step 3 (Begin Marker of Regular Pattern): From A2 we can construct a reverse transducer A3 by
reversing all transitions in A2 and replacing the end marker $ with the begin marker #. Then create a
new initial state s0, add ε transitions from s0 to each final state in A2, and make the original initial state
of A2 the final state inA3. For example, the A3 shown in Figure 3 is a reverse of A2 in Figure 2. Clearly,
(aabbcc,#a#abbcc) ∈ L(A3), and A3 marks the beginning for pattern r = a+b+c.
Lemma 4.4. For any r ∈ R there exists an FST A3 s.t. for any µ ∈ Σ∗, there exists one and only one
ν ∈ (Σ∪ {#})∗ with (µ ,ν) ∈ L(A3). ν satisfies the following: (i) µ = π(ν), and, (ii) for 0 ≤ i < |ν |:
ν [i] = # iff π(ν [i, |ν |]) ∈ rΣ∗, and (iii) for 1≤ i< |ν |: if ν [i] = # then ν [i−1] '= #,
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Figure 3: Begin Marker and Reluctant Replacement Transducers

The beauty of the nondeterminism is that A3 can always make the “smart” decision to enforce there
is one and only one run which “correctly” inserts the label #. Any incorrect insertion will never reach a
final state. The nondeterminism givesA3 the “look ahead” ability.

Step 4 (Reluctant Replacement): Next we define an automaton for implementing the reluctant replace-
ment semantics. Given a DFSA M , let M1 be the new automaton generated from M by removing all
the outgoing transitions from each final state of M . We have the following result: L(M1) = {s | s ∈
L(M ) ∧ ∀s′ ≺ s : s′ /∈ L(M )}. Clearly M1 implements the “shortest match” semantics. Given r ∈ R,
let reluc(r) represent the result of applying the above “reluctant” transformation on r.

We still need to filter the extra begin markers during the replacement process. Given a regular lan-
guageL = reluc(r), letL# represent the language generated fromL by nondeterministically inserting
#, i.e., L# = {µ | µ ∈ (Σ ∪ {#})∗ ∧ π(µ) ∈L }. Clearly, to recognize L#, an automaton can be con-
structed from A (which accepts L ) by attaching a self loop transition (labeled with #) to each state of
A . LetL#

′ = L# ∩ Σ∗2# (this is to avoid removing the begin marker for the next match). Now given reg-
ular languageL#

′ and ω ∈ Σ∗, it is straightforward to construct an FSTAL#
′×ω s.t. (µ ,ν) ∈ L(AL#

′×ω)
iff µ ∈L#

′ and ν = ω . Intuitively, given any µ (interspersed with #) that matches r, the FST replaces it
with ω .

An automaton A4 (as shown in Figure 3) can be defined. Intuitively, A4 consumes a symbol on both
the input tape and output tape unless encountering a begin marker #. Once a # is consumed, A4 enters
the replacement mode, which replaces the shortest match of r with ω (and also removes extra # in the
match). Thus, piping it withA3 directly leads to the precise modeling of reluctant replacement.
Lemma 4.5. Given any r ∈ R and ω ∈ Σ∗, and let Ar be A3||A4, then for any ω1,ω2 ∈ Σ∗: (ω1,ω2) ∈
L(Ar) iff ω2 = ω1−r→ω .

4.2 Modeling Left-Most Greedy Semantics

Handling the greedy semantics is more complex. We have to insert both begin and end markers for the
regular pattern and then apply a number of filters to ensure the longest match. The first action is to
insert begin markers using A3 as described in the previous section. Then the second action is to insert
an end marker $ nondeterministically after each substring matching r. Later, additional markers will be
filtered, and improper marking will be rejected. We call this FST A ′

2 . Given r ∈ R and ω ∈ Σ∗, A ′
2

can be constructed so that for any ω1 ∈ Σ∗2 and ω2 ∈ Σ∗2: (ω1,ω2) ∈ L(A ′
2) iff (i) π(ω1) = π(ω2), and

(ii) for any 0 ≤ i < |ω2|, π(ω2[0, i]) ∈ Σ∗r if ω2[i] = $, and (iii) for any 1 ≤ i < |ω2|, if ω2[i] = $ then
ω2[i− 1] '= $. Notice that A ′

2 is different from A2 in that the $ after a match of r is optional. Clearly,
A ′
2 can be modified from A2 by simply adding an ε : ε transition from f (old final state) to f ′ (new final

state) in A2, e.g., to add an ε : ε transition from state 4 to 5 in A2 in Figure 2. Also #:# transitions are
needed for each state to keep the # introduced byA3.

Then we need a filter to remove extra markers so that every $ is paired with a #. Note we do not
yet make sure that between the pair of # and $, the substring is a match of r. We construct the AFST
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as follows. Let A f = (Σ2,Q,q0,F,δ ). Q has two states q0 and q1. F = {q0}. The transition function
δ is defined as below: (i) δ (q0, Id(Σ)) = {q0}, (ii) δ (q0,$ : ε) = {q0}, (iii) δ (q0,# : #) = {q1}, (iv)
δ (q1,# : ε) = {q1}, (v)δ (q1, Id(Σ)) = {q1}, (vi) δ (q1,$ : $) = {q0}.

Now we will apply three FST filters (represented by three identity relations Id(L1), Id(L2), and
Id(L3)), for filtering the nondeterministic end marking. L1, L2, and L3 are defined as below:

L1 = Σ∗2#(r̄ ∩ Σ∗)$Σ∗2 (1)
L2 = Σ∗2[∧#]($ ∩ r#,$) ∩ Σ∗2[∧#]($ΣΣ∗2 ∩ r#,$Σ∗2) (2)
L3 = Σ∗2#(r#,$ ∩ (Σ∗$(Σ+)#,$))Σ∗2 (3)

The intuition of L1 is to make sure that the substring between each pair of # and $ is a match of r.
The motivation of L2 is for preventing removing too many # symbols by A f (due to improper insertion
of end markers byA ′

2 ). Id(L2) handles two cases: (1) to avoid removing the begin markers at the end of
input word if the pattern r includes ε ; and (2) to avoid removing begin markers for the next instance of r.
Consider the following example for case (2): given S+

a∗→c and the input word bab, the correct marking of
begin and end markers should be #$b#a$#$b#$ (which leads to cbccbc as output). However the following
incorrect marking could pass Id(L1) and Id(L3), if not enforcing the Id(L2) filter: #$b#a$b#$. The cause
is that an ending marker $ (e.g., the one before the last b) may trigger A f to remove a good begin marker
# that precedes an instance of r (i.e., ε). Filter Id(L2) is thus defined for preventing such cases.

Finally, L3 is defined for ensuring longest match. Note that filter Id(L3) will be applied after Id(L1)
and Id(L2) which have guaranteed the pairing of markers and the proper contents between each pair of
markers. L3 eliminates cases where starting from # there is a substring (when projected to Σ) matches
r and the string contains at least one $ inside (implying that there is a longer match than the substring
between the # and its matching $). Note that (Σ+)#,$ refers to a word in Σ+ interspersed with begin/end
markers, i.e., for any ω ∈ (Σ+)#,$, |π(ω)| > 0. We also need an FST A ′

4 , which is very similar to A4.
A ′
4 enters (and leaves) the replacement mode, once it sees the begin (and the end) marker. Then we have

the following:

Lemma 4.6. Given any r ∈ R and ω ∈ Σ∗, let Ag be A3||A ′
2 ||A f ||AId(L1)||AId(L2)||AId(L3)||A ′

4 , then for
any ω1,ω2 ∈ Σ∗: ω2 = ω1+r→ω iff (ω1,ω2) ∈ L(Ag).

5 SISE Constraint and SUSHI Solver

This work is implemented as part of a constraint solver called SUSHI [4], which solves SISE (Simple
Linear String Equation) constraints. Intuitively, a SISE equation can be regarded as a variation of word
equation [13]. It is composed of word literals, string variables, and various frequently seen string op-
erators such as substring, concatenation, and regular replacement. To solve SISE, an automata based
approach is taken, where a SISE is broken down into a number of atomic string operations. Then the
solution process consists of a number of backward image computation steps. We now briefly describe
the part related to regular replacement.

It is well known that projecting an FST to its input tape (by removing the output symbol from each
transition) results in a standard finite state machine. Similar applies to the projection to output tape.
We use input(A ) and output(A ) to denote the input and output projection of an FST A . Given
an atomic SISE constraint xr→ω ≡ r2, the solution pool of x (backward image of the constraint) is de-
fined as {µ | µr→ω ∈ L(r2)}. Given a regular expression ν , the forward image of νr→ω is defined as
{µ | µ ∈ αr→ω and α ∈ ν}. Clearly, let A be the corresponding FST of xr→ω , the backward image can
be computed using input(A ||Id(r2)). Similarly, given µr→ω , the forward image is output(Id(µ)||A ).
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Type of τ1 Type of τ2 input of τ output of τ
I I φ1 ϕ2
II I φ1 ϕ2
III I ϕ1 ∩ φ2 ϕ2
I II {x} where x ∈ φ1 {y} where y ∈ ϕ2
II II φ1 ϕ2
III II φ2 ϕ2
I III φ1 ϕ1
II III φ1 ϕ1 ∩ φ2
III III ϕ1 ∩ φ2 ϕ1 ∩ φ2

Figure 4: SUSHI FST Transition Set

5.1 Compact Representation of FST

SUSHI relies on dk.brics.automaton [15] for FSA operations. We use a self-made Java package for
supporting FST operations [16]. Note that there are existing tools related to FST, e.g., the FSA toolbox
[16]. In practice, to perform inspection on user input, FST has to handle a large alphabet represented
using 16-bit Unicode. In the following, we introduce a compact representation of FST. A collection of
FST transitions can be encoded as a SUSHI FST Transition Set (SFTS) in the following form:

T = (q,q′,φ : ϕ)

where q, q′ are the source and destination states, the input charset φ = [n1,n2]with 0≤ n1≤ n2 represents
a range of input characters, and the output charset ϕ = [m1,m2] with 0 ≤ m1 ≤ m2 represents a range
of output characters. T includes a set of transitions with the same source and destination states: T =
{(q,q′,a : b) | a ∈ φ and b ∈ ϕ}. For T = (q,q′,φ : ϕ), however, it is required that if |φ | > 1 and
|ϕ | > 1, then φ = ϕ . For φ and ϕ , ε is represented using [−1,−1]. Thus, there are three types of SFTS
(excluding the ε cases), as shown in the following. Type I: |φ | > 1 and |ϕ | = 1, thus T = {(q,q′,a :
b) | a ∈ φ and ϕ = {b}}. Type II: |φ | = 1 and |ϕ | > 1, thus T = {(q,q′,a : b) | b ∈ ϕ and φ = {a}}.
Type III: |ϕ | = |φ | > 1, thus T = {(q,q′,a : a) | a ∈ φ}. The top-left of Figure 4 gives an intuitive
illustration of these SFTS types (which relates the input and output chars).

The algorithms for supporting FST operations (such as union, Kleen star) should be customized
correspondingly. In the following, we take FST composition as one example. Let A = (Σ,Q,q,F,δ )
be the composition of A1 = (Σ,Q1,q10,F1,δ1) and A2 = (Σ,Q2,s20,F2,δ2). Given τ1 = (t1, t ′1,φ1 : ϕ1) in
A1 and τ2 = (t2, t ′2,φ2 : ϕ2) in A2, where ϕ1 ∩ φ2 '= /0, an SFTS τ = (s1,s2,φ : ϕ) is defined for A s.t.
s1 = (t1, t2), s2 = (t ′1, t ′2), and the input/output charset of τ is defined as the table in Figure 4 (note all
entries except for (I,II) produce one SFTS only). For example, when both τ1 and τ2 are type I, we have
φ = φ1 and ϕ = ϕ2. The bottom left of Figure 4 shows the intuition of the algorithm. The dashed circles
represent the corresponding input/output charset.

5.2 Evaluation

We are interested in whether the proposed technique is efficient and effective in practice. We list here
four SISE equations for stress-testing the SUSHI package. Note that each equation is parametrized by
an integer n. eq1: x+

a+→b{n,n} ≡ b{2n,2n}; eq2: x−
a+→b{n,n} ≡ b{2n,2n}; eq3: x+

a∗→b{n,n} ≡ b{2n,2n}; eq4:
x−
a∗→b{n,n} ≡ b{2n,2n}. The following table displays the running results when n is 41. (more data in [4]).
It displays the max size of FST and FSA used in the solution process.

Equation FST States FST Transitions FSA States FSA Transitions Time (Seconds)
eq1(41) 5751 16002 125 207 155.281
eq2(41) 5416 5748 83 124 162.469
eq3(41) 631 1565 2 2 492.281
eq4(41) 126 177 0 0 14.016
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The technique scales well in practice. We applied SUSHI in discovering SQL injection vulnerabilities
and XSS attacks in FLEX SDK (see technical report [4]). The running cost ranges from 1.4 to 74 seconds
on a 2.1Ghz PC with 2GB RAM (with SISE equation size ranging from 17 to 565). 1

6 Related Work

Recently, string analysis has received much attention in security and compatibility analysis of programs
(see e.g., [5, 12]). In general, there are two interesting directions of string analysis: (1) forward analysis,
which computes the image (or its approximation) of the program states as constraints on strings; and,
(2) backward analysis, which usually starts from the negation of a property and computes backward.
Most of the related work (e.g., [2, 11, 18]) falls into the category of forward analysis. This work can be
used for both forward and backward image computation. Compared with forward analysis, it is able to
generate attack signatures as evidence of vulnerabilities.

Modeling regular replacement distinguishes our work from several related work in the area. For ex-
ample, one close work to ours is the HAMPI string constraint solver [9]. HAMPI supports solving string
constraints with context-free components, which are unfolded to regular language. HAMPI, however,
supports neither constant string replacement nor regular replacement, which limits its ability to reason
about sanitation procedures. Similarly, Hooimeijer and Weimer’s work [6] in the decision procedure for
regular constraints does not support regular replacement. A closer work to ours is Yu’s automata based
forward/backward string analysis [18]. Yu uses a language based replacement [17], which introduces im-
precision in its over-approximation. Conversely, our analysis considers the delicate differences among
the typical regular replacement semantics and provides more accurate analysis. In [1], Bjørner et al. uses
first order formula on bit-vector to model string operations except replacement. We conjecture that it can
be extended by using recursion in their first order framework for defining replaceAll semantics.

FST is the major modeling tool in this paper. It is mainly inspired by [7, 14, 8] in computational
linguistics, for processing phonological and morphological rules. In [8], an informal discussion was
given for the semantics of left-most longest matching of string replacement. This paper has given the
formal definition of replacement semantics and has considered the case where ε is included in the search
pattern. Compared with [7] where FST is used for processing phonological rules, our approach is lighter
given that we do not need to consider the left and right context of re-writing rules in [7]. Thus more
DFST can be used, which certainly has advantages over NFST, because DFST is less expressive. For
example, in modeling the reluctant semantics, compared with [7], our algorithm does not have to non-
deterministically insert begin markers and it does not need extra filters, thus more efficient. It is in-
teresting to compare the two algorithms and measure the gain in performance by using more DFST in
modeling, which remains one of our future work.
Limitation of the Model: It is shown in [4] that solving SISE constraint is decidable (with worst
complexity 2-EXPTIME). This may seem contradictory with the conclusion in [1]. The decidability
is achieved by restricting SISE as described below. SISE requires that each variable appears at most
once and all variables must be appear in LHS. This permits a simple recursive algorithm that reduces
the solution process into a number of backward image computation steps. However, it may limit the
expressiveness of SISE in certain application scenario. SISE supports regular replacement, substring,
concatenation operators, however, it does not support operators related to string length, e.g., indexOf and
length operators. It is interesting to extend the framework to support mixed numerical and string opera-
tors, e.g., encoding numeric constraints using automata as described by Yu et al. in [18], or translating
string constraints to first order formula on bit-vectors as shown by Bjørner et al. [1].

1SISE equation size is measured by the combined length of constant words, variables, and operators included in the
equation.
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7 Conclusion

This paper presents the finite state transducer models of various regular substitutions, including the
declarative, finite, reluctant, and greedy replacement. A compact FST representation is implemented
in a constraint solver SUSHI. The presented technique can be used for analyzing programs that process
text and communicate with users using strings. Future directions include modeling mixture of greedy
and reluctant semantics, handling hybrid numeric/string constraints, and context free components.
Acknowledgment: This paper is inspired by the discussion with Fang Yu, Tevfik Bultan, and Oscar
Ibarra. We thank the anonymous reviewers for very constructive comments that help improve the paper.
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