
Automatic Review of Abstract State Machines by
Meta-Property Verification∗

Paolo Arcaini
University of Milan

paolo.arcaini@unimi.it

Angelo Gargantini
University of Bergamo

angelo.gargantini@unibg.it

Elvinia Riccobene
University of Milan

elvinia.riccobene@unimi.it

Abstract

A model review is a validation technique aimed at determining if a model is of sufficient quality
and allows defects to be identified early in the system development, reducing the cost of fixing them.
In this paper we propose a technique to perform automatic review of Abstract State Machine (ASM)
formal specifications. We first detect a family of typical vulnerabilities and defects a developer can
introduce during the modeling activity using the ASMs and we express such faults as the violation of
meta-properties that guarantee certain quality attributes of the specification. These meta-properties
are then mapped to temporal logic formulas and model checked for their violation. As a proof of
concept, we also report the result of applying this ASM review process to several specifications.

1 Introduction
Using formal methods, based on rigorous mathematical foundations, for system design and development
is of extreme importance, especially for high-integrity systems where safety and security are important.
By means of abstract models, faults in the specification can be detected as early as possible with limited
effort. Validation should precede the application of more expensive and accurate verification methods,
that should be applied only when a designer has enough confidence that the specification really reflects
the user perceptions. Otherwise (right) properties could be proved true for a wrong specification.

Model review, also called “model walk-through” or “model inspection”, is a validation technique in
which modeling efforts are critically examined to determine if a model not only fulfills the intended re-
quirements, but also are of sufficient quality to be easy to develop, maintain, and enhance. This process
should, therefore, assure a certain degree of quality. The assurance of quality, namely ensuring read-
ability and avoiding error-prone constructs, is one of the most essential aspects in the development of
safety-critical reactive systems, since the failure of such systems – often attributable to modeling and,
therefore, coding flaws – can cause loss of property or even human life [13]. When model reviews are
performed properly, they can have a big payoff because they allow defects to be detected early in the
system development, reducing the cost of fixing them.

Usually model review, which comes from the code-review idea, is performed by a group of external
qualified people. However, this review process, if done by hand, requires a great effort that might be
tremendously reduced if performed in an automatic way – as allowed by using formal notations – by
systematically checking specifications for known vulnerabilities or defects. The question is what to
check on and how to automatically check the model. In other words, it is necessary to identify classes
of faults and defects to check, and to establish a process by which to detect such deficiencies in the
underlying model. If these faults are expressed in terms of formal statements, these can be assumed as a
sort of measure of the model quality assurance.

In this paper, we tackle the problem of automatically reviewing formal specifications given in terms
of Abstract State Machines (ASMs) [4]. We first detect a family of typical vulnerabilities and defects a
developer can introduce during the modeling activity using the ASMs and we express such faults as the
violation of formal properties. These properties refer to model attributes and characteristics that should
hold in any ASM model, independently from the particular model to analyze. For this reason they are

∗This work was partially supported by the Italian Government under the project PRIN 2007 D-ASAP (2007XKEHFA)

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 4

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

called meta-properties. They should be true in order for an ASM model to have the required quality
attributes. Therefore, they can be assumed as measures of model quality assurance. Depending on the
meta-property, its violation indicates the presence of actual faults, or only of potential faults.

These meta-properties are defined in terms of temporal logic formulas that use two operators, Always
and Sometime, to capture properties that must be true in every state or eventually true in at least one state
of the ASM under analysis. Then, we translate these temporal formulas to Computational Tree Logic
(CTL) formulas and we exploit the model checking facilities of AsmetaSMV [2, 1], a model checker for
ASM models based on NuSMV [5], to check the meta-property violation.

The choice of defining a model review process for the ASM formal method is due to several reasons.
First, the ASMs are powerful extensions of the Finite State Machines (FSMs), and it has been shown
[4] that they capture the principal models of computation and specification in the literature. Therefore,
the results obtained for the ASMs can be adapted to other state-transition based formal approaches.
Furthermore, the ASMs are endowed with a set of tools [6, 1] (among which a model checker) which
makes it possible to handle and to automate our approach. Finally, ASMs have been widely applied as
a formal method for system specification and development, which makes available a certain number of
nontrivial specifications on which to test our process.

The Abstract State Machine formal method is briefly presented in Section 2. Section 3 defines
a function, later used in the meta-properties definition, that statically computes the firing condition of a
transition rule occurring in the model. Meta-properties that are able to guarantee certain quality attributes
of a specification are introduced in Section 4. In Section 5, we describe how it is possible to automate
our model review process by exploiting the use of a model checker to check the possible violation of
meta-properties. As a proof of concept, in Section 6 we report the results of applying our ASM review
process to a certain number of specifications, going from benchmark models to test the meta-properties,
to ASM models of real case studies of various degree of complexity. In Section 7, we present other works
related to the model review process. Section 8 concludes the paper and indicates some future directions
of this work.

2 Abstract State Machines
Abstract State Machines (ASMs), whose complete presentation can be found in [4], are an extension
of FSMs [3], where states are multi-sorted first-order structures, i.e. domains of objects with functions
and predicates (boolean functions) defined on them, and the transition relation is specified by “rules”
describing how functions change from one state to the next.

Basically, a transition rule has the form of guarded update “if Condition then Updates” where Up-
dates are a set of function updates of the form f (t1, . . . , tn) := t which are simultaneously executed when
Condition is true. f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms.

To fire this rule in a state si, i ≥ 0, all terms t1, . . . , tn, t are evaluated at si to their values, say
v1, . . . ,vn,v, then the value of f (v1, . . . ,vn) is updated to v, which represents the value of f (v1, . . . ,vn)
in the next state si+1. Such pairs of a function name f , which is fixed by the signature, and an optional
argument (v1, . . . ,vn), which is formed by a list of dynamic parameter values vi of whatever type, are
called locations. They represent the abstract ASM concept of basic object containers (memory units),
which abstracts from particular memory addressing and object referencing mechanisms. Location-value
pairs (loc,v) are called updates and represent the basic units of state change.

There is a limited but powerful set of rule constructors that allow to express simultaneous parallel
actions (par) or sequential actions (seq). Appropriate rule constructors also allow non-determinism
(existential quantification choose) and unrestricted synchronous parallelism (universal quantification
forall).

A computation of an ASM is a finite or infinite sequence s0,s1, . . . ,sn, . . . of states of the machine,
where s0 is an initial state and each sn+1 is obtained from sn by firing simultaneously all of the transition

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 5

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

rules which are enabled in sn. The (unique) main rule is a transition rule and represents the starting
point of the computation. An ASM can have more than one initial state. A state s which belongs to a
computation starting from an initial state s0, is said to be reachable from s0.

For our purposes, it is important to recall how functions are classified in an ASM model. A first dis-
tinction is between basic functions which can be static (never change during any run of the machine) or
dynamic (may be changed by the environment or by machine updates), and derived functions, i.e. those
coming with a specification or computation mechanism given in terms of other functions. Dynamic func-
tions are further classified into: monitored (only read, as events provided by the environment), controlled
(read and write (i.e. updated by transaction rules)), shared and output (only write) functions.

The ASMETA tool set [1] is a set of tools around the ASMs. Among them, the tools involved in our
model review process are: the textual notation AsmetaL, used to encode fragments of ASM models, and
the model checker AsmetaSMV [2], which is based on the NuSMV model checker [5] to prove temporal
properties on ASM models.

3 Rule Firing Condition
In the following we introduce a method to compute, for each rule of the specification under review, the
firing condition under which the rule is executed. We introduce a function Rule Firing Condition which
returns this condition.

RFC : Rules→Conditions

where Rules is the set of the rules of the ASM M under review and Conditions are boolean predicates
over the state of M. RFC can be statically computed as follows. First we build a static directed graph,
similar to a program control flow graph. Every node of the graph is a rule of the ASM and every edge has
label [u]c representing the conditions under which the target rule is executed. c is a boolean predicate and
[u] is a sequence of logical assignments of the form v = t, being v a variable and t a term. The condition c
must be evaluated under every logical assignment v = t listed in u. Figure 1 reports how to incrementally
build the graph, together with the labels for the edges. By starting from the main rule, the entire graph
is built, except for the rules that are never used or are not reachable from the main rule and for which
the RFC evaluates to false. We assume that there are no recursive calls of ASM rules, so the graph is
acyclic. In general, an ASM rule can call itself (directly or indirectly), but rule recursion is seldom used.
However, recursion is still supported in derived functions, which are often used in ASM specifications.

Parallel rule R
R1 par R2

R
[]true

!!

[]true

""!!!!!!!!!!!! R1

R2

Conditional rule R
if c then R1 else R2 endif

R
[]c

!!

[]¬c

""!!!!!!!!!!!! R1

R2

Let rule R
let x = t in R1

R
[x=t]true

!! R1 Forall rule R
forall x in D with a do Rx

R

[x=d1]a
##

[x=dn]a

$$ Rx

Macro call rule R
Rm[t1, ..,tn]

R
[x1=t1,...,xn=tn]true

!! Rm Choose rule R
choose x in D with a do Rx

R

[x=d1]a
##

[x=dn]a

$$ Rx

Figure 1: Schemas for building the graph for RFC

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 6

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

For this reason the lack of recursive rules does not prevent to write realistic specifications.
To compute the RFC for a rule R, one should start from the rule R and visit the graph backward

until the main rule is reached. The condition RFC(R) is obtained by applying the following three steps.
Initially, Rx = R holds.

1. Expand every occurrence of RFC(Rx) by substi-
tuting it with the conditions under which Rx is
reached, i.e. the labels of the edges entering the
node of Rx. If the graph has the schema shown
besides, one must substitute RFC(Rx) with
[u1](RFC(R1)∧ c1)∨ · · ·∨ [un](RFC(Rn)∧ cn)

R1

[u1]c1 %%"
""

""
""

R2

[u2]c2
&&

. Rn

[un]cn
''#################

Rx

2. Eliminate every logical assignment by applying the following rules:

• Distribute the ∨ (or) over the ∧ (and):
([u1]A1∨ · · ·∨ [un]An)∧B≡ [u1](A1∧B)∨ · · ·∨ [un](An∧B)

• Distribute the assignments: [u](A∧B)≡ [u]A∧ [u]B
• Apply the assignments: [u,x = t]A≡ [u]A[x← t]

3. Apply again 1 until you reach a rule with no entering edges (main rule).

Example Consider the following example in which y and z are nullary functions of the machine and
$x is a logical variable. The inner rules are labeled for their concise representation in the graph.

main rule R =
par
r1: forall $x in {0,2} with $x < 2 do
r2: if y < $x then
r3: z := y endif
r4: skip

endpar

R true !!

true

""$$$$$$$$$$$$ r1

[$x=0]$x<2
##

[$x=2]$x<2

$$ r2
[]y<$x

!! r3

r4
To compute the condition under which rule r3 fires, RFC(r3), one must perform the following steps:

1. Apply the expansion of RFC(r3): RFC(r3)≡ RFC(r2)∧ y < $x
2. No assignment to eliminate, expand RFC(r2):

RFC(r3)≡ ([$x = 0](RFC(r1)∧$x < 2)∨ [$x = 2](RFC(r1)∧$x < 2))∧ y < $x
3. Distribute the ∨ over the ∧:

RFC(r3)≡ [$x = 0](RFC(r1)∧$x < 2∧ y < $x)∨ [$x = 2](RFC(r1)∧$x < 2∧ y < $x)
4. Apply the assignments:

RFC(r3)≡ (RFC(r1)∧0 < 2∧ y < 0)∨ (RFC(r1)∧2 < 2∧ y < 2)
RFC(r3)≡ (RFC(r1)∧ y < 0)∨ f alse

5. Expand the definition of RFC(r1) which is true:
RFC(r3)≡ y < 0

4 Meta-properties
In this section we introduce some properties that should be proved in order to ensure that an ASM spec-
ification has some quality attributes. These properties refer to attributes that are defined independently
from the particular ASM specification to be analyzed and they should be true in order to guarantee cer-
tain degree of quality for the ASM model. For this reason we call them meta-properties, and they are
formally defined in the following.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 7

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

The violation of a meta-property always means that a quality attribute is not met and may indicate a
potential/actual fault in the model. The severity of such violation depends on the meta-property, each of
which measures the degree of model adequacy to the guidelines of ASM modeling style we introduce in
this paper in order to use the ASM method for safety critical systems. We have identified the following
categories of model quality attributes.

Consistency guarantees that locations (memory units) are never simultaneously updated to different
values (MP1). This fault is known as inconsistent updates and must be removed in order to have a
correct model.

Completeness requires that every behavior of the system is explicitly modeled. This enforces explicit
listing of all the possible conditions in conditional rules (MP2) and the actual updating of controlled
locations (MP7).

Minimality guarantees that the specification does not contain elements – i.e. transition rules, domain
elements, locations, etc. – defined or declared in the model but never used (MP3, MP4, MP5, MP6).
Minimality of the state requires that only the necessary state functions are introduced (MP7). These
defects are also known as over-specification.

4.1 Meta-property definition
To formally specify the above attributes in terms of meta-properties we have identified properties that
must be true in every state and properties that must be eventually true in at least one state of the ASM
under analysis. Given an ASM M and a predicate φ over a state of M, we define the operators Always
and Sometime as follows:

M |= Always(φ) = ∀s0 ∈ S0 ∀s ∈R(s0) : φ(s)
M |= Sometime(φ) = ∃s0 ∈ S0 ∃s ∈R(s0) : φ(s)

where S0 is the set of initial states of M, and R(s0) is the set of all the states reachable from s0. In the
following we present the meta-properties we have introduced, currently support, and use for automatic
review of ASM models.

MP1. No inconsistent update is ever performed
An inconsistent update occurs when two updates clash, i.e. they refer to the same location but are distinct
[7]. If a location is updated by only one rule, no inconsistent update occurs. Otherwise an inconsistent
update is possible. Let’s see these two examples:
main rule r_inc0 =

par
l := 1
l := 2

endpar

main rule r_inc1 =
par

if cond1 then l(a1) := t1 endif
if cond2 then l(a2) := t2 endif

endpar

In the first example, the same location l is updated to two different values (1 and 2) in two rules
having both conditions RFC equal to true; in this case, the inconsistent update is apparent. In the second
example, instead, to prove that the two updates are consistent, one should prove:

Always((cond1∧ cond2∧a1 = a2)→ t1 = t2)

In general, for every pair of rules R1 and R2 that update two locations (f ,a1) and (f ,a2) to the values
t1 and t2 respectively, the property:

Always((RFC(R1)∧RFC(R2)∧a1 = a2)→ t1 = t2) (1)

states that the two updates are never inconsistent. The violation of property (1) means that there exists a
state in which R1 and R2 fire, a1 = a2, and t1 += t2.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 8

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

if x > 0 then skip
else

if x <= 0 then skip endif
endif

if a and b then skip
else

if not a then skip endif
endif

Figure 2: Complete and incomplete if

MP2. Every conditional rule must be complete

In a conditional rule R = if c then Rthen endif, without else, the condition c must be true if R is evaluated.
Therefore, in a nested conditional rule, if one does not use the else branch, the last condition must be
true. In Fig. 2 the inner conditional rule is complete in the left-hand code, incomplete in the right-hand
one, since if a is true but b is false, then no branch in the conditional statements is chosen. Property

Always(RFC(R)→ c) (2)

states that, when the conditional rule R is executed, its condition c is evaluated to true. A violation
of property 2 means that there exists a behavior of the system that satisfies RFC(R)∧¬c but it is not
explicitly captured by the model.

Corollary 1: Every Case Rule without otherwise must be complete Since the case rule can be
reduced, by definition [4], to a series of conditional rules, the computation of RFC is straightforward.
The meta-property MP2 is applied to case rules as follows. Let R = switch t caset1 : R1 . . . casetn :
Rn endswitch be a case rule. Its completeness is given by the following property:

Always(RFC(R)→ c1∨ c2 · · ·∨ cn) (3)

where c j is t = t j for each j = 1 . . .n. The violation of the property (3) means that there is a state in which
the case rule R is executed and none of its conditions is true.

MP3. Every rule can eventually fire

Let R be a rule of our ASM model (forall, choose, conditional, update, . . .); to verify that R is eventually
executed, we must prove the following property:

Sometime(RFC(R)) (4)

If the property is proved false, it means that rule R is contained in an unreachable model fragment.

Corollary 2: Every condition in a conditional rule is eventually evaluated to true (and false if the
else branch is given) For every conditional rule, MP3 requires that there exists a path in which its
guard is eventually true and, if the else is given, also a path in which its guard is eventually false. In the
following example the guard of the inner conditional rule is never true.

if x > 0 then
if x < 0 then skip endif

endif

Let Q = if c then Rthen [else Relse] endif be a conditional rule. The property 4 becomes, for the then
and else part, respectively:

Sometime(RFC(Q)∧ c) (5) Sometime(RFC(Q)∧¬c) (6)

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 9

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

enum domain State = { AWAITCARD | AWAITPIN | CHOOSE | OUTOFSERVICE | OUTOFMONEY}
dynamic controlled atmState: State
dynamic controlled atmInitState: State
dynamic controlled atmErrState: State
dynamic monitored pinCode: Integer
main rule r_Main =

par
if(atmState = atmInitState) then atmState := AWAITPIN endif
if(atmState=AWAITPIN) then atmState := CHOOSE endif
if(atmState=CHOOSE) then atmState := AWAITCARD endif

endpar

default init s0:
function atmInitState = AWAITCARD
function atmErrState = OUTOFSERVICE
function atmState = atmInitState

Figure 3: Over-specified ATM

MP4. No assignment is always trivial
An update l := t is trivial [7] if l is already equal to t, even before the update is applied. This property
requires that each assignment which is eventually performed, will not be always trivial. Let R = l := t
be an update rule. Property

Sometime(RFC(R))→ Sometime(RFC(R)∧ l += t) (7)

states that, if eventually updated, the location l will be updated to a new value at least in one state. The
more simple property Sometime(RFC(R)∧ l += t) would be false if the update is never performed.

MP5. For every domain element e there exists a location which has value e

Every domain element should be used at least once as location value. In the example of Fig. 3, the
element OUTOFMONEY of the domain State is never used. To check that a domain element e j ∈D is used
as location value, if l1, . . . , ln are all the locations (possibly defined by different function names) taking
value in the domain D, the property

Sometime(l1 = e j ∨ l2 = e j ∨ . . .∨ ln = e j) (8)

states that at least a location once takes the value e j. Note that this property must be restricted to domains
that are only function co-domains: if the domain D is used as domain of an n-ary function with n > 0, all
its elements have to be considered useful, even if property 8 would be false for some e j ∈ D. Otherwise,
if property 8 is false, the element e j may be removed from the domain.

MP6. Every controlled function can take any value in its co-domain
Every controlled function is assigned at least once to each element in its co-domain; otherwise it could be
declared over a smaller co-domain. Let l1 . . . lm be the locations of a controlled function f with co-domain
D = {e1, . . . ,en}. Property

Sometime(l1 = e1∨ · · ·∨ lm = e1)∧ . . .∧Sometime(l1 = en∨ . . .∨ lm = en) (9)

states that f takes all the values of its co-domain D.

MP7. Every controlled location is updated and every location is read
This property is obtained combining the results of the previous meta-properties and a static inspection of
the model. It is defined by the following table, which also shows what actions the various results suggest.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 10

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

controlled1 initialized2 updated3 always trivial update4 read5 Possible actions
false N/A N/A N/A false remove
true - false N/A false remove
true true false N/A true declare static/add an update
true true true true - declare static

In the example in Fig. 3 the monitored location pinCode is never read; it could be removed. The
controlled atmErrState location is initialized, but never updated nor read; it could be removed. The
controlled atmInitState location is initialized, read, but never updated; it could be declared static. Note
that if a controlled location is never updated, that may suggest that the specification is incomplete and it
misses an update to a part of the controlled state.

5 Meta-Property Verification by Model Checking
To verify (or falsify) the meta-properties introduced in the previous section, we use the AsmetaSMV
tool [2] which is able to prove temporal properties of ASM specifications by using the model checker
NuSMV [5]. The ASM specification M is translated to a NuSMV machine MNuSMV (as explained in [2])
representing the Kripke structure which is model checked to verify a given temporal property. In this
paper we use the CTL (Computation Tree Logic) language to express the properties to be verified by
NuSMV. In NuSMV, a CTL property ψ is true if and only if ψ is true in every initial state of the machine
MNuSMV , i.e. MNuSMV |= ψ iff (MNuSMV ,s0) |= ψ,∀s0 ∈ S0, where S0 is the set of initial states of MNuSMV .
Since the Kripke structure obtained from the ASM may have many initial states, the translation of the
meta-properties as defined in Sect. 4.1 into CTL formulas is not straightforward. The translation of
Always(φ) is simply AG(φ), since MNuSMV |= AG(φ) means that along all paths starting from each initial
state, φ is true in every state (globally), which corresponds to the definition of Always. However, the
translation of Sometime(φ) is not EF(φ), since MNuSMV |= EF(φ) means that there exists at least one path
starting from each initial state containing a state in which φ is true, while Sometime requires only that
there exists at least an initial state from which φ will eventually hold. This means that there are cases in
which EF(φ) is false, since not from every initial state φ will eventually be true, while Sometime(φ) is
true. To prove Sometime(φ) we use the following equivalence:

M |= Sometime(φ)⇔MNuSMV +|= AG(¬φ)

that means that Sometime(φ) is true if and only if AG(¬φ) is false. We run the model checker with the
property P = AG(¬φ) and if a counter example of P is found, then Sometime(φ) holds, while if P is
proved true, then Sometime(φ) is false.

6 Experimental results
We have implemented a prototype tool, available at [1], that has allowed us to apply our model review
process to three different sets of ASM specifications. The first set Bench contains only the benchmarks
we have explicitly designed to expose the violations of the introduced meta-properties. The set AsmRep
contains models taken from the ASMETA repository which are also available at [1]. Many ASM case
studies of various degree of complexity and several specifications of classical software engineering sys-
tems (like ATM, Dining Philosophers, Lift, etc.) are included in AsmRep. The last set, Stu, contains the

1true if it is a controlled location, false if it is a monitored/static/derived location. Statically checked.
2true if the location is initialized. It is applicable only to controlled locations. Statically checked.
3true if the location is updated. It is applicable only to controlled locations. Checked by MP3.
4true if the update is always trivial. It is applicable only to controlled locations. Checked by MP4.
5true if the location is read at least in one state. Checked by MP3.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 11

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

Spec Set # spec. # rules # violations violated MPs (# violations)
Bench 21 384 61 All
AsmRep 18 506 29 MP4(11), MP6(8), MP5(5), MP7(4), MP3(1)
Stu 6 172 38 MP7(11), MP5(9), MP6(9), MP1(3), MP3(3), MP4(3)

Table 1: Experimental results and violations found

models written by our students in a master course in which the ASM method is taught. The results of
our experiments are reported in Table 1 which shows the name of the set, the number of models in it, the
total number of rules in those models, the number of violations we detected, and the violations found in
terms of meta-properties.

As expected our tool was able to detect all the violations in the benchmarks. The student projects
contained several faults, most regarding the model minimality but also some inconsistencies which were
not detected by model simulation. We found also several violations in the models of AsmRep, all of
them regarding model minimality. Note that not all the models in AsmRep could be analyzed, since
AsmetaSMV does not support all the AsmetaL constructs and it can analyze only finite models. We plan
to use SMT solvers and Bounded Model Checking to analyze ASMs with infinite states.

7 Related work

Typical automatic reviews of formal specifications include simple syntax checking and type checking.
This kind of analysis is performed by simple algorithms which are able to immediately detect faults like
wrong use of types, misspelled variables, and so on. Some complex type systems may require proving
of real theorems, like the non-emptiness of PVS types [11]. The review we propose in this paper is more
similar to the kind of reviews proposed by Parnas and his colleagues. In a report about the certification
of a nuclear plant, he observed that “reviewers spent too much of their time and energy checking for
simple, application-independent properties” (like our meta-properties) which distracted them from the
more difficult, safety-relevant issues.” [12]. Tools that automatically perform such checks can save
reviewers considerable time and effort, liberating them to do more creative work.

Our approach has been greatly influenced by the work done by the group lead by Heitmeyer with
the Software Cost Reduction (SCR) method. SCR features a tabular notation which can be checked for
completeness and consistency [8]: completeness guarantees that each function is totally defined by its
table and consistency guarantees that every value of controlled and internal variables is uniquely defined
at every step. In [9] is described a method, similar to ours, to automatically verify the consistency
of a software requirements specification (SRS) written in an SCR-style; properties that describe the
consistency of the model are defined structural properties. The SRS document is translated into a PVS
model where, for each structural property, a PVS theorem is declared. The verification of structural
properties is carried out through the proof of PVS theorems and, for one property, through the model
checking of a CTL property.

Other approaches try to apply analyses similar to those performed in SCR to non-tabular notations.
In [13], the authors present a set of robustness rules (like UML well-formedness rules) that seek to
avoid common types of errors by ruling out certain modeling constructs for UML state machines or
Statecharts. Structural checks over Statecharts models can be formulated by OCL constraints which, if
complex, must be proved by theorem proving. Their work and ours extend the use of meta-properties not
only to guarantee correctness but also to assure high quality standards in case the models are to be used
for safety critical applications.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 12

Automatic Review of ASMs by Meta-Property Verification Arcaini, Gargantini, Riccobene

8 Conclusions and Future work
We have presented a method to perform automatic model review of ASM specifications. This process
has the aim of guarantee certain quality attributes of models. A given quality attribute is captured by a
meta-property expressed in terms of a CTL formula. The AsmetaSMV model checker for ASMs is used
to detect a possible violation of this meta-property and, therefore, the presence of a possible defect in the
model. These meta-properties can be assumed as measures of model quality assurance.

In the future we plan to improve our process in the following directions. One of the typical shortcom-
ings introduced by a not ASM-expert when modeling with ASMs is the use of the seq rule constructor
when par could be used, instead. This is usually due by a wrong understanding of the simultaneous
parallel execution of function updates. The correct use of a par instead of a seq can improve the quality
of a model in terms of abstraction and minimality. So we plan to investigate this kind of defect and
define suitable meta-properties able to detect it. Another future plan regards the vacuity detection [10] of
(temporal) properties which can be specified for an ASM model. We plan to investigate if it is possible
to detect property vacuity before proving properties. To this purpose, an integration of the AsmetaSMV
system with existing tools able to detect vacuity could be possible.

References
[1] The ASMETA website. http://asmeta.sourceforge.net/, 2010.
[2] P. Arcaini, A. Gargantini, and E. Riccobene. AsmetaSMV: a way to link high-level ASM models to low-

level NuSMV specifications. In M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and S. Reeves, editors,
Abstract State Machines, Alloy, B and Z, Second Inter. Conference, ABZ 2010, volume 5977 of Lecture Notes
in Computer Science, pages 61–74. Springer, 2010.

[3] E. Börger. The ASM method for system design and analysis. A tutorial introduction. In B. Gramlich, editor,
Frontiers of Combining Systems, 5th International Workshop, FroCoS 2005, Vienna, Austria, September 19-
21, 2005, Proceedings, volume 3717 of Lecture Notes in Computer Science, pages 264–283. Springer, 2005.

[4] E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis.
Springer Verlag, 2003.

[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In Proc. International Conference
on Computer-Aided Verification (CAV 2002), volume 2404 of LNCS. Springer, July 2002.

[6] A. Gargantini, E. Riccobene, and P. Scandurra. Model-driven language engineering: The ASMETA case
study. In International Conference on Software Engineering Advances, ICSEA, pages 373–378, 2008.

[7] Y. Gurevich. Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comput. Logic,
1(1):77–111, 2000.

[8] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated consistency checking of requirements specifications.
ACM Transactions on Software Engineering and Methodology, 5(3):231–261, July 1996.

[9] T. Kim and S. D. Cha. Automated structural analysis of SCR-style software requirements specifications using
PVS. Softw. Test, Verif. Reliab, 11(3):143–163, 2001.

[10] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking. International Journal on
Software Tools for Technology Transfer (STTT), 4(2):224–233, 2003.

[11] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In 11th International Confer-
ence on Automated Deduction (CADE-11), pages 748–752, London, UK, 1992. Springer-Verlag.

[12] D. L. Parnas. Some theorems we should prove. In HUG ’93: 6th International Workshop on Higher Order
Logic Theorem Proving and its Applications, pages 155–162, London, UK, 1994. Springer-Verlag.

[13] S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden. Analyzing robustness of UML state machines. In
Workshop on Modeling and Analysis of Real-Time and Embedded Systems (MARTES 06), 2006.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 13

