
A Machine-Checked Proof of A State-Space Construction
Algorithm

Nestor Catano
The University of Madeira, M-ITI

Campus da Penteada, Funchal, Portugal
ncatano@uma.pt

Radu I. Siminiceanu
National Institute of Aerospace

100 Exploration Way, Hampton, VA 23666, USA
radu@nianet.org

Abstract

This paper presents the correctness proof of Saturation, an algorithm for generating state spaces
of concurrent systems, implemented in the SMART tool. Unlike the Breadth First Search exploration
algorithm, which is easy to understand and formalise, Saturation is a complex algorithm, employing
a mutually-recursive pair of procedures that compute a series of non-trivial, nested local fixed points,
corresponding to a chaotic fixed point strategy. A pencil-and-paper proof of Saturation exists, but a
machine checked proof had never been attempted. The key element of the proof is the characterisa-
tion theorem of saturated nodes in decision diagrams, stating that a saturated node represents a set
of states encoding a local fixed-point with respect to firing all events affecting only the node’s level
and levels below. For our purpose, we have employed the Prototype Verification System (PVS) for
formalising the Saturation algorithm, its data structures, and for conducting the proofs.

1 Introduction
Software systems have become a key part of our lives, controlling or influencing many of the activities
that we undertake every day. Software correctness is particularly important for safety-critical systems
where people’s lives can be at risk. Such systems have to be rigorously checked for correctness before
they can be deployed. Several formal techniques and tools for reinforcing the dependability of critical
systems exist. Temporal logic model checking is a technique to verify systems algorithmically, using
a decision procedure that checks if a (usually finite) abstract model of the system, expressed as a
state-transition system, satisfies a formal specification written as a temporal logic formula [7, 13].
Additionally, theorem proving is a technique to establish mathematical theorems and theories with
the aid of a computer program, i.e., a theorem prover. Theorem provers usually require the interaction
with an experienced user to find a proof. While model checking has been successfully used to find
errors, it is seldom used to seek the absolute correctness of a system or application. On the other
hand, provers and proof checkers are oftentimes the most reliable means available for establishing a
higher level of correctness.

For both approaches however, from the point of view of validation, and even certification, there is
the outstanding issue of trustworthiness: if a formal analysis tool is employed, how does one establish
the semantic validity of the analysis tool itself – in other words, who is checking the checker? While
the formal methods community has been functioning on the premise of accumulated trust – some
theorem provers and model checkers accumulate a track record of being trustworthy – the issue of
certifying verification tools is of undeniable concern, the more so as experience shows that automated
verification tools are far from being free of bugs [14].

Regulatory authorities (FAA, CAA, or DOD) require software development standards, such as
MIL-STD-2167 for military systems and RTCA DO-178B for civil aircraft. While certified tools for
generating code exist, they have been mostly confined to a very narrow segment, such as synchronous
languages for embedded systems and are usually of proprietary nature.

In this paper we attempt to establish the correctness of a general purpose model checking al-
gorithm, with the help of a theorem prover. More precisely, we present the PVS proof of correct-
ness for Saturation [5], a non-trivial algorithm for model checking concurrent systems, implemented
within the SMART [6] formal analysis tool. We have employed the Prototype Verification System
(PVS) [12] for formalising the Saturation algorithm, the Multi-valued Decision Diagrams (MDDs)

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 47

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

[15] data structure, and for conducting the proofs. Unlike the Breadth First Search exploration al-
gorithm which is easy to understand and formalise, Saturation is a high-performance algorithm, em-
ploying a mutually-preemptive, doubly-recursive pair of procedures that compute a series of nested
local fixed points, corresponding to a chaotic global fixed point strategy. The key result of the proof
is the characterisation theorem of saturated nodes in decision diagrams, stating that a saturated node
represents a set of states encoding a local fixed-point with respect to firing all events affecting only
the node’s level and levels below. Saturation requires a Kronecker consistent partition of the system
model in sub-models. The PVS proofs presented here take advantage of the Kronecker consistency
property to express how the state-spaces generated by local next-state functions relate to the global
state-space. In this regard, Saturation’s correctness proof outlines an approach that may be re-used in
the correctness proofs of an entire class of algorithms that rely on structural properties. Additionally,
the PVS formalisation makes the invariant relating Saturation and the firing routine explicit. This is
an important requirement for the SMART code. Its implementation, and the implementation of the
structures it uses for storing state-spaces, must satisfy this invariant.

2 Preliminaries
Saturation employs Multi-valued Decision Diagrams (MDDs) [15], an extension of the classical
Binary Decision Diagrams (BDDs), to symbolically encode and manipulate sets of states for con-
structing the state-space of structured asynchronous systems. MDDs encode characteristic functions
for sets of the form SK × ·· · × S1 for systems comprising K subsystems, each with its local state
space Sk, for K ≥ k ≥ 1. The particular MDD variant used in Saturation (quasi-reduced, ordered) is
formally given in Definition 1.

Definition 1 (MDDs). MDDs are directed acyclic edge-labelled multi-graphs with the following
properties:

1. Nodes are organised into K+ 1 levels from 0 to K. The expression
〈
k|p

〉
denotes a generic

node, where k is the node’s level and p is a unique index for a node at that level.

2. Level 0 consists of two terminal nodes
〈
0|0

〉
and

〈
0|1

〉
, which we often denote 0 and 1.

3. Level K contains only a single non-terminal node
〈
K,r

〉
, the root, whereas levels K−1 through

1 contain one or more non-terminal nodes.

4. A non-terminal node
〈
k|p

〉
has |Sk| arcs pointing to nodes at level k− 1. An arc from the

position ik ∈ Sk to the node
〈
(k−1)|q

〉
is denoted by

〈
k|p

〉
[ik] = q.

5. No two nodes are duplicate, i.e., there are no nodes
〈
k|p

〉
and

〈
k|q

〉
such that p%=q and for all

ik ∈ Sk,
〈
k|p

〉
[ik] =

〈
k|q

〉
[ik].

In contrast to [15], not fully- but quasi-reduced ordered MDDs are considered in Saturation,
hence redundant nodes, i.e., nodes

〈
k|p

〉
such that

〈
k|p

〉
[ik] =

〈
k|p

〉
[jk] for all ik %= jk, are valid

according to definitions used in Saturation. This relaxed requirement can potentially lead to a much
larger number of nodes, but in practice this rarely occurs. On the other hand, the quasi-reduced form
has the property that all the children of a node are at the same level, which can be exploited in the
algorithm. Equally important, the quasi-reduced form is still canonical, as the fully-reduced form is.
A sequence σ of local states (ik, . . . , i1) is referred to as a sub-state. Given a node 〈k|p〉, the node
reached from it through a sequence σ of local states (ik, . . . , i1) is defined as:

〈k|p〉[σ] =

{
〈k|p〉 if σ = (), the empty sequence
〈(k−1)|〈k|p〉[ik]〉[σ ′] if σ = (ik,σ ′), with ik ∈ Sk .

A sub-state σ constitutes a path starting at node 〈k|p〉, if 〈k|p〉[σ] = 〈0|1〉. B(k, p) is the set of
states encoded by 〈k|p〉, i.e., those states constituting paths starting at node 〈k|p〉.

B(k, p) = {σ ∈ Sk×·· ·×S1 : 〈k|p〉[σ] = 〈0|1〉}

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 48

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

2.1 Kronecker Consistency
Saturation requires a Kronecker consistent partition of the system model into K sub-models. A next-
state function N of a Kronecker structured asynchronous system model is defined on the potential
state-space Ŝ : SK ×·· ·×S1 decomposed by event, i.e., N =

⋃
e∈E Ne. An event e has a Kronecker

representation for a given model partition ifNe can be written as the cross-product of K local next-
state functions, i.e., Ne = N K

e × ·· · ×N 1
e , where N k

e : Sk → 2 |Sk|, for K ≥ k ≥ 1. Since Sk are
all assumed to be finite in Saturation, Ŝ : SK × ·· · × S1 can be regarded as a structure of the form
Ŝ : {1, · · · ,nK}×· · ·×{1, · · · ,n1}, where nk = |Sk|. A partition of a system model into sub-models is
Kronecker consistent if every event e has a Kronecker representation for that partition. The definition
of Ne can be extended to a set of sub-states X , Ne(X) =

⋃
x∈X Ne(x), and to a set of events E ,

NE (X) =
⋃
e∈E Ne(X). An event depends on a particular level if the event affects the (local) state-

space generated for that partition at that level. Let Top(e) and Bottom(e) be the highest and lowest
levels an event e depends, two cases in the definition of NE result when E = {e : Top(e) ≤ k} and
E k = {e : Top(e) = k}. We writeN≤k as a shorthand forN{e:Top(e)≤k}, andN=k as a shorthand for
NE k . The reachable state-space S ⊆ Ŝ from an initial system state X is the smallest set containing
X and being closed with respect to N , i.e., S = X ∪N (X)∪N (N (X)) · · · = N ∗(X), where ∗
denotes the reflexive and transitive closure.

2.2 Saturation
Saturation relies on a routine Fire(e,k, p), for exhaustively firing all the events e such that Top(e) = k,
and recursively calling Saturation of any descendant

〈
k|p

〉
[ik] of 〈k|p〉. Fire, like Saturation, checks

whether e is enabled in a node 〈k|p〉 and then reveals and adds globally reachable states to the MDD
representation of the state-space under construction. However, unlike Saturation, Fire operates on
a fresh node instead of modifying 〈k|p〉 in place, since 〈k|p〉 is already saturated. In Saturation,
MDDs are modified locally and only between the levels on which the fired event depends on. The
enabling and the outcome of firing an event e only depend on the states of sub-models Top(e) through
Bottom(e). Definition 2 formalises the idea of a saturated node. Saturation and the routine for firing
events are mutually recursive, related through the following invariant conditions: Saturate is called
on a node 〈k|p〉 whose children are already saturated, Fire is always invoked on a saturated node
〈l|q〉 with l < Top(e) and Saturate is invoked just before returning from Fire.

Definition 2 (Saturated Node). An MDD node 〈k|p〉 is saturated if it encodes a set of states that is a
fixed-point with respect to the firing of any event affecting only the node’s level or lower levels, that
is, if B(k, p) = N ∗

≤k(B(k, p)).

2.3 Saturation’s Correctness
For ease of reference, Figure 1 shows the pseudo-code for the Saturation and event firing algorithms.
We reproduce here the original pencil-and-paper correctness proof of the theorem relating both algo-
rithms, for ease of reference, then proceed with the formal PVS proof.

Correctness. Let 〈k|p〉 be a node with K ≥ k ≥ 1 and saturated children, and 〈l|q〉 be one of
its children with q %= 0 and l = k−1; let U stand for B(l,q) before the call Fire(e, l,q), for some
event e with l < Top(e), and let V representB(l, f), where f is the value returned by this call; Then,
V = N ∗

≤l(Ne(U)).

Proof. By induction on k. For the induction base, k = 1, the only possible call Fire(e, l,1) returns 1
because of the test on l, which has value 0, in Line 1 in Figure 1. Then, U = V = {()} and {()} =
N ∗
≤0(Ne({()})).

For the induction step we assume that the call to Fire(e, l−1, ·) works correctly. Recall that l = k−1.
Fire does not add further local states to L , since it modifies “in–place” the new node 〈l|s〉, and not
node 〈l|q〉 describing the states from where the firing is explored. The call Fire(e, l,q) can be resolved
in three ways. If l < Bottom(e), then the returned value is f = q and N l

e (U) = U for any set U ;

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 49

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

since q is saturated,B(l,q) = N ∗
≤l(B(l,q)) = N ∗

≤l(Ne(B(l,q))). If l≥Bottom(e) but Fire has been
called previously with the same parameters, then the call Find(FCache[l],{q,e},s) is successful.
Since node q is saturated, it has not been modified further; Finally, we need to consider the case where
the call Fire(e, l,q) performs “real work.” First, a new node 〈l|s〉 is created, having all its arcs ini-
tialised to 0. We explore the firing of e in each state i satisfying 〈l|q〉[i] %= 0 andN e

l (i) %= /0. By induc-
tion hypothesis, the recursive call Fire(e, l−1,〈l|q〉[i]) returnsN ∗

≤l−1(Ne(B(l−1,〈l|q〉[i]))). Hence,
when the “while L %= /0” loop terminates,B(l,s) =

⋃
i∈S l N l

e (i)×N ∗
≤l−1(Ne(B(l−1,〈l|q〉[i]))) =

N ∗
≤l−1(Ne(B(l,q))) holds. Thus, all children of node 〈l|s〉 are saturated. According to the induction

hypothesis, the call Saturate(l,s) correctly saturates 〈l|s〉.
Therefore, we haveB(l,s) = N ∗

≤l(N
∗
≤l−1(Ne(B(l,q))) = N ∗

≤l(Ne(B(l,q))) after the call.

3 The PVS Formalisation
We used the Prototype Verification System (PVS) [12] for formalising Saturate, the MDD data struc-
ture it uses to store state-spaces, and for conducting the correctness proofs. Our formalisation is
purely functional, e.g., we do not formalise memory and memory operations. The main goal of
our PVS formalisation is to machine-check the pencil-and-paper correctness proof of Saturate, in-
troduced in Section 2.3 and Figure 1. Modelling memory is necessary when one is interested in
generating actual code from the formalisation. We are planning to port our PVS formalisation to
AtelierB [2] and use refinement calculus techniques to generate Saturation actual code from the B
model. Yet, this is future work.

We started formalising the basic concepts employed by the definition of Kronecker consistency
such as events, states, local state values, next-state functions, local next-state functions. Then, we
formalised the Saturation algorithm and the routine for firing events, and conducted their correctness
proof in PVS following the pencil-and-paper proof. In the following, we present the definition of
some of those basic concepts in PVS. Predicate local_value?(m) below formalises local state
values at level m, where nk is the function nk = |Sk|. The reader should remember that Saturate
generates state spaces of values on a level basis. This is a direct consequence of the definition
of Kronecker consistency. local_value(m) is the type of all elements satisfying the predicate
local_value?(m), and the type state(k) formalises sub-states of size k as sequences s whose
elements s s̀q(m) at any position m≤ k are restricted by nk. We further define s_t(k,s,m) (not
shown here) to be a sub-state of s of size m≤ k, where k is the size of s.
local_value?(m)(n): bool = (m=0 ∧ n=0) ∨ (m > 0 ∧ n > 0 ∧ n≤ nk(m))
local_value(m): type = (local_value?(m))
state(k): type = { s:Seq(k) | ∀(m:upto(k)): (m=0 ∧ s`sq(m)=0) ∨

(m > 0 ∧ s`sq(m) > 0 ∧ s`sq(m)≤ nk(m)) }

We use PVS datatypes to model MDDs, formed using type constructors, and define predicates
ordered? and reduced? (not shown here), modelling ordered and reduced MDDs. Predicate
reduced? subsumes ordered?. The type OMDD below formalises Definition 1. We further define
function level, which returns the height of an MDD node, child(p,i), which returns the i-th
child of an MDD p, and predicate trivial? that holds of an MDD if it is 0 or 1.
OMDD: type = (reduced?)

Events are formalised as the type event below with two functions Top and Bottom returning the
highest and lowest level an event depends upon. The symbol + in the type definition indicates that
the type event is non-empty. TopLesser(k) models the set E = {e : Top(e)≤ k}.
event: type+

Top:[event -> posnat]
Bottom:[event -> posnat]

TopLesser(k): setof[event] = {e:event | Top(e)≤ k}

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 50

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

Saturate(in k:level, p:index)
Update 〈k|p〉 in–place, to encode
N ∗
≤k(B(〈k|p〉)).

declare e:event;
declare L :set of local;
declare f ,u:index;
declare i, j:local;
declare pChanged:bool;

1. repeat
2. pChanged← false;
3. foreach e ∈ E k do
4. L ← Locals(e,k, p);
5. while L %= /0 do
6. i← Pick(L);
7. f ← Fire(e,k−1,〈k|p〉[i]);
8. if f %= 0 then
9. foreach j ∈N k

e (i) do
10. u← Union(k −

1, f ,〈k|p〉[j]);
11. if u %=〈k|p〉[j] then
12. 〈k|p〉[j]←u;
13. pChanged← true;
14. if N k

e (j) %= /0 then
15. L ←L ∪{ j};
16. until pChanged = false;

Union(in k:level, p:index, q:index):index
Build an MDD rooted at 〈k|s〉 encoding
B(〈k|p〉)∪B(〈k|q〉). Return s.
declare i:local;
declare s,u:index;

1. if p= 1 or q= 1 then return 1;
2. if p= 0 or p= q then return q;
3. if q= 0 then return p;
4. if Find(UCache[k],{p,q},s) then

return s;
5. s← NewNode(k);
6. for i= 0 to nk−1 do
7. u← Union(k−1,〈k|p〉[i],〈k|q〉[i]);
8. 〈k|s〉[i]← u;
9. Check(k,s);
10. Insert(UCache[k],{p,q},s);
11. return s;

Fire(in e:event, l:level, q:index):index
Build an MDD rooted at 〈l|s〉 encoding
N ∗
≤l(Ne(B(〈l|q〉))). Return s.

declare L :set of local;
declare f ,u,s:index;
declare i, j:local;
declare sChanged:bool;

1. if l < Bottom(e) then return q;
2. if Find(FCache[l],{q,e},s) then
3. return s;
4. s← NewNode(l);
5. sChanged← false;
6. L ← Locals(e, l,q);
7. while L %= /0 do
8. i← Pick(L);
9. f ← Fire(e, l−1,〈l|q〉[i]);
10. if f %= 0 then
11. foreach j ∈N l

e (i) do
12. u← Union(l−1, f ,〈l|s〉[j]);
13. if u %=〈l|s〉[j] then
14. 〈l|s〉[j]← u;
15. sChanged← true;
16. if sChanged then
17. Saturate(l,s);
18. Check(l,s);
19. Insert(FCache[l],{q,e},s);
20. return s;

Locals(in e:event, k:level, p:index):
set of local
Return {i∈S k:〈k|p〉[i] %=0, N k

e (i) %= /0},
the local states in p locally enabling e.
Return /0 or {i ∈ S k :N k

e (i) %= /0}, re-
spectively, if p is 0 or 1.
Check(in k:level, inout p:index)
If 〈k|p〉 is the duplicate of an exist-
ing 〈k|q〉 delete 〈k|p〉 and set p to q.
Else, insert 〈k|p〉 in the unique table.
If 〈k|p〉[0] = · · · = 〈k|p〉[nk−1] = 0 or 1,
delete 〈k|p〉 and set p to 0 or 1, since
B(〈k|p〉) is /0 orS k×·· ·×S 1, respec-
tively.

Figure 1: Pseudo–code for the node–saturation and event firing algorithms.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 51

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

The type next(k) describes Ne for some event e. Local next-state functions at level k are
introduced by the type Localnext(k). A finite sequence of local next-state functions fs makes a
next-state function N Kronecker consistent, Kronecker?(k)(N)(fs), if for each event e, and sub-
states x and y of size k, every y’s local state y s̀q(m) with m≤ k is an image of x’s local state
x s̀q(m) through the local next-state function fs s̀q(m)(e) (modellingN m

e).

next(k): type = [event -> [state(k) -> setof[state(k)]]]
Localnext(k): type = [event -> [local_value(k) -> setof[local_value(k)]]]

Kronecker?(k)(N)(fs): bool =
∀(e:event, x,y:state(k)):
N(e)(x)(y) ⇔ ∀(m:upto(k)): fs`sq(m)(e)(x`sq(m))(y`sq(m))

NextLesser(k)(N,fs)(x) formalises N≤k applied over a sub-state x consisting of k levels.
The formalisation assumes that fs is a sequence of local next-state functions that make N Kro-
necker consistency. That is,Ne has a Kronecker representation for all event e such that Top(e)≤ k.
We further define NextLesser(k,m)(N,fs) similar to NextLesser(m)(N,fs) (not shown here)
for levels less than or equal to m, and equals to the identity function from m+1 to k. Definition of
NextLesser(m)(N,fs) is extended to a set X of sub-states in the natural way.

NextLesser(k)(N, fs)(x): setof[state(k)] =
{ y:state(k) | ∃(e:(TopLesser(k))):

∀(m:upto(k)): fs`sq(m)(e)(x`sq(m))(y`sq(m)) }

N ∗
≤k(X) is formalised as Apply(k)(N,fs)(w)(X) below, where w represents the number of

iterations after which applying N≤k on X does not generate any new state. That is, X is a fixed-
point of N≤k. The existence of such w is guaranteed by our formalisation since X is a finite
set, and every Ne in N≤k with Top(e) ≤ k is an increasing function. A similar definition for
Apply(k,m)(N,fs)(w)(X) exists (not shown here) that uses NextLesser(k,m)(N,fs)(X) in-
stead of NextLesser(k)(N,fs)(X). As a consequence of the definition ofN ∗

≤k, and because we are
considering Kronecker consistency next-state functions, we have that N ∗

≤k(N
∗
≤k−1(X)) = N ∗

≤k(X)
(Corollary Apply_cor1).

Apply(k)(N,fs)(w)(X): recursive setof[state(k)] =
if w=0 then X elsif w=1 then union(X,NextLesser(k)(N,fs)(X))
else union(X,Apply(k)(N,fs)(w-1)(X)) endif
measure w

Apply_cor1: corollary
∀(k:{n:upto(K) | n > 0}, N:next(k), fs:(kronecker?(k)(N)),
w:posnat, X:setof[state(k)], s:state(k)):

Apply(k)(N,fs)(w)(Apply(k,k-1)(N,fs)(w)(X))(s) ⇔ Apply(k)(N,fs)(w)(X)(s)

Finally, we formalise the routine for firing events and model its usage in Saturation. We employed
an axiomatic approach rather than writing a definition for the routine. Although axioms might po-
tentially introduce inconsistencies, the use of definitions may force PVS to generate additional proof
obligations all over the lemmas and theorems using the definitions, cluttering their proofs. Further-
more, an axiomatic approach is preferable when one is not interested in generating code for the
algorithm directly. The firing of an event e on a node 〈l|q〉, fire(l,e,N,fs,w,q) is described by
axioms fire_trivial, fire_nontrivial, fire_recursive, and fire_ saturated below, with
l≤ K, e:{ev:event | l <Top(ev)}, N:next(l), fs:(Kronecker?(l)(N)), and q:{u:OMDD |
level(u)=l∧ saturated?(l,u)(N,fs)(w)}. Therefore, to be able to call fire(l,e,N,fs,w,q),
event e should be such that l < Top(e), and q should be such that saturated?(l,q)(N, fs)(w),
in accordance with the “Fire is always invoked on a saturated node 〈l|q〉 with l < Top(e)” invari-
ant condition. fire_trivial states that fire(l,e,N,fs,w,q) returns q unaffected when ei-
ther l < Bottom(e) or l = 0. These two conditions describe the cases when the recursive call to
fire(l,e,N,fs,w,q) ends. fire_nontrivial states that if l>0, then fire(l,e,N,fs,w,q)’s

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 52

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

call returns a node whose level is the same as q’s level, that is l. trivial? holds of an MDD if it
is 0 or 1. fire_recursive states that the set Below(l,fire(l,e,N,fs,w,q)) of states of size l
encoded by a call to fire(l,e,N,fs,w,q) is recursively generated on a Kronecker structured level-
basis. That is, at level l, the local next-state functionN l

e (see fs s̀q(l)(e)) generates all the local
states for every local state value i at level l, and recursively, fire(l-1,e,Nl′,fsl′,w,child(q,i))
generates all the sub-states of size l-1. The final challenge in our formalisation comes from mod-
elling the mutual recursion between Saturate and Fire. Mutual recursion is not directly supported
by PVS. The axiom fire saturated formalises the invariant “Saturate is invoked just before re-
turning from Fire” in which we model Saturated as a property of a node that is fired on a particular
event. Notice that fire saturated cannot directly be expressed as a definition.

fire(l,e,N,fs,w,q): OMDD

fire_trivial: axiom l < Bottom(e) ∨ l=0 ⇒ fire(l,e,N,fs,w,q)=q

fire_nontrivial: axiom
l > 0 ⇒ ¬trivial?(fire(l,e,N,fs,w,q)) ∧ level(fire(l,e,N,fs,w,q))=l

fire_recursive: axiom
Below(l,fire(l,e,N,fs,w,q)) =
{ s:state(l) | ∃(i:local_value(l)): fs`sq(l)(e)(i)(s`sq(l)) ∧

Below(l-1,fire(l-1,e,Nl′,fsl′,w,child(q,i)))(s_t(l,s,l-1)) }

fire_saturated: axiom saturated?(l,fire(l,e,N,fs,w,q))(N,fs)(w)

3.1 Saturation’s Formalisation
Theorem 1 formalises N ∗

≤k−1(Ne(B(k, p))) =
⋃
i∈Sk N

k
e (i)×N ∗

≤k−1(Ne(B(
〈
k− 1|

〈
k|p

〉
[i]

〉
))),

which is true in Kronecker systems.

Theorem 1 (Applying Kronecker Consistent Next-State Functions). This theorem is used in Satura-
tion’s correctness proof (Theorem 2).

kronecker_apply: theorem
∀(k:{n:upto(K) | n > 0}, p:{u:OMDD | ¬trivial?(u) ∧ level(u)=k}, ev:event,
N:next(k), fs:(kronecker?(k)(N)), w:posnat, w1:posnat, s:state(k)):
(∃(i:local_value(k)):

fs`sq(k)(ev)(i)(s`sq(k)) ∧
Apply(k-1)(Nk′,fsk′)(w1)(Next(k-1,ev)(Nk′,fsk′)(Below(k-1,child(p,i))))

(s_t(k,s,k-1)))
⇔

Apply(k,k-1)(N,fs)(w)(Next(k,ev)(N,fs)(Below(k,p)))(s)

The proof of Theorem 1 is conducted under the well_defined assumption below, which states
that since “the enabling and the outcome of firing an event e only depend on the states of sub-models
Top(e) through Bottom(e)”, if k < Bottom(e) then applying N≤k to B(k, p) does not generate any
new state, and the non_decreasing assumption, which states that all considered local next-state
functions f are non-decreasing. Below(k,p) formalisesB(k, p), the set of states encoded by 〈k|p〉.

well_defined: assumption
∀(k:upto(K), p:{u:OMDD | level(u)=k}, e:event,
N:next(k), fs:(Kronecker?(k)(N))):
k < Bottom(e) ⇒ Below(k,p) = Next(k,e)(N,fs)(Below(k,p))

non_decreasing: assumption
∀(k:upto(K), e:event, f:Localnext(k), i:local_value(k)): f(e)(i)(i)

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 53

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

Theorem 1 is proved by induction on w and w1. The base case, w=1 and w1=1, is proved from
the lemma below_incremental below. This lemma states that a state s of size k>0 belongs to
Below(k,p) if and only if p is not trivial (p is different to 0 and 1), and s_t(k,s,k-1) belongs to
Below(k-1,child(n,s s̀q(s l̀n))).

below_incremental: lemma
Below(k,p)(s) ⇔
(¬ trivial?(p) ∧ Below(k-1,child(p,s`sq(s`ln)))(s_t(k,s,k-1)))

The inductive step for Theorem 1 is shown below. It reduces after expanding the definition of Apply
in the w+1 part of the logical equivalence.

Apply(k,k-1)(N,fs)(w)(Next(k,ev)(N,fs)(Below(k,p)))(s)
⇔

Apply(k,k-1)(N,fs)(w+1)(Next(k,ev)(N,fs)(Below(k,p)))(s)

Theorem 2 below formalises Saturation’s correctness condition in PVS. The PVS proof of this
theorem follows the pencil-and-paper proof in Section 2.3.

Theorem 2 (Saturation’s Correctness). B(l, f) = N ∗
≤ l(Ne(U)), where f is the value returned by

Fire(l,e,q)’s call, and U stands for B(l,q) before calling Fire(l,e,q), for some event e such that
l < Top(e).

saturation_correctness: theorem
∀(l:upto(K), e:{ev:event | l < Top(ev)}, N:next(l), fs:(Kronecker?(l)(N),
w:posnat, q:{u:OMDD | level(u)=l ∧ saturated?(l,u)(N,fs)(w)})):
Below(l,fire(l,e,N,fs,w,q)) =
Apply(l)(N,fs)(w)(Next(l,e)(N,fs)(Below(l,q)))

Proof. By induction on l.

(i.) Base case (l=0). If l=0 then fire(l,e,N,fs,w,q) = q (Axiom fire_trivial). Below(0,q)
equals TSeq (the empty sequence), and Next(0,e)(N,fs)({TSeq}) = {TSeq}. Because
Apply(0)(N,fs)(w)({TSeq}) = {TSeq}, the base case reduces trivially.

level(q)=0 ∧ 0 < Top(e) ∧ reduced?(q) ∧
Kronecker?(0)(N)(fs) ∧ saturated?(0,q)(N,fs)(w)
⇒

Below(0,fire(0,e,N,fs,w,q)) =
Apply(0)(N,fs)(w)(Next(0,e)(N,fs)(Below(0,q)))

(ii.) Inductive step with f = fire(l+1,e,N,fs,w,q).

l+1 < Top(e) ∧ level(q)=l+1 ∧ reduced?(q) ∧
Kronecker?(l+1)(N)(fs) ∧ saturated?(l+1,q)(N,fs)(w) ∧
(∀(ee:{ev:event | l < Top(ev)}, Nl:next(l), fsl:(Kronecker?(l)(Nl)),

ww:nat, qq:{u:OMDD | level(u)=l ∧ saturated?(l,u)(Nl,fsl)(ww)}):
Below(l,fire(l,ee,Nl,fsl,ww,qq)) =
Apply(l)(Nl,fsl)(ww)(Next(l,ee)(Nl,fsl)(Below(l,qq))))

⇒
Below(l+1,f) = Apply(l+1)(N,fs)(Next(l+1,e)(N,fs)(Below(l+1,q)))

(ii.i) Let us suppose l+1 < Bottom(e). From axiom fire_trivial, f = fire(l+1,e,N,fs,
w,q) = q. The proof is discharged from this, saturated?(l+1,q)(N,fs)(w) in the
antecedent of the proof, and the assumption well_defined.

(ii.ii) Let us suppose l+1 ≥ Bottom(e). If trivial?(q) then level(q) = 0, which con-
tradicts the hypothesis level(q) = l+1. We hence assume ¬trivial?(q) afterwards.
From the axiom fire_saturated and saturated?(l,f)(N,fs)(w) in the hypothe-
sis of the proof, Below(l+1,f) = Apply(l+1)(N,fs)(w)(Below(l+1,f)). Because

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 54

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

Below(l+1,f) = Apply(l+1,l)(N,fs)(w)(Next(l+1,e)(N,fs)(Below(l+1,q)))1,
then Below(l+1,f) = Apply(l+1)(N,fs)(w)(Apply(l+1,r)(N,fs)(w)(Next(l+1,
e)(N,fs)(Below(l+1,q)))). Therefore, from Corollary Apply_cor1 in Section 3,
Below(l+1,f) = Apply(l+1)(N,fs)(Next(l+1, e)(N,fs) (Below(l+1,q))).

4 Conclusion and Future Work
Saturation is a high-performance non-trivial algorithm with an existing pencil-and-paper correctness
proof. Conducting Saturation’s correctness proof in PVS allowed us to verify correct the existing
pencil-and-paper proof. Additionally, the PVS type-checker ensures that all the definitions in Satu-
ration are type-correct, and that details are not overlooked. The Kronecker consistency property of
systems considered in Saturation allows a separation of concerns so that proof-constraints did not
clutter the actual structural proofs we conducted. In this regard, Saturation’s correctness proof out-
lines a proof approach for an entire family of algorithms relying on structural properties. However,
there is still a missing link. We proved the correctness of a model of Saturation. But, how do we
know that Saturation’s implementation faithfully attests to this model? As future work, we will pur-
sue research in generating Java or C code from the PVS formalisation of Saturation, in the spirit of
C. Muñoz and L. Lensink’s work in [11], and comparing this code with the existing implementation
of Saturation in the SMART formal analysis tool.

The full formalisation of Saturation in PVS consists of 7 theories, 10 lemmas, 7 corollaries, 2
main theorems, and 107 Type-Correctness Conditions (TCCs). The full formalisation can be reached
at http://www.uma.pt/ncatano/satcorrectness/saturation-proofs.htm. Our formalisa-
tion is purely functional, e.g., we do not formalise memory, or memory operations.

Future Work. In [11], Muñoz and Lensink present a prototype code generator for PVS which
translates a subset of PVS functional specifications into the Why language [8] then to Java code
annotated with JML specifications [3, 4]. However, the code generator is still a proof of concept
so that many of its features have to be improved. We will pursue research in that direction so as
to generate Java certified code from the PVS formalisation of Saturation, and compare this with the
existing implementation of Saturation in the SMART formal analysis tool.

In a complementary direction, our PVS formalisation of Saturation can be ported into B [1].
Then, using refinement calculus techniques [9, 10], e.g., implemented in the AtelierB tool [2], code
implementing Saturation can be generated. This code is ensured to comply with the original formali-
sation of Saturation. A predicate calculus definition would require that axiomatisation for the routine
for firing events (Section 3) is replaced by a more definitional style of modelling.

References
[1] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,

1996.
[2] AtelierB. http://www.atelierb.eu/index en.html.
[3] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino, and E. Poll. An

overview of JML tools and applications. International Journal on Software Tools for Technol-
ogy Transfer (STTT), 7(3):212–232, June 2005.

[4] N. Catano, F. Barraza, D.Garcı́a, P. Ortega, and C. Rueda. A case study in JML-assisted soft-
ware development. In SBMF: Brazilian Symposium on Formal Methods, 2008.

[5] G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration strategy for
symbolic state-space generation. In Tools and Algorithms for the Construction and Analysis of

1This result is not proved here.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 55

A Machine-Checked Proof of A State-Space Construction Algorithm Catano and Siminiceanu

Systems (TACAS), volume 2031 of Lecture Notes in Computer Science, pages 328–342, Genova,
Italy, April 2001. Springer-Verlag.

[6] Gianfranco Ciardo, R. L. Jones III, Andrew S. Miner, and Radu Siminiceanu. Logic and
stochastic modeling with SMART. Journal of Performance Evaluation, 63(6):578–608, 2006.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state concurrent
system using temporal logic specifications. In Proceedings of TOPLAS, pages 244–263, 1986.

[8] J.-C. Filliâtre and Claude Marché. Multi-prover verification of c programs. In International
Conference on Formal Engineering Methods (ICFEM), volume 3308 of Lecture Notes in Com-
puter Science, pages 15–29, 2004.

[9] J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In European Symposium on
Programming (ESOP), pages 187–196, 1986.

[10] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–281,
1972.

[11] Leonard Lensink, César Muñoz, and Alwyn Goodloe. From verified models to verifiable code.
Technical Memorandum NASA/TM-2009-215943, NASA, Langley Research Center, Hampton
VA 23681-2199, USA, June 2009.

[12] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system. In Deepak
Kapur, editor, 11th International Conference on Automated Deduction (CADE), volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, Jun 1992. Springer-
Verlag.

[13] A. Pnueli. The temporal logic of programs. In Symposium on the Foundations of Computer
Science (FOCS), pages 46–57, Providence, Rhode Island, USA, 1977. IEEE Computer Society
Press.

[14] K. Y. Rozier and M. Vardi. LTL satisfiability checking. In SPIN, pages 149–167, 2007.
[15] R. K. Brayton Timothy Y.K. Kam, T. Villa and A. L. Sangiovanni-Vincentelli. Multi-valued

decision diagrams: Theory and applications. Multiple-Valued Logic, 4(1–2), 1998.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 56

