Slicing AADL Specifications for Model Checking*

Maximilian Odenbrett Viet Yen Nguyen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University, Germany

Abstract

To combat the state-space explosion problem in model checking larger systems, abstraction tech-
niques can be employed. Here, methods that operate on the system specification before constructing
its state space are preferable to those that try to minimize the resulting transition system as they
generally reduce peak memory requirements.

We sketch a slicing algorithm for system specifications written in (a variant of) the Architecture
Analysis and Design Language (AADL). Given a specification and a property to be verified, it auto-
matically removes those parts of the specification that are irrelevant for model checking the property,
thus reducing the size of the corresponding transition system. The applicability and effectiveness of
our approach is demonstrated by analyzing the state-space reduction for an example, employing a
translator from AADL to Promela, the input language of the SPIN model checker.

1 The Specification Language

The work that is described in this paper emanates from the European Space Agency COMPASS Project!
(Correctness, Modeling, and Performance of Aerospace Systems). Within this project, a specification
language entitled SLIM (System-Level Integrated Modeling Language) is developed which is inspired
by AADL and thus follows the component-based paradigm. Each component is given by its type and its
implementation. The component type describes the interface features: in and out data and event ports
for exchanging data (instantaneous) and event messages (synchronously) with other components. The
behavior is defined in the component implementation by transitions between modes, like in a finite au-
tomaton. Transitions can have an event port associated to them as a frigger. A transition with an out
event port as trigger is enabled only if in at least one other component a transition with a corresponding
in event port as trigger can synchronously be taken and thereby react to the trigger (and correspondingly
the other way round). Furthermore, transitions can be taken only when their guard expression evaluates
to true. Transitions can be equipped with effects, i.e., a list of assignments to data elements. Within
a component implementation data subcomponents, comparable to local variables, can be declared. To-
gether with in and out data ports we refer to them as data elements. All of them are typed and can have
a default value which is used as long as it is not overwritten. The availability of each data subcompo-
nent can be restricted with respect to modes of its supercomponent. In other than these modes the data
subcomponent may not be used and on (re)activation it will be reset to its default value.

In addition to data subcomponents, components can be composed of other non-data subcomponents,
possibly using multiple instances of the same component implementation. In the resulting nested com-
ponent hierarchy, components can be connected to their direct subcomponents, to their neighbor com-
ponents in the same supercomponent and to their direct supercomponent by data flows and event port
connections between their ports. The connections can again be mode dependent. If a data flow becomes
deactivated then its target port is reset to its default value. Fan-out is always possible whereas fan-in is
not allowed for data flows and must be used carefully with event port connections. Cyclic dependen-
cies are disallowed, too. A component can send an in event to or receive an out event from any of its
subcomponents directly by using subcomponent.eventport as transition trigger.

*Partially funded by ESA/ESTEC under Contract 21171/07/NL/JD
Thttp://compass.informatik.rwth-aachen.de/

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 217

Slicing AADL Specifications for Model Checking Odenbrett, Nguyen and Noll

Listing 1 gives an example SLIM specification modeling an adder component provided with random
input x,y € [0,30]. We refer to [2, 3] for a more detailed description of the language including a discussion
of the similarities and extensions with respect to AADL. In particular, [2] presents a formal semantics
for all language constructs, based on networks of event-data automata (NEDA).

system Main system IntAdder
end Main; features
x: in data port int;
system implementation Main.Impl y: in data port imnt;
subcomponents sum: out data port int;
randoml: system Random.Impl end IntAdder;
accesses aBus;
random2: system Random.Impl system implementation IntAdder.Impl
accesses aBus; flows
adder: system IntAdder.Impl sum := X + y;
accesses aBus; end IntAdder.Impl;
aBus: bus Bus.Impl;
flows system Random
adder.x := randoml.value; features
adder.y := random2.value; value: out data port int default 2;
modes update: in event port;
pick: initial mode; end RandomIntValue;
transitions
pick -[randoml.update]l-> pick; system implementation Random.Impl
pick -[random2.update]-> pick; modes
end Main.Impl; loop: imnitial mode;
transitions
bus Bus loop -[update then value := 0]-> loop;
end Bus; e
bus implementation Bus.Impl loop -[update then value := 30]-> loop;
end Bus.Impl; end RandomIntValue.Impl;

Listing 1: Integer Adder in SLIM

2 Slicing

The term “slicing” has been coined by Weiser [9], initially for sequential programs, and the approach
was extended later on in several ways by many authors (cf. [8]). Directly related to our work is the
extension of slicing to concurrent programs by Cheng [4] and, most important, the application of slicing
to software model checking including formal notions of correctness by Hatcliff, Dwyer and Zheng [5].

The principal idea of slicing is to remove all parts of a program, typically variables and statements,
that do not influence the behavior of interest, typically the values of some variables at some statements,
described by a slicing criterion. To determine which parts are relevant, the transitive backward closure
of the slicing criterion along different kinds of dependences, typically data and control dependences, is
computed. However, finding a minimal sliced program is in general unsolvable since the halting problem
can be reduced to it (cf. [9]).

2.1 Slicing of SLIM Specifications

Given a specification S and a CTL* property ¢ (without next operator), slicing should yield a smaller
specification S;’;iced that is equivalent to S with respect to @, i.e., S |= ¢ iff Sg;iced E ¢ (cf. [5]). Conse-
quently, comparable to a slicing criterion, the property defines the initially interesting parts that must not
be sliced away: data elements and modes used in @ (events are not allowed in our properties but could

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 218

Slicing AADL Specifications for Model Checking Odenbrett, Nguyen and Noll

be added). Subsequently, the closure of the set of interesting parts, i.e., all other aspects that have an
(indirect) influence on them and thus on the property, is calculated in a fixpoint iteration. Obviously this
iteration always terminates but in the worst case all parts of the specification become interesting.

In the following three paragraphs we describe in more detail the closure rules for adding data ele-
ments, events and modes to the set of interesting parts before the actual slicing algorithm is presented in
pseudo-code.

Identifying Interesting Data Elements Like with data flow dependence for classic program slicing,
all data elements used to calculate a new value for an interesting data element are interesting, too. Here,
this affects the right hand sides of assignments to an interesting data element, either in transition effects
or by data flows. Furthermore, comparable to control flow dependence, all data elements used in guards
on interesting transitions (see below) must be kept in the sliced specification as the evaluation of the
guard at runtime determines whether the transition can indeed be taken.

Identifying Interesting Events The main difference of SLIM specifications compared to sequential
programs is that the components can synchronously communicate by sending and receiving events.
Comparable to synchronization and communication dependences (cf. [4]), all events used as triggers
on interesting transitions are important. As events can be forwarded by event port connections all events
connected to an interesting event in any direction are interesting as well.

Identifying Interesting Modes Similarly to the program location in classical slicing, our algorithm
does not treat the mode information as a data element which is either interesting or not but tries to
eliminate uninteresting modes. The difficulty is that the questions whether a mode, a data element or an
event is interesting are related to each other since all those elements can be combined in the transition
relation: On the one hand, transitions are (partially) interesting when they change an interesting data
element, have an interesting trigger or their source or target mode is interesting. On the other hand,
triggers, guards, and source modes of those transitions are interesting. However, transitions themselves
are not considered as elements of interest in the fixpoint iteration. Instead, modes are made interesting
and with them implicitly all incoming and outgoing transitions. More concretely, besides the modes used
in the property the following modes are interesting as well:

e Source modes of transitions changing an interesting data element. This obviously applies to tran-
sitions with assignments to interesting data elements in their effects but also to transitions reacti-
vating an interesting data element, i.e., it is active in the target mode but not in the source mode,
since it will be reset to its default value.

e All modes in which a data flow to an interesting data element or an event port connection to/from
an interesting event is active. This guarantees that all transitions that deactivate a data flow to an
interesting data element and thus reset it to its default value are included in the sliced specification.

e Source modes of transitions with interesting events as triggers because of their relevance for syn-
chronous event communication.

Moreover, the reachability of interesting modes from the initial mode matters. Thus, every predecessor
of an interesting mode, that is, the source modes of transitions to interesting target modes, is interesting
as well.

Finally, for liveness properties it is additionally necessary to preserve the possibility of divergence
since no fairness assumptions are made. For example, whether a component is guaranteed to reach a
certain mode can depend on the fact whether another component can loop ad infinitum. To handle this,
all modes on “syntactical cycles”, i.e., cycles of the transition relation without considering triggers and
guards, are interesting as well. For safety properties this can be omitted.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 219

Slicing AADL Specifications for Model Checking

2.2 The Slicing Algorithm

For the pseudo-code description given in List-
ing 2 we use the following notations: Dat, Evt
and Mod are the sets of data elements, events
and modes occurring in the specification, re-

spectively. The relation Trn contains transi-

tions of the form m ﬂ m'’ with source and tar-

get mode m,m’ € Mod, trigger e € Evt, guard
expression g over data elements and f a list of
assignments. Data flows d := a instantly as-
signing the value of an expression a to a data
element d € Dat are collected in the set Fiw.
Finally, Con contains connections e ~» ¢’ be-
tween event ports e,e’ € Evt. On this basis, the
algorithm can compute the sets of interesting
data elements (D), events (E) and modes (M).

Note that, in analogy to distinguishing
calling environments of procedures, slicing is
done for component instances and not for their
implementation. This is more effective since
different instances of the same implementa-
tion might be sliced differently. Therefore,
we have to distinguish identical parts of dif-
ferent component instances. For example, the
set Dat for the specification in Listing 1 does
not simply contain the name Random.value
but randoml.value and random2.value to
differentiate between the different instances of
the Random component.

2.3 The Sliced Specification

After calculating the fixpoint, the sliced specification S

Odenbrett, Nguyen and Noll

/* Initialization */
D:={d € Dat | d occurs in ¢};
E:=0;
M :={m € Mod | m occurs in @};
/* Fixpoint Iteration */
repeat
/* Transitions that update/reactivate interesting
data elements or have interesting triggers */

for all m %L ' € Trm with 3d € D - f updates d
or 3d € D : d inactive in m but active in m’
ore € E do

M :=MU{m};
/* Transitions from/to interesting modes */

forallmﬂm’eTrnwithmeMorm’eMdo

D:=DU{d € Dat | g reads d}
U{d € Dat | f updates some d’ € D reading d};
E:=EU{e};
M :=MU{m};
/* Data flows to interesting data ports */
for alld :=a € Fiw withd € D do
D:=DU{d' € Dat |areads d'};
M :=MU{m € Mod | d := a active in m};
/* Connections involving interesting event ports */
for all e~ ¢’ € Con withe € E or ¢’ € E do
E:=EU{e};
M :=MU{m e Mod | e ~ ¢ active in m};
until nothing changes;
Listing 2: The Slicing Algorithm

g;ice 4 can be generated. Essentially, it contains

only the interesting data elements (D), events (E) and modes (M) plus data flows and connections to
them, i.e., d := a € Flw with d € D and e ~ ¢ € Con where e € E, respectively. Their default values

and the lists of modes in which they are active stay the same. The sliced transition relation contains all

transitions m 5% m! € Trn leaving an interesting mode m € M with slight modifications: If the target

mode is not interesting (;m’ ¢ M), it is replaced by a “sink mode” m, ¢ Mod which is added to every
component that had uninteresting modes. For each data subcomponent, this sink mode is also added to
the list of modes in which the component is active. Furthermore, only those transition effects d :=a in f
are retained that assign to an interesting data element, i.e., d € D. Finally, all “empty” components, i.e.,
those that neither have interesting data elements, interesting modes nor non-empty subcomponents, are
completely removed in a bottom-up manner.

The resulting specification S;’;ice 4 18 again a valid SLIM specification. In particular, every object
referenced in it is indeed declared as it was included in the fixpoint iteration, e.g., the data elements used
in the guards of interesting transitions. Beyond that, sink modes indeed do not need outgoing transitions
as it is impossible to change an interesting data element, to send or receive an interesting event or to
reach an interesting mode as soon as an uninteresting mode has been entered by the original component.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 220

Slicing AADL Specifications for Model Checking Odenbrett, Nguyen and Noll

3 Results and Conclusions

For model checking SLIM specifications we developed a translator [7] to Promela, the input language of
SPIN [6]: Every component instance is transformed to a process whose program labels reflect the modes.
Data elements are stored in global variables and communication is implemented using channels. Due to
dependencies introduced by translation details, SPIN’s slicing algorithm could not effectively reduce the
resulting Promela code.

Comparing the model checking results of sliced and unsliced specifications served as a first sanity
check for our algorithm while a general correctness proof based on the formal semantics of SLIM is to
be developed. The idea is to show that the corresponding transition systems are related via a divergence-
sensitive stuttering bisimulation, which is known to preserve the validity of CTL* properties without
next [1, p. 560]. Furthermore, the differences in resource demands demonstrate the effectiveness of our
approach, e.g., for the introductory example from Listing 1 as shown in the following table:

Specification Mem/State | #States |Memory | Time
(bytes) (MBs) |(seconds)
Unsliced (identical for ¢y, ..., ¢3) 136 1,676,026 272 |6.0-7.3
Sliced for ¢; = 0O(0 < adder.sum < 60) 116 [1,437,691 211 5.4
Sliced for ¢, =0 (/\?3:1 0 < randomp .value < 30) 84 553,553 84 1.4
Sliced for @3 = 0(0 < random]1.value < 30) 76 9,379 33 0.1

All three properties are valid invariants and thus require a full state space search. The difference is
in the resulting set of interesting data elements: While for ¢; every data port is needed, for ¢, the whole
adder component can be removed and for ¢3 only random1 .value is interesting. The removal of the
empty bus component accounts for the reduction from the unsliced specification to the one sliced for ¢;.

We conclude that our slicing algorithm can considerably reduce the state space, especially when
whole components can be removed. We end with the remark that beyond the scope of this paper the
algorithm has been extended to more involved language constructs (such as de- and reactivation of non-
data subcomponents or hybridity) and that a refining distinction between weak and strong interesting
data elements was made.

References

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[2] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri. Codesign of Dependable Systems:
A Component-Based Modelling Language. In 7th Int. Conf. on Formal Methods and Models for Co-Design
(MEMOCODE), pages 121-130. IEEE CS Press, 2009.

[3] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri. The COMPASS Approach:
Correctness, Modelling and Performability of Aerospace Systems. In 28th Int. Conf. on Computer Safety,
Reliability and Security (SAFECOMP 2009), volume 5775, pages 173-186. Springer, 2009.

[4] J. Cheng. Slicing concurrent programs - a graph-theoretical approach. In P. Fritzson, editor, AADEBUG,
volume 749 of Lecture Notes in Computer Science, pages 223-240. Springer, 1993.

[5] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction. Higher-Order and Symbolic
Computation, 13(4):315-353, 2000.

[6] G.J.Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[7] M. Odenbrett. Explicit-State Model Checking of an Architectural Design Language using SPIN. Master’s
thesis, RWTH Aachen University, Germany, Mar. 2010. http://www-1i2.informatik.rwth-aachen.de/
d1l/noll/theses/odenbrett.pdf.

[8] F. Tip. A survey of program slicing techniques. J. Prog. Lang., 3(3), 1995.
[9] M. Weiser. Program slicing. In ICSE, pages 439—449, 1981.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 221

