
Towards the Formal Verification of a Distributed Real-Time
Automotive System

Erik Endres∗

Saarland University
Germany

email@endrese.de

Christian Müller∗

Saarland University
Germany

cm@cs.uni-sb.de

Andrey Shadrin∗

Saarland University
Germany

shavez@cs.uni-sb.de

Sergey Tverdyshev∗†

SYSGO AG
Germany

stv@sysgo.com

Abstract
We present the status of a project which aims at building, formally and pervasively verifying a

distributed automotive system. The target system is a gate-level model which consists of several
interconnected electronic control units with independent clocks. This model is verified against the
specification as seen by a system programmer. The automotive system is implemented on several
FPGA boards. The pervasive verification is carried out using combination of interactive theorem
proving (Isabelle/HOL) and model checking (LTL).

1 Introduction
There are many works on formal verification of hardware, software, and protocols. However, their
interplay in a computer system is not to ignore because even if the hardware and software are correct
there is no guarantee that this software is executed correctly on the given hardware. It becomes even
more critical when considering distributed embedded systems due to the close interaction of software
and hardware parts.

The goal of our project is to show that it is feasible to formally verify a complex distributed au-
tomotive system in a pervasive manner. Pervasive verification [10, 17] attempts to verify systems
completely including the interaction of all components, thus minimizing the number of system as-
sumptions. Our desired goal is a “single” top-level theorem which describes the correctness of the
whole system.

The subproject Verisoft-Automotive aims at the verification of an automatic emergency call sys-
tem, eCall [7]. The eCall system is based on a time triggered distributed real-time system which
consists of distributed hardware and a distributed operating system.

We use Isabelle/HOL [12], an interactive theorem prover, as the design and verification environ-
ment. Our interactive proofs are supported by the model checking technique [21].

Context and Related Work Pervasive verification of a system over several layers of abstraction
is introduced in the context of the CLI stack project [2]. However, the application of such verification
techniques to an industrial scenario without strong restrictions (e.g. on the programming language)
poses a grand challenge problem as by J. S. Moore [10]. Rushby [14] gives an overview of the formal
verification of a Time-Triggered Architecture [15] and formally proves the correctness of some key
algorithms. Automated correctness proofs for abstract versions of protocols for serial interfaces using
k-induction are reported in [13]. There are also recent efforts on the fully automated verification of
clock domain crossing issues [9]. It would be highly desirable to reuse results of this nature for
a pervasive correctness proof of distributed automotive system. However, putting all these efforts
together in a pervasive correctness proof arguing about several layers of abstraction has not been
reported.

In the following section we present the automotive system and its components. In Section 3
we describe the hardware environment and system implementation. Section 4 exposes verification
challenges. We conclude the paper by summary and future work.

∗The authors were supported by the German Federal Ministry of Education and Research (BMBF) in the Verisoft project
under grant 01 IS C38
†The reported work has been done while author was affiliated with Saarland University

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 212

Towards the Formal Verification of a Distributed Real-Time Automotive System E. Endres et al.

Bus

Processor

abc

Processor

abc

Processor

abc

Figure 1: Several ECUs interconnected by a communication bus.

2 Automotive System
The automotive system [8] is inspired by the demands of the automotive industry and based on the
FlexRay standard [4]. Our automotive system is a distributed asynchronous communication system
represented by a set of electronic control units (ECUs) connected to a single bus. The overview of
such a distributed system is illustrated in Figure 1. The ECU is built on the base of a formally verified
generic gate-level platform [20]. This platform is a complex gate-level computer system, which
consists of a pipelined processor with out-of-order execution and a number of memory mapped I/O
devices.

Each ECU has its own clock and contains a bus controller and a processor. The bus controller is
attached to the processor via a device interface. Besides the control logic, each bus controller contains
two buffers: a send and a receive buffer. We denote the controller “ABC” standing for automotive
bus controller. Further we denote by sc

i the hardware state s in cycle c of the ith bus controller in
our network. By sc

i .rb we denote the content of the receive buffer and by sc
i .sb the content of the

send buffer. Moreover, since we argue about clock domain crossing, we model the translation of
digital values to analogous and vice-versa. We use the function hcyi : R→ N to map real time to
the corresponding hardware cycles on the ECU i. The function asri(t) : R→ {0,1,Ω} provides the
analogous value of the send register of ECU i in cycle hcyi(t). Note, that the analogues value gets
metastable (Ω) for a short amount of time right after the send register is clocked. During a message
transmission we write the content of the send buffer bitwise into this register. We write into it the
idle value ‘1’ otherwise. The real time clock period of the ith controller is denoted by τi, i.e. one
hardware cycle of the ECU i lasts τi in the analogous world.

The ECUs communicate in a time-triggered static schedule. These time intervals are the so-
called communication rounds. A communication round is a periodically recurring time unit which
is divided into a fixed number of slots. In each slot, exactly one ECU is allowed to broadcast one
message to the bus. Let αi(r, s) be the point in real time when the slot s of round r is started on the
ECU i, and ωi(r, s) be the end time of this slot. The start of each round is signalized by one special
ECU called master, all other ECUs are called slaves. As soon as a slave ECU receives this round start
signal, it begins with execution of a fixed schedule. Each ECU counts the number of passed slots
and, depending on its status in the given slot (sender or receiver), it either samples the bus value or it
sends some data to the bus. When a slave ECU reaches the maximal slot number in one round, it goes
to an idle state and waits for a new round start signal. The master ECU waits for some predefined
amount of time when it is guaranteed that all slave ECUs are waiting for a new round. Only then the
master broadcasts a start signal for the new round. The communication protocol as well as the clock
synchronization mechanism are described in details in [3].

A system run scenario can be described as follows. Assume the ECU m is acting as a sender in
slot s of a round r and before slot s ECU m copied data d from its memory to its send buffer, such that
we have at the slot start shcym(αm(r,s))

m .sb = d. After the slot start the ECU m waits off cycles before
it starts the transmission. The number of cycles off has to be big enough s.t. the start time of the
slot s on all other ECUs is before αm(r, s)+ τm · off . Then, m broadcasts the content of sm.sb (data
d) bitwise to the bus during the next tc cycles (transmission length). At the end of the slot s each
receiver ECU contains d in its receive buffer: ∀i : shcyi(ωi(r,s))

i .rb = d.
Such a time-triggered communication requires that all ECUs have roughly the same notion of

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 213

Towards the Formal Verification of a Distributed Real-Time Automotive System E. Endres et al.

time, such that each ECU is aware of the correct slot number and its role in this slot during each
message transmission. This is one of the verification challenges (Section 4).

3 Implementation
The verified ECU design has been automatically translated to Verilog [18] directly from formal Is-
abelle/HOL hardware descriptions and has been synthesized with the Xilinx ISE software. The pro-
totype implementation consists of several FPGA boards which are interconnected into a prototype
of a distributed hardware network. Every ECU is running on either Xilinx Spartan-3 and Virtex-2
FPGA development boards [6]. Each board consists of a field programmable gate array (FPGA) and
several devices (e.g. LEDs, switches) connected to the I/O-ports of the FPGA chip.Every board has
its own clock source, thus, all ECUs are clocked independently. The boards are interconnected via
Ethernet cable. The physical layer of the data transmission is tuned to the FlexRay standard and is
provided by the low voltage differential signaling driver [11], which generates a differential signal
of ± 350 mV. We successfully tested communication between FPGA boards with the help of the
hardware logic analyzer Trektronix TLA5204 and the software Chipscope.

4 Verification Challenges
The correctness of the presented distributed system can be split into two parts: local correctness
(single ECU) and distributed correctness (asynchronous communicating ECUs).

The local part focuses on the correctness of the processor, the ABC device and their communica-
tion, e.g. instructions are correctly executed, the device registers are written and read correctly. More
details on the local correctness can be found in [19].

The distributed correctness states that during a run the exchange of data between ECUs is cor-
rect, e.g. the sent data of one ECU are the received data on another ECU. Obviously the distributed
correctness requires the local one. Moreover, this exchange requires correct asynchronous commu-
nication via a FlexRay bus. The state of the bus is a conjunction of outputs of all send registers, i.e.
it is an ∧-bus:

bus(t) =
∧

∀i

asri(t)

On the receiver side, the bus value bus(t) will be clocked into the analogous receive register,
digitalized, and clocked into the receive buffer afterwards. The correctness of the message exchange
in the automotive system is based on two properties. First, we have to ensure that if a connection
between a sender and receivers is established directly (i.e. we abstract bus by a link), then the low
level bit transmission from the sender to all receivers is correct. One of the challenges here is to
ensure that the value broadcast on the link is stable long enough so that it can be sampled correctly
by the receiver. In our case, if the sender sends n bits, the receiver will sample at least n− i of
these bits. The number i is the number of lost bits due to the clock drift between different ECUs.
This information loss happens only at the low-level bit transmission. At this level we transmit the
message encoded according to the FlexRay standard (each bit is replicated eight times) which defines
sufficient redundancy to guarantee the transmission of every single bit of the original information.
The correctness of this low-level transmission mechanism cannot be carried out in a conventional,
digital, synchronous model. It involves asynchronous and real-time-triggered register models taking
into account setup- and hold-times as well as metastability. This part of the pervasive correctness has
been formally verified and reported in [16].

The second part is the bus correctness where we have to prove that we can abstract the bus while
a sender broadcasts data to the bus. Here, we show that the bus connection can be modeled as a
direct link between sender and each receiver. The latter holds only if during each transmission only
one sender (one ECU) is broadcasting and all receivers are listening and not sending something (i.e.
they are not producing a bus contention). To avoid a bus contention each ECU has to be aware of
the correct slot number, i.e. all ABCs have roughly the same notion of the slot start and end times

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 214

Towards the Formal Verification of a Distributed Real-Time Automotive System E. Endres et al.

message transmission message transmission message transmission

slot i-1 slot i s lot i+1

slot i-1

slot i-1

slot i

slot i s lot i+1

slot i+1

ECU n-1

ECU n

ECU n+1
real t ime

Figure 2: Time notion of an ECU.

(correctness of the scheduling unit). Therefore, due to drifting clocks a synchronization is necessary.
We use a simple approach: in the beginning of each round all slave ECUs are waiting for the round
start signal broadcast by the master ECU. After this signal all receivers are aware of the current slot
number namely zero. All consecutive slots are started and ended locally on each ECU with respect to
the maximal clock drift that can occur during a full round. Böhm has formally verified a theorem [3]
that if a slave ECU i is waiting and the master ECU m starts a new round r, then the ECU i is
aware of each new slot s of this round before the message transmission starts. He also proves that
the transmission of each slot ends before the receiver ECU “thinks” that the slot is over. We have
significantly extended these theorems and used them as an induction hypothesis to prove that on all
ECUs each slot of each round starts before and ends after the message transmission:

∀ slot s, round r, ECU m, ECU i . m is sender in slot s→
αm(r, s)+off ·τm > αi(r, s)∧αm(r, s)+ (off + tc) ·τm < ωi(r, s)

Thus, we have shown that each slot of an ECU overlaps with the same slot on all other ECUs during
the message transmission as depicted in Figure 2. Since all receivers place ‘1’ on the ∧-bus we show,
that during any transmission, the bus contains value of the send register of the sender:

∀ ECU m, slot s , round r . bus(t) = asrm(t) for t ∈ [αm(r, s)+off ·τm ; αm(r, s)+ (off + tc) ·τm]

We prove all real-time properties and complex hardware theorems interactively in Isabelle/HOL.
Some properties of hardware with “model-checkable state space” are expressed in LTL and proven
automatically [21].

5 Summary
In this paper we presented the status of a pervasive verification of a distributed automotive system.
The system is a distributed network of electronic control units interconnected by a single bus involv-
ing clock domain crossing. We have successfully built up a working gate-level prototype synthesized
from our formal models. We have also partially verified the automotive system. This pervasive ver-
ification is very challenging because the system exists on three levels of abstraction: 1. a formal
model of an asynchronous real-time triggered system on the bus side, 2. a formal gate-level design
of digital hardware for local properties on the controller side, 3. a formal model as seen by an as-
sembler programmer. Moreover, all our models are combined together and are formally specified in
Isabelle/HOL theorem prover.

In our previous work we have formally verified a platform for electronic control unit [20], sched-
uler correctness [3], and low-level bit transmission [16]. As part of the current work we have con-
solidated previous results which was not an easy task due to the combination of results over several
layers of abstractions. We are also finishing the verification of the asynchronous message transmis-
sion between several ABC devices. The latter includes the verification of the bus correctness (done)
and a correct transmission of send and receive messages from the corresponding buffers to / from the
bus (in progress).

For future work we see several interesting topics. First, finishing the current work. Then, we can
extend the automotive system with fault tolerance, e.g. as sketched in [1]. Another work in progress
at our chair is verification of a distributed operating system which runs on top of the presented

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 215

Towards the Formal Verification of a Distributed Real-Time Automotive System E. Endres et al.

distributed system [5]. We also would like to put together formal proofs for the latter operating
system and our distributed hardware.

References
[1] Eyad Alkassar, Peter Boehm, and Steffen Knapp. Correctness of a fault-tolerant real-time

scheduler algorithm and its h ardware implementation. In MEMOCODE’2008, pages 175–186.
IEEE Computer Society Press, 2008.

[2] William R. Bevier, Warren A. Hunt, Strother Moore, and William D. Young. An approach to
systems verification. Journal of Automated Reasoning, 5(4):411–428, 1989.

[3] Peter Böhm. Formal Verification of a Clock Synchronization Method in a Distributed Automo-
tive System. Master’s thesis, Saarland University, Saarbrücken, 2007.

[4] FlexRay Consortium. FlexRay – the communication system for advanced automotive control
applications. http://www.flexray.com/, 2006.

[5] Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. Implementation correctness of a
real-time operating system. In (SEFM 2009), 23–27 November 2009, Hanoi, Vietnam, pages
23–32. IEEE, 2009.

[6] Erik Endres. FlexRay ähnliche Kommunikation zwischen FPGA-Boards. Master’s thesis, Wis-
senschaftliche Arbeit, Saarland University, Saarbrücken, 2009.

[7] European Commission (DG Enterprise andDGInformation Society). eSafety forum: Summary
report 2003. Technical report, eSafety, March 2003.

[8] Steffen Knapp and Wolfgang Paul. Pervasive verification of distributed real-time systems. In
M. Broy, J. Grünbauer, and T. Hoare, editors, Software System Reliability and Security, vol-
ume 9 of IOS Press, NATO Security Through Science Series., 2007.

[9] Bing Li and Chris Ka-Kei Kwok. Automatic formal verification of clock domain crossing
signals. In ASP-DAC ’09, pages 654–659, Piscataway, NJ, USA, 2009. IEEE Press.

[10] J Strother Moore. A grand challenge proposal for formal methods: A verified stack. In Bern-
hard K. Aichernig and T. S. E. Maibaum, editors, 10th Anniversary Colloquium of UNU/IIST,
volume 2757 of LNCS, pages 161–172. Springer, 2002.

[11] National Semiconductor. LVDS Owner’s Manual, 2008.
[12] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS. Springer, New

York, NY, USA, 1994.
[13] Lee Pike. Modeling time-triggered protocols and verifying their real-time schedules. In FM-

CAD’07, pages 231–238. IEEE, 2007.
[14] John M. Rushby. An overview of formal verification for the time-triggered architecture. In

FTRTFT ’02, pages 83–106, London, UK, 2002. Springer-Verlag.
[15] C. Scheidler, G. Heine, R. Sasse, E. Fuchs, H. Kopetz, and C. Temple. Time-triggered archi-

tecture (tta). Advances in Information Technologies, 1997.
[16] J. Schmaltz. A formalization of clock domain crossing and semi-automatic verification of low

level clock synchronization hardware. Technical report, Saarland University, 2006.
[17] The Verisoft Consortium. The Verisoft Project. http://www.verisoft.de/, 2003.
[18] S. Tverdyshev and A. Shadrin. Formal verification of gate-level computer systems (short paper).

In Kristin Yvonne Rozier, editor, LFM 2008, NASA Scientific and Technical Information (STI),
pages 56–58. NASA, 2008.

[19] Sergey Tverdyshev. Formal Verification of Gate-Level Computer Systems. PhD thesis, Saarland
University, Saarbrücken, 2009.

[20] Sergey Tverdyshev. A verified platform for a gate-level electronic control unit. In Formal
Methods in Computer Aided Design, FMCAD’09, IEEE, pages 164–171, 2009.

[21] Sergey Tverdyshev and Eyad Alkassar. Efficient bit-level model reductions for automated hard-
ware verification. In TIME 2008, pages 164–172. IEEE, 2008.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 216

