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Abstract

In black-box testing, the tester creates a set of tests to exercise a system under test without re-
gard to the internal structure of the system. Generally, no objective metric is used to measure the
adequacy of black-box tests. In recent work, we have proposed three requirements coverage metrics,
allowing testers to objectively measure the adequacy of a black-box test suite with respect to a set
of requirements formalized as Linear Temporal Logic (LTL) properties. In this report, we evaluate
the effectiveness of these coverage metrics with respect to fault finding. Specifically, we conduct an
empirical study to investigate two questions: (1) do test suites satisfying a requirements coverage
metric provide better fault finding than randomly generated test suites of approximately the same
size?, and (2) do test suites satisfying a more rigorous requirements coverage metric provide better
Sfault finding than test suites satisfying a less rigorous requirements coverage metric?

Our results indicate (1) only one coverage metric proposed — Unique First Cause (UFC) coverage —
is sufficiently rigorous to ensure test suites satisfying the metric outperform randomly generated test
suites of similar size and (2) that test suites satisfying more rigorous coverage metrics provide better
fault finding than test suites satisfying less rigorous coverage metrics.

1 Introduction

When validating a system under test (SUT), the creation of a black box test suite—a set of tests that
exercise the behavior of the model without regard to the internal structure of the model under test—
is often desirable. Generally, no objective standard is used for determining the adequacy of test suite
with respect to a set of requirements. Instead, the adequacy of such suites is inferred by examining
different coverage metrics on the executable artifact defining the SUT, such as source code. However,
given formalized software requirements it is possible to define meaningful coverage metrics directly
on the structure of the requirements. Of interest here is previous work in which we adopted structural
code coverage metrics to define three increasingly rigorous requirements coverage metrics over Linear
Temporal Logic (LTL) requirements: requirements coverage, antecedent coverage, and Unique First
Cause (UFC) coverage [19]. The relationship between the criteria forms a linear subsumption hierarchy,
as test suites satisfying more rigorous coverage metrics are guaranteed to satisfy less rigorous coverage
metrics.

In this work we empirically evaluate the fault finding ability of test suites satisfying these require-
ments coverage metrics. Specifically, we investigate if (1) in general a test suite satisfying a requirements
coverage metric provides greater fault finding than a randomly generated test suite of the same size and
(2) the linear subsumption hierarchy between metrics reflects the relative fault finding of test suites sat-
isfying these requirements coverage metrics. Our study is conducted using four commercial examples
drawn from the civil avionics domain. For each case example, we generate 600 mutants, a test suite

*This work has been partially supported by NASA Ames Research Center Cooperative Agreement NNAO6CB21A, NASA
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satisfying each requirements coverage metric, and 1,000 random tests. We resample these sets to create
25 sets of 200 mutants and 25 reduced test suites for each coverage metric. For each reduced test suite,
we create a random test suite of approximately the same size by resampling from the set of 1,000 random
tests. We explore fault finding using each set of mutants and each test suite. In total, we examine the
fault finding of 15,000 combinations of case examples, test suites, and mutant sets.

From our results we draw the following observations. First, the relative rigor of the requirements
coverage metrics reflects the fault finding ability of test suites satisfying them. Second, the structure
of requirements significantly impacts the fault finding of test suites satisfying the coverage metrics, an
observation previously made in relation to other coverage metrics [16]. Finally, test suites satisfying
the UFC coverage criterion often provide greater fault finding than randomly generated test suites of
equal size, while test suites satisfying the other coverage metrics do not. This indicates that of the three
coverage metrics evaluated, only UFC coverage is a consistent measure of the adequacy of test suites—
the intuition behind the other metrics may be useful, but they are not rigorous enough to be used as
an objective measure of test suite adequacy. Our results highlight how this lack of rigor creates the
potential for test suites to “cheat” a coverage criterion by fechnically satisfying the criterion, but doing
so in an uninteresting or non-representative manner. This is particularly a problem when using automatic
test generation tools, as these tools generally have no concept of realistic tests and tend to generate the
simplest possible tests satisfying a coverage criterion.

2 Related Work

In [19], we formally defined the requirements coverage metrics studied in this paper and outlined our
rationale for each. As detailed in [19], these metrics are related to work by Beer et al., Kupferman
et al., and Chockler et al. on vacuity checking and coverage metrics for temporal logics [2, 4, 10].
More recently, we examined the fault finding effectiveness of test suites satisfying UFC coverage of
the requirements on a system and MC/DC (Modified Condition/Decision Coverage) over the system
itself [16]. We determined that test suites satisfying MC/DC generally outperform test suites satisfying
UFC coverage (though fault finding was often close). This study, however, did not investigate the fault
finding effectiveness of requirements and antecedent coverage as compared to UFC.

Fraser and Gargantini [5] and Fraser and Wotawa [6] explored automatic test generation using
NuSMYV for a number of coverage criteria, including UFC and mutation coverage. Neither of these works
compare the effectiveness of test suites satisfying UFC coverage to randomly generated tests suites of
equal size or perform any analysis that considering the size of the test suite.

3 Requirements Coverage Metrics

Previously, we defined three requirements coverage metrics: requirements coverage, antecedent cover-
age, and Unique First Cause (UFC) coverage [19]. Each requirements coverage metric is defined over
formalized requirements expressed as Linear Temporal Logic (LTL) properties [15]. These coverage
metrics provide different levels of rigor for measuring test adequacy and form a linear subsumption hier-
archy, with requirements coverage as the weakest and UFC coverage as the strongest.

Requirements Coverage: To satisfy requirements coverage, a test suite must contain at least one test
per requirement that—when executed —causes the requirement to be met. Consider the following nat-
ural language requirement: “The onside Flight Director cues shall be displayed when the Auto-Pilot is
engaged.” A test derived from this requirement might examine the following scenario: (1) Engage the
Auto-Pilot, and (2) Verify that the Onside Flight Director comes on. Alternatively, the test might simply
leave the Auto-Pilot turned off. Technically, this test meets the requirement, albeit in a way that is not
particularly illuminating.
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Antecedent Coverage: Requirements, such as the previous example, are often implications, formally
G(A — B). A on the left hand side of — is referred to as the antecedent, and B on the right hand side as
the consequent. To satisfy antecedent coverage, a test suite must contain at least one test case per require-
ment that, when executed, causes the requirement to be met and causes the antecedent to evaluate to true.

Unique First Cause (UFC) Coverage: Requirements are often more complex than the simple exam-
ple given previously. For such complex requirements (and often simple ones), it is desirable to have a
rigorous coverage metric that requires tests to demonstrate the effect of each atomic condition in the re-
quirement; this ensures that every atomic condition is necessary and can affect the outcome of the prop-
erty. Requirements and antecedent coverage cannot do this. Therefore, we defined a coverage metric
called Unique First Cause (UFC) coverage over LTL requirements. It is adapted from the MC/DC crite-
rion [3, 9], a structural coverage metric designed to demonstrate the independent effect of basic Boolean
conditions (i.e., subexpressions with no logical operators) on each Boolean decision (expression) within
source code.

A test suite satisfies UFC coverage over a set of LTL requirements if executing the test cases in the
test suite will guarantee that (1) every basic condition in each formula has taken on all possible outcomes
at least once and (2) each basic condition in each formula has been shown to independently affect the
formula’s outcome.

4 Study

Based on the subsumption hierarchy between these metrics outlined in the previous section we expect that
test suites satisfying UFC coverage will provide better fault finding than test suites satisfying the other
requirements coverage metrics, and we expect that test suites satisfying antecedent coverage will provide
better fault finding than test suites satisfying requirements coverage. Furthermore, we expect that a test
suite satisfying a coverage metric will provide better fault finding than a randomly generated test suite
of equal size since a test suite satisfying a requirements coverage metric is designed to systematically
exercise the system.
We conducted an experiment to evaluate the following hypotheses:

Hypothesis 1 (H): A test suite satisfying a requirements coverage metric provides greater
fault finding than a randomly generated test suite of approximately equal size.

Hypothesis 2 (H,): A test suite satisfying a requirements coverage metric provides greater
fault finding than a test suite satisfying a less rigorous requirements coverage metric.

We used four industrial systems in our experiment. For each case example, we performed the following
steps:

1. Generated a test suite for each coverage metric: We generated three suites providing UFC,
antecedent, and requirements coverage. (Section 4.2.)

. Generated random tests: We generated random inputs for 1,000 random tests. (Section 4.3.)

Generated mutants: We generated 600 single-fault mutants (Section 4.4.)

. Ran test suites with mutants and case example: We ran each mutant and the original case
example using the three generated test suites and the random test suite.

5. Generated reduced requirements coverage test suites: Each requirements coverage test suite
was naively generated and thus highly redundant. We generated 25 reduced test suites that maintain
the original coverage from each full test suite. (Section 4.2.)

6. Generated random test suites: For each reduced requirements coverage test suite, we randomly
generated a random test suite approximately the same size as the reduced requirements coverage
test suite by sampling the 1,000 random tests previously generated. (Section 4.3.)
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7. Generated mutants sets: We randomly generated 25 sets of 200 mutants by resampling from the
600 mutants. (Section 4.4.)

8. Assessed fault finding ability of each reduced test suite: For each test suite and each mutant set,
we determined how many mutants were detected by the test suite.

In the remainder of this section, we describe in detail our experimental approach.

4.1 Case Examples

In our experiment, we use four industrial avionics applications from displays and flight guidance systems.
All four systems were modeled using the Simulink notation from Mathworks Inc. [12] and were trans-
lated to the Lustre synchronous programming language [8] to take advantage of existing automation [13].
For more information on these systems, see [16].

4.2 Requirement Test Suite Generation and Reduction

We have used an automated approach to generate test cases from a model of the system behavior. This
model represents the knowledge of the desired system behavior a domain expert might possess. Using
this technique, we can generate the large number of tests required for our experiments. Furthermore,
the approach tends to generate the shortest, simplest tests that satisfy obligations, and, thus, the tests
generated are unlikely to be unusually effective (and may in fact be unusually poor), a phenomenon
previous observed in [16].

Several research efforts have developed automatic test generation techniques based on formal models
and model checkers [7, 18]. The technique we use is outlined in [18] and operates by generating NuSMV
counterexamples through trap properties. Using this technique, we can create test suites achieving the
maximum achievable coverage for a specified coverage metric.

A test suite generated using this approach will be highly redundant, as a single test case will often
satisfy several obligations. Such a test suite is not representative of the coverage metric, as it may
contain far more tests than are needed and may therefore bias the test suite’s fault finding ability. We
therefore reduce each test suite using a greedy algorithm. First, we randomly select a test case from the
generated test suite, determine which obligations are satisfied by the test and add it to a reduced test suite.
We continue by randomly choosing another test case from the generated test suite, determining if any
obligations not satisfied by the reduced test suite are satisfied by the test case selected, and if so adding
the test case to the reduced test suite. This process yields a randomly reduced test suite achieving the
same requirements coverage as the the original test suite. We generated 25 reduced test suites for each
coverage metric and each case example to avoid threats to validity due to a small sample size.

4.3 Random Test Suite Generation and Reduction

We generated a single set of 1,000 random tests for each case example. Each individual test contains
between 2-10 steps with the number of tests of each test length distributed evenly in each set of tests.
For each reduced requirements coverage test suite we create a random test suite with the same number of
steps (or slightly more) by randomly sampling from the set of 1,000 random tests generated. As a result,
each set of reduced requirements coverage test suites satisfying a coverage metric has a corresponding set
of random test suites of approximately the same size. The number of steps was used as a measurement
of size rather than the number of tests as this avoids creating a random test suite with significantly longer
or shorter tests on average than the corresponding reduced requirements coverage test suite.

44 Mutant Generation

We created 600 mutants (faulty implementations) for each case example by introducing a single fault into
the correct implementation. Each fault was introduced by either inserting a new operator into the system
or by replacing an operator or variable with a different operator or variable. The faults seeded include

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 164



Eval. of Coverage Metrics for Reqs-Based Testing

Staats, Whalen, Rajan, and Heimdahl

| | RC | RC-RAN | AC [ AC-RAN | UFC | UFC-RAN |
DWM_1 718% | 187% | 186% | 787% | 88.0% 81.6%
DWM.2 0.0% 1.60% | 00% 129% | 541% 9.42%
LatctlBatch | 17.1% | 498% | 590% | 62.1% | 852% 82.7%
Vertmax_Batch | 224% | 266% | 469% | 425% | 81.5% 22%

| | AC:RCImp | UFC:RCImp | UFC:ACImp | RC:RC-RANImp | AC:AC-RANImp | UFC:UFC-RANImp |

DWM_1 1.01% 13.1% 12.0% -1.0% -0.1% 7.8%
DWM_2 0.0% o e -100% -100% -42.0%
Latctl_Batch 244.1% 396.9% 44.4% -65.0% -5.1% 3.0%
Vertmax_Batch 108.9% 262.4% 73.5% -15.0% 10.3% 12.9%

Table 1: Average and Relative Improvement in Fault Finding

Column Header (X : Y) Denotes Relative Fault Finding Imp. Using Test Suite X over Test Suite Y’
RC = Requirements Coverage, AC = Antecedent Coverage
X-RAN = Random Test Suite w/ Size ~ Size of a Reduced Test Suite Satisfying X Coverage

| [ UFC < AC | UFC <RC | AC < RC | UFC < UFC-RAN | AC < AC-RAN | RC < RC-RAN |

DWM_1 <0.001 <0.001 <0.001 <0.001 0.62 1.0
DWM_2 <0.001 <0.001 1.0 1.0 1.0 1.0
Latctl_Batch <0.001 <0.001 <0.001 <0.001 1.0 1.0
Vertmax_Batch <0.001 <0.001 <0.001 <0.001 1.0 1.0

Table 2: Statistical Analysis for H0; and HO,

RC = Requirements Coverage, AC = Antecedent Coverage
X-RAN = Random Test Suite w/ Size ~ Size of a Reduced Test Suite Satisfying X Coverage

arithmetic, relational, boolean, negation, delay introduction, constant replacement, variable replacement
and parameter replacement and are described in more detail in [16].

We generated 600 mutants for each case example. From these 600 mutants, we generated 25 sets of
200 mutants. We generated multiple sets of mutants to avoid threats to validity due to a small sample
size. Note that we did not check that generated mutants are semantically different from the original
implementation. This weakness in mutant generation does not affect our results since we are interested
in the relative fault finding ability between test suites.

5 Results

To determine the fault finding of a test suite 7 and a mutant set M for a case example we simply compare
the output values produced by the original case example against every mutant m € M using every test
case t € T. The fault finding effectiveness of the test suite for the mutant set is computed as the number
of mutants killed divided by the number of mutants in the set. We perform this analysis for each test suite
and mutant set for every case example yielding 7,500 fault finding measurements per case example. We
use the information produced by this analysis to test our hypotheses and infer the relationship between
coverage criteria and fault finding.

The complete analysis is too large to include in this report'. For each case example, we present in
Table 1 the average and relative improvement in fault finding for each coverage metric and for the random
test suites corresponding to each coverage metric. We limit the discussion in this section to statistical
analysis, a discussion of these results and their implications follows in Section 6.

5.1 Statistical Analysis

To evaluate our hypotheses (from Section 4), we first evaluate each hypothesis for each combination of
a case example and requirements coverage metric (for H;) or pairing of requirements coverage metrics
(for H,). Using these results, we determine what conclusions can be generalized across all systems.

'Our data can be retrieved at http://crisys.cs.umn.edu/public_datasets.html and is available to the research
community for additional analysis.
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[ UFC>AC | UFC>RC | AC>RC [ UFC > UFC-RAN | AC > AC-RAN [ RC > RC-RAN |
[ Supported | Supported | Unsupported | Unsupported | Unsupported |  Unsupported |

Table 3: Conclusions for Hypotheses Across All 4 Case Examples
RC = Requirements Coverage, AC = Antecedent Coverage
X-RAN = Random Test Suite w/ Size ~ Size of a Reduced Test Suite Satisfying X Coverage
Each column (X >Y) Denotes Hypothesis of “Test Suites Satisfying X Have Greater Fault Finding Than Test Suites Satisfying ¥’

Each of the individual hypotheses states that one set of fault finding measurements should be in gen-
eral higher than another set of fault finding measurements. For example, we hypothesize that fault finding
measurements for reduced test suites satisfying UFC coverage are better than fault finding measurements
for the set of comparably sized random test suites (for each oracle and case example). To evaluate our
hypotheses, we use a bootstrapped permutation test, a non-parametric statistical test that determines the
probability that two sets of data belong to the same population [11], and explore 1,000,000 permutations
when calculating each p-value. From a practical standpoint, we are only interested in scenarios where
test suites satisfying a requirements coverage metric outperform random test suites and where test suites
satisfying a more rigorous coverage metric outperform a less rigorous coverage metric. Consequently,
we formulate our null hypotheses as one-tailed tests, restating Hy and H; as the null hypotheses H0; and
HO,, respectively:

HO,: For case example CE, the data points for percentage of mutants caught by test suites satisfying
coverage metric C are less than or equal to the data points for percentage of mutants caught by
random test suites of approximately the same size.

HO0,: For case example CE, the data points for percentage of mutants caught by test suites satisfying
coverage metric Cy are less than or equal to the data points for percentage of mutants caught by
test suites satisfying a less rigorous coverage metric C,.

We evaluate HO, and HO, using 4 case examples and 3 coverage metrics or 3 pairings of coverage
metrics, respectively. We therefore produce 12 p-values each for HO; and HO,, listed in Table 2. These
p-values are used to generalize across our results.

We use the Bonferonni correction, a conservative method for guarding against erroneously rejecting
the null hypothesis when generalizing results. The Bonferonni correction sets the alpha required for
each null hypothesis at 1/n times the alpha desired for the entire set, where n is the number of results
generalized; in this case, the alpha is set at 1/4%0.05 = 0.0125 for each hypothesis. We present the
results in Table 3.

Given these results, we can evaluate our original hypotheses:

Hypothesis 1 (H): A test suite satisfying a requirements coverage metric provides greater
fault finding than a randomly generated test suite of approximately equal size.

Hypothesis 2 (H»): A test suite satisfying a requirements coverage metric provides greater
fault finding than a test suite satisfying a less rigorous requirements coverage metric.

The majority of test suites satisfying a coverage metric provide worse fault finding than random test
suites of similar size, and thus H| is not statistically supported. Furthermore, test suites satisfying an-
tecedent and requirements coverage provide similar levels of fault finding for the DWM_2 case example,
and thus H; is not statistically supported.

However, we note here several interesting results from Tables 2 and 3, and explore them in Section 6.
First, H, fails only when test suites satisfying antecedent and requirements coverage find no faults.
Second, test suites satisfying UFC coverage outperform random test suites 75% of the time (3 of 4
case examples). Finally, random test suites always outperform test suites satisfying requirements and
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antecedent coverage with statistical significance (derivation of this significance is not shown), indicating
that the random tests are not simply equivalent to the tests generated to satisfy a coverage metric, but
preferable. These results and our recommendations are explored in Section 6.

5.2 Threats to Validity

External Validity: We only used four synchronous reactive critical systems in the study. We believe,
however, that these systems are representative of the critical systems in which we are interested and that
our results can therefore be generalized to other related systems.

As our implementation language we used the synchronous programming language Lustre [8] rather
than a more common language such as C or C++. Systems written in Lustre are similar in style to
traditional imperative code produced by code generators. Therefore, testing Lustre code is sufficiently
similar to testing reactive systems written in C or C++ to generalize the results to such systems.

We have used automatically seeded faults to evaluate the fault finding ability of tests suites. It is
possible the faults seeded are not representative. Nevertheless, previous work indicates fault seeding
methods similar to our own are representative of real faults encountered in software development [1].

We only report results using test oracles based on output variables. In pilot studies, we observed that
test oracles considering internal variables in addition to output variables produced similar results.

Finally, we used automatic test generation rather than a domain expert when creating test suites.
Clearly, the tests produced by an automated tool differ from tests likely to be produced by a domain
expert, particularly in the case of requirements coverage. Nevertheless, we are interested in evaluating
the coverage metrics, not domain experts, and thus view the worst-case test generation provided by
the tools to be preferable —these tools tend to highlight deficiencies in coverage metrics, and thus our
evaluation is not influenced by the skill of a domain expert.

Conclusion Validity: For each case example, we have performed resampling using a random test
suite containing 1,000 tests and a set of 600 mutants. These values are chosen to yield a reasonable cost
for the study. It is possible that sampling from larger random test suites may yield different results, or
that the number of mutants is too low. Based on past experience, however, we have found results using
200 mutants to be representative [17, 16], and thus believe 600 mutants to sufficient.

For each case example, we have generated 25 reduced test suites for each coverage metric, a cor-
responding set of 25 random test suites for each coverage metric, and 25 sets of 200 mutants. These
numbers were chosen to keep the cost of resampling reasonable. It is possible that the fault finding
measurements that result do not accurately represent the set of possible results. Nevertheless, the low
variance in fault finding measurements observed in the sets of test suites and mutants—coupled with the
consistency of our results across case examples —indicates our conclusions are accurate.

6 Discussion

In Section 5, we showed that neither hypothesis was statistically supported. Nevertheless, the results lead
to several worthwhile observations. First, despite the lack of statistical significance, the subsumption
hierarchy between coverage metrics generally reflects the relative fault finding of test suites satisfying a
coverage metric; the more rigorous the coverage metric, the more effective the corresponding test suite
will be. This indicates a useful tradeoff in test suite rigor and test suite size exists.

This observation, however, is rendered largely moot by the effectiveness of random testing. For
both requirements and antecedent coverage, random test suites provide greater fault finding than test
suites satisfying these coverage metrics, often with statistical significance. Furthermore, for the DWM_2
system, test suites satisfying UFC coverage do not outperform randomly generated test suites. The
former result highlights problems with using automatic test generation tools to generate tests satisfying a
coverage criterion. The latter result highlights how the structure of requirements can affect the usefulness
of a coverage metric.
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In the remainder of this section, we will discuss the implications of these results and recommenda-
tions concerning requirements coverage metrics.

6.1 Pitfalls of Automatic Test Generation

As mentioned in Section 4.2, automatic test generation tends to produce tests that satisfy coverage obli-
gations using minimal effort. Tests generated tend to frequently use the default inputs (e.g., all signals set
to false), and may in that way technically satisfy obligations while not exercising useful or representative
scenarios. Consequently, a test suite generated to meet a coverage criterion might do mostly nothing,
while a random test suite of equal size will generally do something (albeit something arbitrary). This
accounts for the relatively good fault finding achieved by random test suites.

The degree to which this is a problem depends on the complexity of the coverage obligations. For
example, the coverage obligations produced using requirements coverage for the DWM_2 system are
very simple, and consequently every test generated is exactly the same; therefore, one test satisfies every
obligation. Conversely, the coverage obligations produced using UFC coverage for the Vertmax_Batch
system are quite complex, requiring over 10 times as many tests as needed to satisfy requirements or
antecedent coverage for the same system. When using complex obligations, automatic test generation
must generate tests meeting a wide variety of constraints, including specific sequences of events, and
consequently the test cases produced tend to be more realistic and more effective.

6.2 Pitfalls of Requirements Structure

For the DWM_2 system, the randomly generated test suites outperform the test suites satisfying UFC
coverage. We have observed similar issues in previous work [16] where we noted the requirements for
this particular system are structured such that the UFC criterion is rendered ineffective as compared to
our other case examples?.

LTLSPEC G(var_a > ( LTLSPEC G(var_a > (
case case
foo : 0 ; foo & baz : 0 + 2 ;
bar : 1 ; foo & bpr : 0 + 3 ;
esac + bar & baz : 1 + 2 ;
case bar & bpr : 1 + 3 ;
baz : 2 ; esac
bpr : 3 ; ));
esac
));
Figure 1: Original LTL Requirement Figure 2: Restructured LTL Requirement

We note that many of the requirements for the DWM_2 system were of the form (formalized as
SMV [14]) in Figure 1. Although this idiom may seem unfamiliar, this use of case expressions is not
uncommon when specifying properties in NuSMV. Informally, the sample requirement states that var_a
is always greater than the sum of the outcomes of the two case expressions. Generating UFC obligations
for the above requirement yields very simple test obligations since there are no complex decisions — we
simply need to find tests where the top-level relational expression and each atomic condition has taken
on the values true and false.

This requirement can be restructured without changing the meaning as shown in Figure 2. Achieving
UFC coverage over this restructured requirement will require more obligations than before since the
boolean conditions in the case expression are more complex and we must demonstrate independence of
each condition in the more complex decisions. Thus, the structure of the requirements has a significant
impact on the number and complexity of UFC obligations required. For this experiment, we did not
restructure any requirements. Consequently, the UFC obligations for the DWM_2 do not have as complex

2This discussion is partially adopted from [16] as we encountered the same phenomenon in that investigation.
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of a structure as those for the other three systems, and automatic test generation (as with requirements
and antecedent coverage) produces poor tests.

6.3 Recommendations

The goal of using a coverage criterion is to infer the efficacy of a test suite. By verifying that a test suite
satisfies a coverage criterion, one hopes to provide evidence that the test suite is “good” and is likely to
uncover faults. While no objective standard for “good” fault finding exists, at a minimum a test suite
satisfying a useful coverage criterion should provide better fault finding than a randomly generated test
suite of similar size; otherwise, little confidence in the quality of a test suite is gained by showing it
satisfies the coverage criterion.

The test suites generated by automatic test generation to satisfy requirements and antecedent cover-
age are in some sense “worst-case” test cases, and it is likely a domain expert using these metrics as a
guide would produce far better tests. We are, however, not evaluating our coverage metrics as guidelines
for developing tests, but as objective measure of black-box test suite adequacy, and our results clearly
demonstrate that it is easy to satisfy requirements or antecedent coverage using inadequate test suites.
We therefore conclude that requirements and antecedent coverage are not sufficiently rigorous to ensure
a test suite satisfying one of these metrics is better than a random test suite of equal size—the intuition
behind the metrics may be useful, but merely satisfying the metric does not provide convincing evidence.

Conversely, the test suites generated to provide UFC coverage, despite also being “worst-case” test
cases, generally outperform random test suites of approximately the same size. The caveat to this is
requirements structure—by breaking up complex requirements into several less complex requirements,
the benefits of UFC coverage can be diminished. Nevertheless, our results indicate that the adequacy
of black-box tests can be inferred using UFC coverage. We therefore conclude that UFC coverage is
sufficiently rigorous to ensure a test suite is better than a random test suite of equal size provided the
requirements are not structured to mask complexity. Admittedly, this is a rather weak conclusion and
more research is needed to identify coverage criteria that are more effective and more robust with respect
to the structure of the requirements.

Thus, in practice, testers who wish to objectively infer the adequacy of a black-box test suite with
respect to a set of requirements formalized as LTL properties should use UFC coverage while noting the
pitfalls outlined above.

7 Conclusion

In [19], we defined coverage metrics over the structure of requirements formalized as Linear Temporal
Logic (LTL) properties. Such metrics are desirable because they provide objective, model-independent
measures of the adequacy of black-box testing activities. In this paper, we empirically demonstrated that
of the three coverage metrics explored, only the UFC coverage criterion is rigorous enough to be a useful
measurement of test suite adequacy. We also noted that the usefulness of the UFC coverage criterion
is influenced by the structure of the requirements. Consequently, we conclude that testers who wish to
measure the adequacy of a test suite with respect to a set of LTL requirements should use a coverage
criterion at least as strong as UFC coverage, but should be mindful of the structure of their requirements.

Furthermore, our work highlights the difference between using coverage metrics as guidelines for
developing test suites, and using coverage metrics as objective measurements of test suite adequacy. We
demonstrate how using an insufficiently rigorous coverage criterion for inferring test suite adequacy can
lead to incorrectly concluding a test suite that technically meets the criterion is adequate, when the test
suite is no better than a randomly generated test suite of approximately the same size. We believe this
has implications in domains such as avionics and critical systems, where test coverage metrics are used
by regulatory agencies to infer the efficacy of a testing process and thus the quality of a software system.
We hope to investigate this problem in depth in future work.
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