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Abstract 

 
A feasibility study was performed on a representative aerospace system to determine the following: (1) 
the benefits and limitations to using SCADE®, a commercially available tool for model checking, in 
comparison to using a proprietary tool that was studied previously [1] and (2) metrics for performing the 
model checking and for assessing the findings. This study was performed independently of the 
development task by a group unfamiliar with the system, providing a fresh, external perspective free from 
development bias. 
 
1 Introduction 
 
Reviewing software requirements for a system is an important task, as during the requirements phase 
approximately 70% of errors are introduced [2]. The earlier those errors are detected, the less costly they 
are to fix, making the requirements phase an opportune time to find and correct errors. However, typically 
only 3.5% of errors are removed during the requirements phase [2]. Model checking makes requirements 
reviews more efficient than manual techniques, as it can identify more defects in less time. 
 
Historically, major drawbacks to the application of formal methods to industry included the reluctance to 
introduce more time and expense into the software lifecycle process and the fear that formal methods is 
too proof-heavy and therefore requires expert knowledge of mathematics. However, studies have shown 
that using a process to formally verify software actually can save time and money during a project [3]. 
Furthermore, while some knowledge of mathematics is needed, expertise is certainly not necessary 
because formal methods have evolved from being solely an academic pursuit and is now gaining 
acceptance in the industrial realm. With this evolution comes improved ease of use and applicability.  
 
A previous feasibility study was performed on a representative aerospace system to assess the viability of 
a particular set of techniques and tools to perform formal verification of the software requirements [1]. 
The study explored the types of potential safety issues that could be detected using these tools and 
determined the level of knowledge required, the appropriateness and the limitations of the tools for real 
systems, and the labor costs associated with the technique.   
 
The conclusions for the previous study were: 

1) The model checking tool set was useful in detecting potential safety issues in the software 
requirements specification. 

2) The particular tool set was not able to model the entire system at one time.  The model had to be 
partitioned, and then assumptions had to be verified about the interfaces between the sections. 

3) With basic training in Matlab®/Simulink® and specific training on the tool, engineers were able 
to become productive with this method in a reasonable time frame.  

4) The costs to perform the analysis were commensurate with the system being modeled. 
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The purpose of this, the subsequent study, was to: 
1) Determine if another tool set offers increased scalability and is able to model and verify the entire 

system with no partitioning. 
2) Determine if another tool set is more user-friendly, including better commercially available 

training, fewer bugs and crashes, and increased ease of use. 
3) Develop metrics for the number of requirements that can be modeled and verified per labor hour 

and the number of safety and other defects found per requirement. 
4) Prototype methods for modeling and verifying design aspects. 
5) Document training requirements and guidelines. 

 
2 Overview of System 
 
In this phase of the study, the same aircraft vehicle management system (VMS) was analyzed as in the 
previous phase. The VMS determines the overall health status of the aircraft to allow for maximum 
availability of critical systems. The VMS consists of two redundant computers that are both safety- and 
mission-critical. The VMS interfaces with the aircraft avionics and the radio communication systems. A 
data link between the redundant computers provides channel state data and synchronization. The VMS is 
subdivided into 18 individual managers such as a Communications Manager and Electrical Systems 
Manager. Due to the proprietary nature of the system, Figure 1 is purposefully general. Elements are 
encapsulations of functionality either described in the SRS or included by the modelers for clarity and 
organization. 
 

 
Figure 1:  Overview of the System 

 
The VMS performs vehicle mode, flight planning, navigation, and vehicle health functions.  There are 
redundant VMS computers, with one always acting as a master.  If the master is determined to be bad, 
then the slave VMS will assume control of the vehicle.  The VMS interfaces with sensors, avionics, and 
actuators that perform the low-level communications, position, and control surface functions. 
 
The model consisted of 104 block diagrams and 11 state machines, all organized hierarchically. Some 
state machines were depicted in the requirements document, while the modelers added others when the 
requirements nicely fit into one. 
 
3 Methodology 
 
3.1 Stages of Analysis 
 
Analysis begins with a system safety engineer generating system safety requirements based on the system 
requirements definition and system design. These system safety requirements form the basis of safety 
properties, which are translated into SCADE® design verification operators.  Concurrently, a model of 
the software requirements is built in SCADE®. Then the SCADE® Design Verifier™ tool is used to 
determine if the safety properties hold over the entire software requirements model. 
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For example, the VMS can have one of two designations: master or slave. Having exactly one VMS 
designated as master is very important for the correct functioning of the entire system, and therefore 
having one and only one VMS declared as master was a safety property. To determine if this safety 
property always held, we ran verifiers such as the following: both VMSs are simultaneously master, both 
VMSs are simultaneously slave, and one VMS is master while the other VMS is slave. All verifiers 
returned true, meaning that it is possible for the system to have one master, two masters, or no masters; 
the latter two situations can lead to hazardous outcomes. 
 
Additional algorithm detail is then modeled in Stage 2 using the software design.  The safety properties 
are modified as necessary and formally verified against the design model. 
 
After performing Stages 1 and 2 of the safety analysis, the analyst prepares a safety property report, 
which lists assumptions made while verifying the system, requirements and design defects found, 
potential safety hazards, and any other pertinent findings. Based on the safety property report, refinements 
to the system and software requirements and designs can be made. Changes in requirements or design 
trigger a new round of analysis. The cycle can continue until no more defects are detected. 
 

 
Figure 2: Safety Analysis Stages 

 
3.2 Toolset 
 
The tool set consisted of SCADE® version 6.1 including SCADE® Simulator and Design Verifier™. 
After creating the requirements model in SCADE® Simulator, the model is automatically loaded into the 
Design Verifier™. The safety properties are also automatically loaded into Design Verifier™. From 
there, Design Verifier™ determines the status of each property and returns either valid or invalid. Those 
findings are summarized in the safety property report. 
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Figure 3: Safety Analysis Toolset 

 
3.3 Detailed Methodology 
 
The first step is to create a SCADE® model based on a set of requirements. When creating the model, it is 
important to keep the model as true to the requirements as possible. Any differences with the 
requirements from either introducing or eliminating defects weaken the overall effectiveness of the 
analysis. Any assumptions made in creating the model should be recorded in the safety property report.  
These requirements assumptions must then be dispositioned by the software requirements engineering 
team. 
 
After the model is made, the properties to be checked are modeled in SCADE® alongside the 
requirements model. Four main categories of properties are considered: those based on critical safety 
conditions, those based on inputs, those based on requirements, and those based on system safety.  
 
The properties based on safety conditions are modeled upon the safety conditions as they are written. 
Sometimes it is necessary to add constraints to the properties because the safety conditions are vague or 
unclear. Such constraints are noted and kept to a minimum. 
 
A second method is to model properties based on inputs: each input to the SCADE® model is assessed 
for its range of values and the possible system repercussions of each of those values. For example, what 
should occur if both VMSs report a health status of unhealthy? What should occur if a VMS receives an 
invalid address? These types of properties are written to show that the system behaves as expected based 
on varying inputs.  
 
A third method is to model properties based on requirements to verify the SCADE® implementation. 
These properties mainly test functionality, like “If both VMSs are not healthy, then the software in VMS 
1 shall assume the responsibility as master.” These properties check that the SRS was modeled correctly 
and behaves as expected. These properties are not very interesting, in that they are meant to show that the 
modelers faithfully modeled the requirements. 
 
The system safety properties are modeled from a standpoint overlooking the various systems, their overall 
behavior, and the interactions among them. These properties included ones like “Subsystem A must send 
signal B to subsystem C before action D takes place.” 
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The next step is to assess the validity of the properties using the SCADE® Design Verifier™, a 
companion to SCADE® Simulator. The Design Verifier™ is backed by Prover® Plug-In, a commercially 
available proof engine. The analyst creates a proof objective for each property. He then executes each 
proof in Design Verifier™, with the results being either true (the property always holds), false (the 
Verifier™ found a counterexample), or undetermined (meaning either the model has errors or certain 
settings are preventing the Verifier™ from completing its run). 
 
If a property returns false, then three points of error should be considered. First, the error can come from 
incorrect implementation of the property. Second, the error can come from incorrect implementation of 
the model. If both the model and property are correct, then the error can come from an incorrect 
requirement in the SRS. These sources of error are usually checked in the stated order and the fix to the 
appropriate area is made, or in the case of an incorrect requirement, the error is documented. 
 
If the error is a result of an incompatible SRS requirement, then the property can be edited to include 
additional constraints or invariants not specified in the software requirements. The addition of these 
constraints and invariants can lead to a true property, meaning that the original software requirements 
lacked specificity, were poorly worded, or otherwise were incompatible with the system. It is important to 
note that when adding constraints to a property, adding the fewest number of constraints leads to the 
strongest property. That is, too many constraints can narrow the focus of a property to the point it is no 
longer useful or meaningful. 
 
This process of modeling properties, checking properties, and modifying properties continues. From this 
process, certain areas of the requirements specification usually emerge as vulnerable. The design and 
implementation of these at-risk areas should be reconsidered, as they might affect the safety of the system 
under analysis. 
 
The entire analysis process can be repeated, incorporating more critical software requirements and design 
components. 
 
3.4 Process Recommendations 
 
These actions were found to save time, make the model checking process easier, and solve several 
bookkeeping issues. The first three actions are SCADE®-specific. A note about operators: In SCADE®, 
an operator is a computing unit or block with inputs and outputs. Operators can be pre-defined, like a 
Boolean not operator, or they can be user-defined, such as an operator that computes a custom equation or 
performs a specific function. 

 Hierarchically organize the model using packages. (Packages are like folders.) 
 Use structures to compose an operator’s inputs and outputs. That way, when an operator gains an 

input, only the structure changes. 
 An  operator’s  contents  can  be  spread  across multiple layers so each layer is confined to the 

dimensions of one screen. 
 Use comments to identify requirements and safety properties. 
 The organization of proof objectives should match the organization of the model. That is, each 

operator should have its own set of proof objectives. 
 
4 Results 
 
4.1 Portion of System Modeled 
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Out of 1124 requirements in the SRS, we modeled 925 requirements, or 82%. We modeled requirements 
from every system described in the SRS. Of the 20 systems, we modeled 100% of 17 of them and more 
than 90% of two additional ones. The remaining 18% of requirements either did not add value to the 
model or were not related to software. The remaining requirements included ones that described 
hardware-software interaction and design. 
 
4.2 Assumptions 
 
We classified assumptions as any educated guess, clarification, or specification we had to make that we 
felt was missing from the SRS. We limited assumptions to those clarifications that we felt the 
requirements authors themselves assumed but did not include in the documented requirements 
specification. Making the assumptions allowed more of the model to function as expected, which let us 
investigate deeper and uncover more complex defects. Assumptions were needed to either refine a 
requirement or to disambiguate among multiple interpretations of a requirement. For example, we had to 
assume a precedence for every transition in the state machines because no precedence was stated. This 
kind of assumption was common. An example of a more severe assumption would be assuming that the 
VMSs are communicating in order for some requirements to always be true. We tracked assumptions both 
in a spreadsheet and as a note in the model itself. SCADE® does have the capability to create assertions, 
which are assumptions embedded into the model. We did not use assertions. 
 
In order to create the model and thereby properly formalize the SRS, we made 121 assumptions, which is 
about one assumption per every 7.6 requirements.  The following table gives some examples of 
assumptions and their associated requirements. 
 

Requirement Assumption 
If the VMS is in State S and is the master, it shall 
send a synchronization message to the other VMS. 

The VMSs are communicating. 
 

Thirty-five seconds after power up, the VMS shall 
begin periodic communications with the other 
VMS. 

“Periodic” communications occur on every cycle. 
 

When counting the number of times Event E 
occurs, the software shall not log more than the 
limit specified in the spreadsheet. 

The name of the spreadsheet and where to find it 
are not indicated. Assumed that the limit was a 
constant. 

The software shall read the RT address of its 
terminal to determine its own identity. 

The RT address signal is latched. 
 

Table 5: Examples of Assumptions 
 
The following example illustrates how formalizing requirements can lead to early defect detection. A 
requirement like the following, whose combinatorial logic is ambiguous, can be interpreted in more than 
one way: “When the following is true, the software shall clear variable A: variable B has been below 88% 
for at least 2 seconds and either variable C is true or  variable D  is  true  and  variable E  is  false.”  It  is 
unclear which combination should be implemented, as both of the following formal interpretations fit the 
English specification. 
 
 (B < 0.88 for >= 2 seconds) & (C | D) & (!E) (1) 
 
 (B < 0.88 for >= 2 seconds) & (C | (D & !E)) (2) 
 
As the expression (2) was the one intended, simply separating the requirements as shown below resolves 
the ambiguity. 
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 (B < 0.88 for >= 2 seconds) & C (3) 
 
 (B < 0.88 for >= 2 seconds) & D & !E (4) 
 
4.3 Defects Detected 
 
Whereas requirements that needed further refinements warranted assumptions because we felt 
comfortable making a decision about the intention of the requirement, other requirements problems were 
not  as  easy  to  solve. We called  these problems “defects” because we did not  feel  capable of resolving 
them ourselves, even with assumptions. For example, several inconsistencies among requirements were 
found and documented. These include duplicated requirements and conflicting requirements. 
 
Out of the 925 requirements we modeled, we found 198 requirements defects, or about one defect per 
every 4.7 requirements. Fifty-four (27%) of the defects were found through traditional IV&V methods. 
Sixty-seven (34%) were found while building the model, and 77 (39%) were found using Design 
Verifier™. Some representative defects are in the following table. 
 

Method of Detection Requirement and Defect 
Manual IV&V If in State A and Input I is true, go to State S. 

If in State A and Input I is true, go to State T. 
Requirements conflict because states S and T are mutually exclusive. 

Model Creation If the VMS is Master and the other VMS fails, then it shall remain Master. 
What if the VMS is Slave and the other VMS fails? 

Model Checking If the Launch Abort Command input is true, then the launch abort sequence 
should begin. 
Modeled property shows a counterexample where receiving a “Launch Abort 
Command” does not result in the software signaling to abort the launch 
sequence. 

Table 6:  Example Defects 
 
We classified each requirement that returned a counterexample in one of four categories: catastrophic, 
critical, marginal, or negligible. Analysis of the system through model verification found 62.5% of all 
potentially catastrophic defects we found. 

 
Figure 4:  Categorization of Defect Origin 

 
Some counterexamples were helpful in determining the exact reason that a property failed. These 
counterexamples tended to be short (demonstrated over only a few cycles) and involve few inputs. Other 
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counterexamples were more complex and difficult to follow. Where possible, we documented a 
description of the counterexamples as an explanation for a failed property. 
 
We also found problems by verifying some safety properties. The source documents for most of the safety 
properties were other configured documents specific to the system, such as the Safety Hazard Analysis 
and Software Safety Analysis. Some safety properties were generated by analyzing the SRS. 
 
We modeled 215 safety properties. Of these 215 properties, 68 or 32% evaluated to false and returned a 
counterexample. Some examples of safety properties are in the following table. 
 

Safety Property Ver ification Operator Implemented As Returned 
If the datalink is broken, can 
both VMSs be master? 

After the first cycle, if VMS_A is not communicating 
and VMS_B is not communicating, then VMS_A is 
not master or VMS_B is not master. 

false 

An invalid VMS is declared 
halted. 

If a VMS is not valid, then it is in the halted state. false 

If the engine oil temperature is 
out of range a fault will be set. 

If the oil temp is less than -50 or greater than 110, 
then oilTempFault will be true. 

false 

Before the engine started 
message is sent, the engine start 
request message must be 
received. 

Is it true that the signal engineStartComAccepted has 
never been true and the signal engineRunning is true? 
 

false 

Table 7: Example Safety Properties 
 
4.4 Return on Investment 
 
We spent approximately 934 hours modeling and verifying properties. Given that we modeled 925 
requirements, our modeling and verification rate was about one requirement per hour. We spent 498 hours 
building the model, 436 hours using Design Verifier™, and 63 hours in training.  
 
Training consisted of three days of formal instruction by representatives of Esterel Technologies. During 
training, we learned the basic functionalities of SCADE Suite® and practiced making operators. 
SCADE® is not difficult to learn, especially if one has knowledge of another graphic modeling tool like 
Simulink®. 
 
Of the 498 hours spent building the model, the initial model creation took 424 hours. There were another 
74 hours of editing the model after running Design Verifier™ to fix errors we had introduced to the 
model and to improve the model’s organization. 
 
The time spent in Design Verifier™ accounts for creating the safety properties, running the Verifier™, 
and editing the properties as needed. 
 
This method is easy to learn and integrates well into the typical software lifecycle. In fact, by using well 
established rates of productivity based on the number of lines of code [4], we calculated that reviewers 
would spend approximately 40% less time in requirements review using this method over traditional 
IV&V methods. We also calculated a total project cost savings of 5% for the system we studied. On top 
of that savings, the model can be reused to automatically generate code and tests. The time required for 
training is minimal, though additional maturation with the tool occurs as the modelers gain experience. 
Considering a post-learning execution time and the number and significance of our findings, this process 
is not only a feasible inclusion to the software development lifecycle, but is also a valuable asset to the 
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lifecycle. It can lead to cost savings plus the detection of safety-critical defects that may prevent a 
catastrophic failure during flight test or operation. 
 
5 Conclusions 
 
5.1 T raining Recommendations 
 
The training provided by Esterel was adequate to begin creating the model. As with most tools, as we 
gained experience with SCADE®, we found certain methods and shortcuts for improved efficiency. 
Perhaps a follow-up training session a few weeks after the initial training would have been useful for 
instruction in some finer details and higher-level usage of the tool’s more advanced capabilities. The 
graphical modeling environment of SCADE® is very similar to that of Simulink®. Engineers familiar 
with Simulink® should have a smooth transition to SCADE®. 
 
The specific concepts that should be understood prior to training include knowledge of logical operators 
(and, or, not, implies), Boolean algebra, and state transition diagrams. In general, an engineer who has 
had college-level math or logic is capable of benefitting from the training. 
 
5.2 Objectives Revisited 
 
We had five objectives for this phase of the study. Our conclusions based on those objectives are as 

follows: 
1) Determine if another tool set is able to model and verify the entire system at one time. We were 

able to model 82% of a software requirements document in one SCADE® model. Scalability was 
not an issue. 

2) Determine if another tool set is more user-friendly, including better commercially available 
training, fewer bugs and crashes, and increased ease of use. We found SCADE® to be easy to 
learn, and the training provided was adequate to begin modeling. However, the first release of 
SCADE® that we were given was unreliable. We had to back up our work several times a day to 
prevent losing it because SCADE® crashed often. It was not unusual for SCADE® to crash once 
or even twice a day for every engineer using it. The second release of SCADE® that we were 
given was much more reliable and the number of times that this version crashed was few. 

3) Develop metrics for the number of requirements that can be modeled and verified per labor hour 
and the number of safety and other defects found per requirement. We modeled approximately 
one requirement every hour. There was approximately one defect for every 4.7 requirements and 
one assumption per every 7.6 requirements. 

4) Prototype methods for modeling and verifying design aspects. We were not able to complete this 
objective. 

5) Document training requirements and guidelines. We were not able to complete this objective. 
 
5.3 Limitations 
 
There are two main constraints in using this method. One is the faithfulness of the model to the 
requirements. Is the model behaving as the software behaves? Is the model introducing or eliminating 
bugs? As the number and complexity of requirements increases, more assumptions are introduced to the 
model. This limitation applies to any model-checking  method,  not  just  SCADE’s  method. The other 
limitation is the difficulty of merging work among multiple modelers. We were not able to introduce a 
satisfactory method of combining the work of multiple modelers. The best we did was to divide the tasks 
each modeler worked on and manually combine models once a week. The difficultly lies in merging 
operators that more than one modeler has edited and in connecting and adding inputs and outputs. 
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SCADE® does not have the capability to “drop in” different versions of operators, even if their inputs and 
outputs are the same. 
 
5.4 Efficacy of Model Checking Methods 
 
This technique has value as a method for checking models. It can be used to determine software functions 
that contribute to potentially unsafe conditions. It is also a cost-effective means to ensure safety, as it can 
identify potential software safety defects  early  in  the  software’s  lifecycle,  thereby  reducing  cost. 
Additionally, this technique can indicate critical software functions that need further testing. This 
technique also identifies requirements ambiguities. Clarifying these ambiguities helps improve safety and 
reduces software development and testing costs by minimizing re-work. 
 
We found a total of 198 requirements defects during our analysis, and only 54 of those were found 
through traditional IV&V methods. The additional 144 defects were discovered while building the model 
and while running Design Verifier™. Thus traditional IV&V methods missed 73% of the total defects we 
found. 
 
5.5 Recommendations for the Future 
 
The main deficit we recognize is the need for a systematic way to manage and merge versions. We 
suspect that a free version control tool like CVS would work for managing versions. An efficient way to 
merge versions proves more elusive. 
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