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Abstract

We present a library of PVS meta-theories that verifies a class of distributed systems in which
agent communication is through message-passing. The theoretic work, outlined in [4], consists of
iterative schemes for solving systems of linear equations, such as message-passing extensions of the
Gauss and Gauss-Seidel methods. We briefly review that work and discuss the challenges in formally
verifying it.

1 Introduction

We present a framework for verifying a class of distributed message passing systems with faulty commu-
nication. In this class processes (agents) communicate by exchanging messages that can be lost, delayed
or reordered. In earlier work, we introduced and analyzed the theoretic basis for this protocol by pre-
senting a class of iterative message-passing schemes for solving systems of linear equations [4]. This
class of problems has practical applications in areas such as robot pattern formation protocols [15, 5].
For example, decentralized schemes where groups of robots form a fence around a dangerous area can be
expressed as message-passing algorithms where agents solve a system of linear equations. Our previous
work formalized this class of systems and proved their convergence to the solution, even in the presence
of faulty communication. This paper is an addendum to that work, providing a formal model of the
problem in PVS [16], and presenting its verification using the tool.

A challenge that arises in verification of distributed systems in general, and this problem in particu-
lar, is that systems exhibit a dense state space operating over continuous time. These systems are highly
nondeterministic and contain uncountable data-types. Such properties make its verification using imple-
mentation based tools, such as model checkers, difficult, and in some cases impossible. As is outlined in
this paper, a theorem prover is an appropriate tool to address these issues.

Our model consists of a library of PVS meta-theories [17] built on top of I/O automata [11, 2] with
extensions for timed and hybrid systems [10, 14, 13]. The library offers a solution to the verification
of distributed linear system solvers in general. By exposing various assumptions, it is applicable to
instances of this problem in particular. Our work follows a very large body of literature where theorem
provers have been used for modeling [7, 8, 1, 3], and verification [9, 12, 6]

This paper is organized as follows. Section 2, summarizes the class of distributed systems we focus
on. Section 3 describes the architecture of our framework, showing PVS code fragments where necessary.
Section 4 discusses our verification procedure and presents an application of our framework to an existing
pattern formation protocol. We conclude with Section 5.

2 Faulty Message Passing Distributed System

In this section, we discuss a class of distributed systems where agents interact by sending messages.
Messages may be lost, delayed or arrive out of order. This class consists of message-passing iterative
schemes for solving systems of linear equations of the form Ax = b, where A is a real-valued matrix of
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size N×N, and x,b are real-valued vectors of length N, with N > 0. The goal of these systems is to
iteratively compute the vector x starting from an initial guess vector x0. The message passing version of
the Gauss, Jacobi and Gauss-Seidel algorithms are examples of iterative schemes belonging to this class.

We model this as a distributed system of N agents that communicate via a faulty broadcast channel.
Each agent is responsible for solving a specific variable using a specific equation of the system of linear
equations. For example, agent i is responsible for solving the variable x[i] using the i-th equation. We
consider schemes where each agent repeatedly broadcasts a message containing the current value of its
variable, x[i]. We assume agents broadcast their value infinitely often, where the number of messages
sent within a finite time interval is assumed to be finite. Upon receiving a message, an agent computes a
value for its variable using its equation. It assumes that its variable is the only unknown of the equation
and sets the values of the other variables to the last message received from the corresponding agents. For
example, agent i sets the value x[i] as follows:

x[i] := b[i]−∑
j #=i

A[i, j]x[ j] (1)

where x[ j] stores the last message received from agent j. We assume that the matrix A (D1) is invertible,
(D2) has diagonal entries are all equal to 1, (D3) is weakly diagonally dominant (∀i : ∑ j #=i A[i, j]≤ A[i, i]),
and (D4) is strictly diagonally dominant in at least one row (∃k : ∑ j #=k A[k, j] < A[k,k]).

Agents within our model use two variables, x and z, to represent the solution of their equation. Given
agent i, the value of x[i] is the current solution to Eq. (1), while the value of z[i] is the agents current
estimate of the solution. Initially, both x[i] and z[i] are set to x0[i]. When an agent receives a message,
it updates the solution x[i] using Eq. (1). The variable z[i] is updated when the agent “moves,” at which
point it evolves z[i] according to some predefined dynamics towards x[i].

Using two variables to store the solution vector gives us a better means to represent continuous
dynamics. In real-world applications, it is unrealistic to assume instantaneous updates of the solution
vector x; thus, we maintain the current estimate vector z. In robotics, for example, systems of equations
are used in pattern formation protocols, where x can be thought of as agent positions. When a robot
receives a message, the move from its current location to its newly computed one is not instantaneous.
Instead, the robot moves according to some time-related dynamics. In robotics application, z models the
current robot positions while x represents their destination locations.

In earlier work, we have provided sufficient conditions for proving correctness of this class of dis-
tributed systems [4]. Specifically, these schemes are correct if x and z converge to the solution of the
system A−1b as time approaches infinity. More formally,

Theorem 1 ([4]). If A satisfies D1–4, then the system converges to A−1b.

In the proof, it is shown that the maximum error of the system at each point of the computation
eventually decreases by a factor of α , with α ∈ [0,1). Convergence is then proven using induction over
the agent set. As a base case, we show that eventually the maximum error of the agents satisfying D4 is
reduced by α . Then, assuming that this is the case for agents at distance k from some agent satisfying D4,
we show that the property holds for all agents at distance k +1. This induction proof can be represented
as a forest of trees of size N, rooted at agents satisfying D4. Iterating the proof, it is possible to show that
starting from some initial maximum error of the system, E0, the error eventually decreases to αE0, then
to α2E0, then α3E0, . . ., converging to 0 as time goes to infinity.

3 PVS Verification Framework

In this section we describe the tool for verifying this class of distributed systems. Our framework [17],
summarized in Figure 1, has been built on the top of the PVS formalization of I/O automata [11, 2] and
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Figure 1: The structure of our PVS framework. A set of mathematical theories describe generic data-
types (Section 3.1). These are used by the theory that models a distributed message passing system
(Section 3.1). Finally, we verify that the system converges to the solution using properties of the mathe-
matical structures (Section 3.2).

its extensions to timed and hybrid I/O automata [10, 14, 13]. Our library uses the parts of the PVS NASA
library [1]. First, we present the formalization of the system, then discuss the proof of correctness.

3.1 Modeling a Distributed Message-Passing System

The system is modeled using the automaton meta-theory [14] that we have specialized for matrix algebra.
The automaton consists of system state (Figure 2), system action (Figure 3(b)), enabling condition for
those actions (Figure 4(b)), and transition functions (Figure 4(a)). The enabling condition is a means of
defining which subset of actions are valid in a given state. Our action set handles system communication
and timing, along with subsequent agent state changes. In this section, we describe the system’s overall
operation from the standpoint of our action set.

We have added the appropriate linear algebra types for the matrices and vectors to the automaton
theory:

Vector: TYPE = [Index -> real]
Matrix: TYPE = [Index , Index -> real]

A vector is modeled as a function from type Index to real numbers, and a matrix as a function that
maps an Index pair to a real number. We have defined these types functionally to facilitate manipulation
in PVS. Users supply our library with instances of these types, which we refer to throughout with the
variables A, of type Matrix, and b and x0, of type Vector. The type Index is an interval of natural
numbers bounded by N, with N being the number of agents in the system

Index: TYPE = below(N)

That is, Index = {0, . . . ,N− 1}. The type Vector and Index belong to the PVS NASA library [1],
while the type Matrix is our extension to this library.

3.1.1 System state

The state of the system is made up of the state of the agents, along with the state of the communication
channel. An agent is responsible for its current and target values, along with the set of messages in the
communication channel for which it is the recipient. We define the system state in PVS with the record
type S, outlined in Figure 2. The fields target, and lastmsg describe the state of the agents, while
buffer describes the state of the channel. The field now corresponds to the clock of the system, storing
the current time. The field next is a vector containing, for each agent, the future time that that agent is
allowed to execute a send action. The target field stores the target value of each agent. The lastmsg
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S: TYPE = [# target: Vector , % vector of agents
lastmsg: Matrix , % matrix of values
buffer: [Index , Index -> Pset], % state of the channel
now: nonneg_real , % system clock
next: [Index -> nonneg_real] #] % agent send deadlines

Figure 2: System state. Refer to Figure 3(a) for the definition of Pset.

Msg :TYPE = [# loc: real ,
id: Index #]

Pkt :TYPE = [# msg: Msg ,
ddl: posreal #]

Pset:TYPE = set[Pkt]
b :posreal
d :posreal

(a) Channel types

ACS: DATATYPE BEGIN
send(p:Pkt , i:Index , d1:posreal ): send?
receive(p:Pkt , i:Index): receive?
move(i:Index , delta_t:posreal ): move?
msgloss(p:Pkt , i:Index): msgloss?
nu_traj(delta_t:posreal ): nu_traj?

END ACS

(b) Actions of the system

Figure 3: Components of the system automaton

field is a matrix in which the diagonal entries hold the current value of each agent; the non-diagonal
entries store the last message that agent i has received from agent j. The target and the diagonal entries
of lastmsg correspond to the variables x and z, respectively, from the mathematical model outlined in
Section 2. The field buffer models the communication between agents; each pair of agents (i, j) has a
directed communication channel, with i being the sender of the messages in the channel and j being the
receiver. The entry buffer(i)(j) of type Pset contains the set of packets sent by i and not yet received
by j. The type Pset is defined in Figure 3(a).

The initial condition of the system is described using the predicate starts?. It holds in the state s if
the global clock of this state is set to 0, and the target set to the initial guess, x0:

start ?(s: S): bool =
now(s) = 0 AND (FORALL(i: Index): next(s)(i) <= d) AND
target(s) = x0 AND (FORALL(i, j: Index): lastmsg(s)(i,j) = x0(i))

The condition on next vector is necessary because in our model agents send messages infinitely often.
This condition ensures that all agents will execute a send action in bounded time. Parameter d, defined
formally in Section 3.1.2, is the upper bound on an agents sending rate. Note that the communication
channels are not necessarily empty initially.

3.1.2 Communication channel

The communication layer is a broadcast channel allowing for lost, delayed, or out-of-order messages.
Our model assumes that (C1) messages are either lost or delivered in finite but unknown time and (C2) for
each pair of communicating agents the receiver receives infinitely many messages. The first assumption
models a communication medium with bounded, but unknown, delay. The second assumption ensures
that there are no permanent partitions between communicating agents.

To model such faulty communication, we consider not only packets and channels, but timing and
ordering properties as well. Figure 3(a) outlines the PVS data types used for this purpose. Messages
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trans(a: ACS , s: S): S =
CASES a OF
nu_traj(delta_t ): % ...
move(i,delta_t ): % ...
send(p,i,d1): % ...
receive(p,i): % ...
msgloss(p,i): % ...

ENDCASES

(a) Transition function of the system
describing the behavior of each action
of the system.

enabled(a: ACS , s: S): bool =
CASES a OF
nu_traj(delta_t ): % ...
move(i,delta_t ): % ...
send(p,i,d1): % ...
receive(p,i): % ...
msgloss(p,i): % ...

ENDCASES

(b) Enabling predicate of the system describing the
enabling condition of each action of the system.

Figure 4: Components of the system automaton. The body of the transition function and enabling predi-
cate are defined in Section 3.1.3

sent between agents (Msg) are represented as a record, consisting of the agent’s location and identifier.
Messages, along with their delivery deadline, are contained within packets (Pkt). Sets of packets (Pset)
make up a dedicated, directed, channel between two agents. Because a set lacks ordering, it makes it
an appropriate type for a communication channel that allows for out-of-order messages. Timing within
the channel is handled by the constants b and d. The former is an upper bound on packet deadlines—at
most b units of time—and models maximum message delay. In our model, each packet can be received
at any time in the interval [now,now+ b]. The constant d is an upper bound on the interval between
consecutive send actions. Combined with next, it ensures that the send action is executed infinitely
often. The future time that an agent is allowed to execute a send action is set to a value in the interval
[now,now+d].

3.1.3 System actions

Actions within our system consist of agent movement and message transmission, channel manipulation,
and system clock maintenance. Their corresponding PVS definitions are outlined in Figure 3(b) and 4.
The send, receive, and move actions are executed by agents, while the msgloss action is used by the
communication channel to simulate packet loss. Finally, the nu traj action updates the system time.
This section describes the behavior of each action, implemented by the function trans (see Figure 4(a)),
and when they are enabled, implemented by the predicate enabled (see Figure 4(b)).

New trajectory. The nu traj action advances the time variable of the system, now, by delta t units,
where delta t is the input parameter of the action;

nu_traj(delta_t: posreal ): s WITH [now := now(s) + delta_t]

It is enabled when the new value of the global clock does not violate a packet deadline:

nu_traj(delta_t ): FORALL(p: Pkt): ddl(p) >= now(s) + delta_t

Agent move. The move action models the movement of an agent from its current value to one based
on its locally computed solution to the equation of the system. The parameters of the action are the agent
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that moves and the time interval. In our implementation, agent i sets z[i] (stored in lastmsg(i,i)) to x[i]
(stored in target(i)) and advances the global clock of delta t units. In PVS

move(i: Index , delta_t: posreal ): s WITH
[ lastmsg := lastmsg(s) WITH [ (i,i) := target(s)(i) ],

now := now(s) + delta_t]

This action can be executed only if packet deadlines are not violated by the new time of the system:

move(i, delta_t ): FORALL(p: Pkt): ddl(p) >= now(s) + delta_t

Agent send. When executing a send action, agent i broadcasts its packet p to all agents in the system
and schedules its next send action:

send(p: Pkt , i: Index , d1: posreal ): s WITH [
buffer := LAMBDA (k, j: Index):
IF ((k = i) AND (j /= i)) THEN union(p, buffer(s)(k,j))
ELSE buffer(s)(k,j)
ENDIF ,

next := next(s) WITH [(i) := next(s)(i) + d1 ]]

In updating the buffer, the agent is adding its packet, p, to all of its outgoing channels. Notice that an
agent does not send a message to itself. The send action is executed only if the time when the agent is
allowed to send is equal to the global time of the system. Furthermore, the sent packet must contain the
identifier of the agent, its current target location, and correct packet deadline. The detailed PVS code
follows

send(p, i, d1): next(s)(i) =
now(s) AND d1 <= d AND id(msg(p)) = i AND
loc(msg(p)) = target(s)(i) AND ddl(p) = now(s) + b

Agent receive. When agent i receives packet p, it updates the lastmsg variable, computes a new value
for its target, and removes the packet from the channel:

receive(p: Pkt , i: Index):
LET m: Msg = msg(p), j: Index = id(m), l: real = loc(m),

Ci: vector = update(row(lastmsg(s), i), j, l) IN s WITH
[ buffer := buffer(s) WITH

[ (j,i) := remove(p, buffer(s)(j,i)) ],
lastmsg := lastmsg(s) WITH [ (i,j) := l ],
target := target(s) WITH [ (i) := gauss(Ci ,i) ]]

The gauss function implements Eq. (1). The action can be executed if the p is in the channel from
msg(p) to i, and its deadline does not violate the global time of the system,

receive(p,i): buffer(s)(id(msg(p)), i)(p) AND ddl(p) >= now(s)

Message loss. Message loss is modeled by removing a given packet from a directed channel:

msgloss(p: Pkt , i: Index): LET m: Msg = msg(p), j: Index = id(m) IN s
WITH [ buffer := buffer(s)

WITH [ (j,i) := remove(p, buffer(s)(j,i)) ]]
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It is enabled only if the packet belongs to this channel:

msgloss(p,i): buffer(s)(id(msg(p)), i)(p)

3.2 Verification Meta-Libraries

This subsection focuses on proving system correctness. We discuss how the error of the system is rep-
resented, and how it is used to prove convergence in PVS. As outlined in [4], and briefly discussed in
Section 2, we prove that the error of each agent converges to 0 as time tends to infinity.

3.2.1 Error Model

The error of an agent is defined as the distance between its current value and its desired value. We define
the vector of desired values, xstar, axiomatically, using the standard definition:

xstar_def_ax: AXIOM FORALL(i: Index): xstar(i) = gauss(xstar ,i)

During system execution, the value of an agent is represented in three places: within its state, within
the set of packets in transit on its outgoing channels, and within the received message field of other
agents. Although these are all values of the same agent, agent dynamics, message delay and reordering
do not guarantee their equality. In the proof of correctness, it is enough to consider only the maximum
error of these values. We define the error of the system axiomatically

me_all_error: AXIOM FORALL(i: Index): mes(s,i) <= me(s)
me_ex_error: AXIOM EXISTS(i: Index ): mes(s,i) = me(s)

where mes is the maximum error of agent i within in the system, and me is the error of the system,
defined as maximum of all agents errors within the system.

3.2.2 Proof of Correctness

As discussed in Section 2, our proof of correctness relies on certain assumptions about the given ma-
trix A (see D1–4). Invertibility, along with diagonal and strict-diagonal dominance, were modeled, re-
spectively, as

inv?(m): bool = EXISTS(n: Matrix ):
prod(m,n) = prod(n,m) AND diag?(prod(m,n))

dd?(m): bool = FORALL(r: Index): sum(row(abs(m),r),r) <= abs(m(r,r))
sdd?(m): bool = EXISTS(r: Index): sum(row(abs(m),r),r) < abs(m(r,r))

where m is of type Matrix. Using these definitions, we can describe the assumptions on A made by
the model. We use the PVS assumption facility to access these properties within the meta-theory and
obligate users of our library to discharge them;

ASSUMING
inverse_exist: ASSUMPTION inv?(A) % D1
diag_entry: ASSUMPTION FORALL(i: Index ): A(i,i) = 1 % D2
diag_dominant: ASSUMPTION dd?(A) % D3
strictly_diag_dominant: ASSUMPTION sdd?(A) % D4

ENDASSUMING.

Reasoning about system convergence requires the analysis of the system along an arbitrary execu-
tion. Our responsibility is to show that (E1) the error of the system does not increase, and that (E2) it
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eventually decreases by a lower-bounded amount. Using the diagonally dominant assumption on A, we
can prove E1:

not_incr_error: LEMMA enabled(a,s) IMPLIES me(s) >= me(trans(a,s))

To prove E2, as discussed in Section 2, we built a representation of the forest structure in PVS. The tree is
represented by functions ancs, root t? and parent using the PVS list structure defined in the prelude.

ancs: FUNCTION[Matrix , Index -> ListIndex]
root_t ?(m: Matrix , i: Index): bool = sdd?(m,i) AND null?(ancs(m,i))
parent(m: Matrix , i: Index): Index =

IF root_t ?(m,i) THEN i ELSE car(ancs(m,i)) ENDIF

where ancs is a function which, given a matrix and agent identifier, returns the complete path of the agent
to a rooted node in the tree. The path is defined as a list of agent identifiers having type ListIndex.
Note that rooted agents satisfy D4.

Next, we define a factor α by which the system will eventually decrease. Given the rooted forest, for
each node of the forest we recursively define the quantity p value. We prove that this value is positive
and (strictly) upper bounded by 1. The factor α is the maximum of these quantities. In PVS,

alpha_all: AXIOM FORALL(i: Index ): p_value(i) <= alpha
alpha_ex: AXIOM EXISTS(j: Index ): alpha = p_value(j)

Using induction on the forest, we prove that the maximum error of the system eventually decrease
by α . Assuming that the error of the system is upper-bounded by W , the base case is to prove that the
error of the roots of the tree eventually decreases by α . From there, we prove that eventually the error of
the node is upper bounded by W ·α , assuming that the error of all ancestors of a node is upper-bounded
by the same quantity. To handle this within the theorem prover, we defined our own induction scheme:

p: VAR [Index -> bool]
induct_ancs: THEOREM

(null?(ancs(m,i)) IMPLIES p(i)) AND
(cons?(ancs(m,i)) AND p(car(ancs(m,i))) IMPLIES p(i))

IMPLIES FORALL(j: I | member(j, ancs(m,i)) OR j = i): p(j)

This theorem ensures that if we prove that some property holds at the root of the tree, and, given a node,
we prove that it holds at the node, given that it holds for its parent, then we can safely derive that the
property holds for all nodes along a path of the tree. In this case, that property is the factor of α decrease.

4 Framework Discussion

In this section, we offer commentary on our experience using PVS and present an application of our
framework.

4.1 PVS Implementation

Our library consists of over 30 lemmas, almost 2000 proof steps. We took advantage of PVS pre- and
user-defined types for modeling agent and channel states. Implementation of the system infrastructure
consumed about 30% of our effort. Vectors, matrices and trees were used extensively throughout our
library. The PVS NASA libraries provided some relief, but modeling diagonally dominant matrices and
proving lemmas on products of matrices and vectors forced us to extend them. Although NASA does
provide a representation of trees, their recursive implementation made proving properties we required
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very difficult. Unlike the NASA implementation, where they visit the tree starting from the leaves, we
were more interested in both proving properties on the tree starting from the root and inducting over the
structure as well. Further, the NASA library has limited support for weighted directed graphs, something
critical for our model. For these reasons, we preferred to give an implicit definition of trees and ensure
the needed properties axiomatically.

While proving the convergence property of the system, we gave implicit definitions to many nonlinear
functions for convenience within the proofs. For example, we did not define the maximum error of the
system recursively. We preferred, instead, to use two axioms and define the maximum as the upper
bound on the error of the agents such that the value is reached by some agent (see me all error and
me ex error in Section 3.2.1). This choice reduced the number of proofs in the library, as we did not
derive these facts from their recursive definitions. Proving these facts in PVS is possible, but beyond the
scope of our work.

We managed the proof of Theorem 1 by breaking it into smaller lemmas. This allowed us to tackle
small proofs where the goal was to show that eventually a specific property held. For example: proving
that the error of the target position of an agent eventually decreases by the constant factor α; then proving
that its error in the outgoing channels eventually decreases by this factor; and finally showing that its error
stored in the state of the remaining agents eventually decreases by this factor. We showed these lemmas
using the two assumptions on the communication medium (see C1–2). These assumptions simplified
our proofs since we did not consider traces of the automaton in the proof of convergence. Using this
collection of sub-lemmas, we were able to prove, directly, that after d +b time units the maximum error
of the agent decreases by the factor α .

4.2 Applications

In earlier work, we discussed a specific pattern formation protocol where the goal of the system was
for agents to form a straight line [5]. The system consisted of N robots, with robot 0 and N− 1 fixed
throughout the execution. Agent i (0 < i < N− 1) only communicated with its immediate neighbors,
robots i− 1 and i + 1. Based on this communication, i computed its new position as the average of the
left and right received values.

This protocol can be modeled as a system of linear equations, and, as such, can be verified using
our library. We instantiate the matrix A with a tri-diagonal matrix having the value 1 along the main
diagonal, and −0.5 on the secondary diagonals (with the exception of rows 0 and N− 1, which have 0
on the secondary diagonals). Given this structure, we are obligated to discharge the assumptions of the
library outlined in Section 3.2.2: that the input matrix A satisfies D1–4.

5 Conclusions

We have presented a verification framework for distributed message-passing systems that takes into
account a faulty communication medium. This framework consists of a library built within the PVS
theorem prover that allows for the verification of distributed algorithms for solving systems of linear
equations. We have also detailed the implementation of the framework, outlining our use of a special-
ized automaton theory and induction scheme. We have discussed challenges in the implementation and
presented an application where the framework is used to verify a specific robot pattern formation proto-
col. Future work includes extending these results to a richer class of systems, such as non linear convex
systems of equations, and providing their corresponding verification using a theorem prover.
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