On Limits

Gerard J. Holzmann

Jet Propulsion Laboratory
California Institute of Technology

speed and memory trends

(we will soon have very large amounts of memory and relatively slow processors)

16 bit 32 bit 64 bit
RAM speed
64GB
gap
4GB - 2 > | 4 GHz
switch to
multi-core
64KB--- | 4 MHz
1981 2001

2021
4/30/08

4/30/08

seconds

the time needed to fill N GB of RAM

15408 slow

1E405 average |

1 day
1E+4D04
1 hour
1B403
16402
conclusion:

TEHN .
having more memory

IS not always useful
15400

[Spin in bitstate mode]

storing a relatively large number of system states
into memory at a rate of 10* to 10° states/second 3

what are the limits? @

« at a fixed clock-speed, there is a limit to the largest
problem size we can handle in 1 hour (day / week)

— g_o Iglatter how much memory we have (RAM or
IS

— even a machine with “infinite memory” but “finite
speed” will impose such limits

e Wwe can increase speed by using multi-core algorithms
— but do 10" CPUs always get a 10" x speedup?

— it will depend on the CPU architecture
(NUMA/UMA)

— do we know what the CPU architecture will be for
large multi-core machines (think 1,000 CPUs and

up)?
e isn’t there an easier way?
— can’t we find a way to use N x as many

CPUs, and get a result that is always “N x
better” (by some definition of “better”)

4/30/08 4

at fixed speed how many CPUs does it take to fill up
N GB of RAM in 1 hour?

Mumber of Cores MNeeded as a function of Available Memory Size
to complete a BitState Searchin 1, 12, or 168 hours

10000

Cores o
T RAM limit to what we

FCores

RAM limit to what we can buy today but
can use today cannot use fully
1000 M M
W1 hour
10 B2 hrs
CPZUO;ig'it oo N B B B - 1 O week
conclusion:
to use all GB of RAM
o 1 available in year Y,
CPU limit ---=----- - e e T - - - N B with perfect
2008 multi-core scaling
we need the nr of CPU
cores from year Y+7
g 16 2 B4 128 256 512

2 4 14 2088 GB
Avrailable Memory Size in GByte
< [P > (assuming:
4/30/08 32-bit limit ~200K states/second 5
bitstate search)

the infinitely large problem
and the infinitely large machine

 there will always be problems that
require more time to verify than we are
willing (or able) to wait for

— how do we best use finite time to handle
large problems?

« example of an “infinitely large problem:”
a Spin Fleet Architecture model from
lvan Sutherland & students (courtesy
Sanjit Seshia)

— known error state is just beyond reach
of a breadth-first search (and symbolic
methods) — error is too deep

— error is on “wrong” side of the DFS tree

— a bitstate search either fills up memory
or exhausts the available time before
the error state is reached

— how do we maximize our chances of
finding errors like this?

4/30/08

http://www.geocities.com/xiv_skull/xiv_skull.gif

measurement:
define a simple, large search problem

byte pos = 0; Q¢}%> 1

int val = 0O;

int flag = 1; 2/£:> \\?:2\&
//

N

active proctype word() (:f

i, 0y 1
{ /* generate all 32-bit values */
end: do

- d_step { pos < 32 -> /* leave bit 0 */ flag
- d_step { pos < 32 -> val = val | flag; flag
od

flag << 1; pos++ }
flag << 1; pos++ }

}

never {/* check 1Tt some user-defined value N can be matched */

do

i assert(val = N)

od 232 reachable states, 24 byte per state
100 GB to store the full state space

what if we only have 64 MB to do the search?
0.06 % of what is needed

4/30/08

a sample search query

o 23 reachable states, 24 bytes per state

— 100 GB to store the full state space
— 64 MB available (0.06 % of 100 GB)

e question:
— seed 100 randomly chosen numbers
— how many of these numbers can be found (matched)?
 using different search techniques

* one obvious candidate: bitstate hashing with depth-first search
— assume 0.5 byte per state on average: 232x0.5 ~ 2 GB
— 64MB (22%) is now 3% (1/32) of what is needed to represent all states

— should find matches for ~ 3 of the 100 numbers

4/30/08

bitstate dfs —w29
229 bits = 226 bytes = 64 MB

- ——

$ spinQ—DN:—l)—a word . pml
$ cc —02 =DSAFETY —DBITSTATE —o0 pan pan.c
$./pan —w29

1.4849945e+08 states, stored (3.46% of all 232 states)

hash factor: 3.61531 (best 1f > 100.)
bits set per state: 3 (-k3)

pan: elapsed time 127 seconds

$
this search does not find a match for the target number -1

If we repeat this 100x for each of the randomly chosen numbers
we should expect 3 or 4 matches

4/30/08

checking 100 numbers

$ > out

$ for r in “cat ../numbers”

$ do

spin -DN=$r -a word.pml

cc -02 -DSAFETY -DBITSTATE pan.c
./pan —w29 >> out

done

$ grep “assertion violated” out | sort —u | wc -1
g8

- -’ we were “entitled” to 3 or 4 matches, and we got 8
(i.e., we were lucky)

numbers matched:
234, -3136, 3435, 19440, 6985, 12435, 4915, 27246

(note: 52 of our targets are negative numbers, we
matched only 1 in this subset)

4/30/08 10

using Iiterative search refinement [HS99]

(using 128KB, 256KB, ... 64 MB)

$ > out
$ for w in 20 21 22 23 24 25 26 27 28 29
do
for r In “cat ../numbers”
do
spin -DN=$r -a word.pml
cc -02 -DSAFETY -DBITSTATE pan.c
./pan —w$w >> out
done
done
§mg[§p “assertion violated” out | sort —u | wc -1
15

-w dfs
20 1
21 1
22 2
23 2
24 2
25 3
26 6
27 8
28 11
29 15

/
-

can we do still better?

_— we increased the number of matches from 8 to 15

4/30/08

11

adding search diversification

« dfs: standard depth-first search (the default)

« dfs_r: reverse order in which non-deterministic choices within a
process are explored

using compiler directive -D_TREVERSE (Spin 5.1.5).

. r _dfs: use search randomization on the order in which non-
deterministic choices within a process are explored

— using compiler directive -DRANDOMIZE (Spin 4.2.2)

randomly selects a starting point in the transition list, and checks
transitions for executability in round-robin order from that point

use different seeds to create multiple variants (r_dfs1, r _dfs2)
« pick: use embedded C code to define a user-controlled selection

method to permute the transitions in a list of non-deterministic
choices within a process

4/30/08

12

4/30/08

pick: user-defined randomization

(courtesy of rajeev joshi & alex groce)
c _decl {

\#define MAX CHOICES 32 /* max nr of choices in calls to "pick"”

int ch0|ces[MAX CHOICES]
int last_seed =

}:
c_track 'choices" "sizeof(int) * MAX_CHOICES™ 'UnMatched’;
c_track "&last_seed" ‘'sizeof(int ""UnMatched™;

inline plck(v min, max) {
tmp = max- -min+1
c_code {_

int i, j, t; /* temporary C vars */

srandom(last_seed) ;)

for (i = 0; T < now. tmp i++)
choices[1i] =

or (i = 0; 1 < now.tmp-1; i++)

{ = (randomE) % (now.tmp - 1));
= choices
ch0|ces[|] = ch0|ces[|+J]
3 choices 1 =t;
3 now.tmp = O;
7* randomize search order each time a node is revisited */
do /* cover all choices */
o d_step { tmp < max-min -> tmp++ }
d_step
VvV = min + c_expr é ch0|ces[now tmp] }
c code { last_seed += now ; now.tmp = O; }
}; break
od
+
int n, x, y, tmp;
active proctype main()
{
do
I n < 3 ->nt+;
pick(x, 1, 3 ;
pick ¥
prlnt ("n—%d ‘X = %d, y = %d\n", n, X, y)
:: else ->
break

od

*/

13

iterative search refinement +
search diversification: nr matches increases to 49

100
15 (r_dfsl)
10
1 n T T T
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
o dfs A—1r_dfsl —s——r dfs2 — —e— —dfs_r o pick —fg@g— total matched

4/30/08 14

fraction of memory used
compared with fraction of targets matched

4/30/08

0.50

0.45

0.40

0.35 -

0.30 +

0.25

0.20

0.15 -

0.10

0.05 -

0.00 -

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

—e— fraction bitstate memory used —s— fraction targets matched —a— fraction targets matched by dfs alone

(the memory reference is minimal amount of memory needed for full bitstate storage)

15

4/30/08

sSwalm

$ swarm —F config.lib —c6 > script
swarm: 456 runs, avg time per cpu 3599.2 sec

$ sh ./script
sample configuration file:
ranges
w 20 32 # min and max -w parameter
d 100 10000 # min and max search depth
Kk 2 5 # min and max nr of hash functions
limits
cpus 2 # nr available cpus
memory 513MB # max memory to be used; recognizes MB,GB
time 1h # max time to be used; h=hr, m=min, s=sec
vector 500 # bytes per state, used for estimates
speed 250000 # states per second processed
file model.pml # file with spin model

compilation
-DBITSTATE
-DBITSTATE
-DBITSTATE
-DBITSTATE
-DBITSTATE
-DBITSTATE

-n

options (each line defines a search mode)

standard dfs
-DREVERSE# reversed process ordering
-DT_REVERSE # reversed transition ordering
-DRANDOMIZE=123 # randomized transition ordering
-DRANDOMIZE=173573 # ditto, with different seed
-DT_REVERSE -DREVERSE # combination

-DBITSTATE -DT_REVERSE -DRANDOMIZE # combination

runtime options

16

swarm verification of some large models

Verification State System states reached Time for Number of

Model vector In standard bitstate bitstate dfs swarm jobs

size dfs (-w29) (in minutes (1 hour limit

using 1 cpu) 6 cpus)

EOL 2736 320.9M 43 86
Fleet 1440 280.5M 58 228
DEOS 576 22.3M 2 456
Gurdag 964 86.2M 17 231
CP 344 165.7M 18 451
DS1 3426 208.6M 159 100
NVDS 180 151.2M 6 516
NVFS 212 139.5M 45 265

4/30/08

17

performance

Verification Number of Control States
Model Total Unreached Voo C(;]et;(():lhgéates
standard dfs | dfs + swarm | standard dfs + swarm
dfs

EO1 3915 3597 656 8 83
Fleet 171 34 16 80 91
DEQOS 2917 1989 84 32 97
Gurdag 1461 853 0 41 100
CP 1848 1332 0 28 100
DS1 133 54 0 59 100
NVDS 296 95 0 68 100
NVFS 3623 1529 0 58 100

4/30/08 18

4/30/08

SYyNopsIs

there is a growing performance gap
— memory sizes continue to grow
— but cpu speed no longer does (for now)

— the standard approaches to handling large
problem sizes have stopped working

— we have to get smarter about defining
incomplete searches in very large state
spaces

the best use of currently available
computational resources (and human
time)

— may be to switch to the use of

embarrassingly parallel methods, in
combination with search diversification

19

	On Limits
	speed and memory trends�(we will soon have very large amounts of memory and relatively slow processors)
	the time needed to fill N GB of RAM
	what are the limits?
	at fixed speed how many CPUs does it take to fill up N GB of RAM in 1 hour?
	the infinitely large problem�and the infinitely large machine
	measurement:�define a simple, large search problem
	a sample search query
	bitstate dfs –w29� 229 bits = 226 bytes = 64 MB
	checking 100 numbers
	using iterative search refinement [HS99]�(using 128KB, 256KB, … 64 MB)
	adding search diversification
	pick: user-defined randomization�(courtesy of rajeev joshi & alex groce)
	iterative search refinement +�search diversification: nr matches increases to 49
	fraction of memory used�compared with fraction of targets matched
	swarm
	swarm verification of some large models
	performance
	synopsis

