
On Limits

Gerard J. Holzmann

Jet Propulsion Laboratory

California Institute of Technology

4/30/08 2

64GB

4GB

64KB

16 bit 32 bit 64 bit

RAM speed

4 MHz

4 GHz

1981 2001

speed and memory trends
(we will soon have very large amounts of memory and relatively slow processors)

2021

gap

switch to
multi-core

4/30/08 3

the time needed to fill N GB of RAM

seconds

[Spin in bitstate mode]
storing a relatively large number of system states
into memory at a rate of 104 to 106 states/second

average

N=10

1 day

1 hour

conclusion:
having more memory
is not always useful

4/30/08 4

what are the limits?

• at a fixed clock-speed, there is a limit to the largest
problem size we can handle in 1 hour (day / week)
– no matter how much memory we have (RAM or

disk)
– even a machine with “infinite memory” but “finite

speed” will impose such limits

• we can increase speed by using multi-core algorithms
– but do 10n CPUs always get a 10n x speedup?
– it will depend on the CPU architecture

(NUMA/UMA)
– do we know what the CPU architecture will be for

large multi-core machines (think 1,000 CPUs and
up)?

• isn’t there an easier way?
– can’t we find a way to use N x as many

CPUs, and get a result that is always “N x
better” (by some definition of “better”)

4/30/08 532-bit limit

at fixed speed how many CPUs does it take to fill up
N GB of RAM in 1 hour?

CPU limit
2008

CPU limit
~2015

Cores

GB

RAM limit to what we
can use today

RAM limit to what we
can buy today but
cannot use fully

(assuming:
~200K states/second

bitstate search)

conclusion:
to use all GB of RAM
available in year Y,
with perfect
multi-core scaling
we need the nr of CPU
cores from year Y+7

1, 12, or 168 hours

4/30/08 6

the infinitely large problem
and the infinitely large machine

• there will always be problems that
require more time to verify than we are
willing (or able) to wait for

– how do we best use finite time to handle
large problems?

• example of an “infinitely large problem:”
a Spin Fleet Architecture model from
Ivan Sutherland & students (courtesy
Sanjit Seshia)
– known error state is just beyond reach

of a breadth-first search (and symbolic
methods) – error is too deep

– error is on “wrong” side of the DFS tree
– a bitstate search either fills up memory

or exhausts the available time before
the error state is reached

– how do we maximize our chances of
finding errors like this?

http://www.geocities.com/xiv_skull/xiv_skull.gif

4/30/08 7

byte pos = 0;

int val = 0;

int flag = 1;

active proctype word()

{ /* generate all 32-bit values */

end: do

:: d_step { pos < 32 -> /* leave bit 0 */ flag = flag << 1; pos++ }

:: d_step { pos < 32 -> val = val | flag; flag = flag << 1; pos++ }

od

}

never {/* check if some user-defined value N can be matched */

do

:: assert(val != N)

od

}

measurement:
define a simple, large search problem

232 reachable states, 24 byte per state
100 GB to store the full state space

what if we only have 64 MB to do the search?
0.06 % of what is needed

0

0

0

1

1

1

4/30/08 8

a sample search query
• 232 reachable states, 24 bytes per state

– 100 GB to store the full state space
– 64 MB available (0.06 % of 100 GB)

• question:
– seed 100 randomly chosen numbers
– how many of these numbers can be found (matched)?

• using different search techniques

• one obvious candidate: bitstate hashing with depth-first search
– assume 0.5 byte per state on average: 232×0.5 ~ 2 GB
– 64MB (226) is now 3% (1/32) of what is needed to represent all states
– should find matches for ~ 3 of the 100 numbers

4/30/08 9

bitstate dfs –w29
229 bits = 226 bytes = 64 MB

$ spin -DN=-1 –a word.pml

$ cc –O2 –DSAFETY –DBITSTATE –o pan pan.c

$./pan –w29

...

1.4849945e+08 states, stored (3.46% of all 232 states)

...

hash factor: 3.61531 (best if > 100.)

bits set per state: 3 (-k3)

...

pan: elapsed time 127 seconds

$
this search does not find a match for the target number -1
if we repeat this 100x for each of the randomly chosen numbers
we should expect 3 or 4 matches

4/30/08 10

checking 100 numbers

$ > out

$ for r in `cat ../numbers`

$ do

spin -DN=$r -a word.pml

cc -O2 -DSAFETY -DBITSTATE pan.c

./pan –w29 >> out

done

$ grep “assertion violated” out | sort –u | wc -l

8
we were “entitled” to 3 or 4 matches, and we got 8
(i.e., we were lucky)

numbers matched:
234, -3136, 3435, 19440, 6985, 12435, 4915, 27246
(note: 52 of our targets are negative numbers, we
matched only 1 in this subset)

4/30/08 11

using iterative search refinement [HS99]
(using 128KB, 256KB, … 64 MB)

$ > out

$ for w in 20 21 22 23 24 25 26 27 28 29

do

for r in `cat ../numbers`

do

spin -DN=$r -a word.pml

cc -O2 -DSAFETY -DBITSTATE pan.c

./pan –w$w >> out

done

done

$ grep “assertion violated” out | sort –u | wc -l

15

-w dfs
20 1
21 1
22 2
23 2
24 2
25 3
26 6
27 8
28 11
29 15

we increased the number of matches from 8 to 15
can we do still better?

4/30/08 12

adding search diversification
• dfs: standard depth-first search (the default)
• dfs_r: reverse order in which non-deterministic choices within a

process are explored
– using compiler directive –D_TREVERSE (Spin 5.1.5).

• r_dfs: use search randomization on the order in which non-
deterministic choices within a process are explored

– using compiler directive –DRANDOMIZE (Spin 4.2.2)
randomly selects a starting point in the transition list, and checks
transitions for executability in round-robin order from that point
use different seeds to create multiple variants (r_dfs1, r_dfs2)

• pick: use embedded C code to define a user-controlled selection
method to permute the transitions in a list of non-deterministic
choices within a process

4/30/08 13

pick: user-defined randomization
(courtesy of rajeev joshi & alex groce)

c_decl {
\#define MAX_CHOICES 32 /* max nr of choices in calls to "pick" */

int choices[MAX_CHOICES];
int last_seed = 3;

};

c_track "choices" "sizeof(int) * MAX_CHOICES" "UnMatched";
c_track "&last_seed" "sizeof(int)" "UnMatched";

inline pick(v, min, max) {
tmp = max-min+1 ;
c_code {

int i, j, t; /* temporary C vars */

srandom(last_seed) ;
for (i = 0; i < now.tmp; i++)
{ choices[i] = i;
}
for (i = 0; i < now.tmp-1; i++)
{ j = (random() % (now.tmp - i));

t = choices[i];
choices[i] = choices[i+j];
choices[i+j] = t;

}
now.tmp = 0;

};
/* randomize search order each time a node is revisited */
do /* cover all choices */
:: d_step { tmp < max-min -> tmp++ }
:: d_step {

v = min + c_expr { choices[now.tmp] };
c_code { last_seed += now.tmp; now.tmp = 0; }

}; break
od

}

int n, x, y, tmp;

active proctype main()
{

do
:: n < 3 -> n++;

pick(x, 1, 3);
pick(y, 7, 9);
printf("n=%d, x = %d, y = %d\n", n, x, y)

:: else ->
break

od
}

4/30/08 14

iterative search refinement +
search diversification: nr matches increases to 49

1

10

100

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

dfs r_dfs1 r_dfs2 dfs_r pick total matched

49 matches

15 (r_dfs1)

4/30/08 15

fraction of memory used
compared with fraction of targets matched

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

fraction bitstate memory used fraction targets matched fraction targets matched by dfs alone

(the memory reference is minimal amount of memory needed for full bitstate storage)

4/30/08 16

swarm
$ swarm –F config.lib –c6 > script
swarm: 456 runs, avg time per cpu 3599.2 sec
$ sh ./script

ranges
w 20 32 # min and max -w parameter
d 100 10000 # min and max search depth
k 2 5 # min and max nr of hash functions

limits
cpus 2 # nr available cpus
memory 513MB # max memory to be used; recognizes MB,GB
time 1h # max time to be used; h=hr, m=min, s=sec
vector 500 # bytes per state, used for estimates
speed 250000 # states per second processed
file model.pml # file with spin model

compilation options (each line defines a search mode)
-DBITSTATE # standard dfs
-DBITSTATE -DREVERSE# reversed process ordering
-DBITSTATE -DT_REVERSE # reversed transition ordering
-DBITSTATE -DRANDOMIZE=123 # randomized transition ordering
-DBITSTATE -DRANDOMIZE=173573 # ditto, with different seed
-DBITSTATE -DT_REVERSE -DREVERSE # combination
-DBITSTATE -DT_REVERSE -DRANDOMIZE # combination

runtime options
-n

sample configuration file:

4/30/08 17

swarm verification of some large models

Verification
Model

State
vector
size

System states reached
in standard bitstate

dfs (-w29)

Time for
bitstate dfs
(in minutes
using 1 cpu)

Number of
swarm jobs
(1 hour limit

6 cpus)

EO1 2736 320.9M 43 86

Fleet 1440 280.5M 58 228

DEOS 576 22.3M 2 456

Gurdag 964 86.2M 17 231

CP 344 165.7M 18 451

DS1 3426 208.6M 159 100

NVDS 180 151.2M 6 516

NVFS 212 139.5M 45 265

4/30/08 18

performance
Verification

Model
Number of Control States

% of Control States
ReachedTotal Unreached

standard dfs dfs + swarm standard
dfs

dfs + swarm

EO1 3915 3597 656 8 83

Fleet 171 34 16 80 91

DEOS 2917 1989 84 32 97

Gurdag 1461 853 0 41 100

CP 1848 1332 0 28 100

DS1 133 54 0 59 100

NVDS 296 95 0 68 100

NVFS 3623 1529 0 58 100

4/30/08 19

synopsis
• there is a growing performance gap

– memory sizes continue to grow
– but cpu speed no longer does (for now)
– the standard approaches to handling large

problem sizes have stopped working
– we have to get smarter about defining

incomplete searches in very large state
spaces

• the best use of currently available
computational resources (and human
time)
– may be to switch to the use of

embarrassingly parallel methods, in
combination with search diversification

	On Limits
	speed and memory trends�(we will soon have very large amounts of memory and relatively slow processors)
	the time needed to fill N GB of RAM
	what are the limits?
	at fixed speed how many CPUs does it take to fill up N GB of RAM in 1 hour?
	the infinitely large problem�and the infinitely large machine
	measurement:�define a simple, large search problem
	a sample search query
	bitstate dfs –w29� 229 bits = 226 bytes = 64 MB
	checking 100 numbers
	using iterative search refinement [HS99]�(using 128KB, 256KB, … 64 MB)
	adding search diversification
	pick: user-defined randomization�(courtesy of rajeev joshi & alex groce)
	iterative search refinement +�search diversification: nr matches increases to 49
	fraction of memory used�compared with fraction of targets matched
	swarm
	swarm verification of some large models
	performance
	synopsis

