— Computer Science Laboratory, SRI International

An Update on Yices

Bruno Dutertre, SRI International

NASA Langley Formal Methods Workshop
May 2nd, 2008

— Computer Science Laboratory, SRI International

Qutline

Background
o Decision Procedures
o SMT Solvers

Yices 1

o Supported theories
o Applications
o Some Issues

Yices 2

o New features
o Architecture

— Computer Science Laboratory, SRI International

Decision Procedures

Definition

o Algorithm to determine whether a formula ¢ (in a first-order theory T') is
satisfiable.

Examples

o Congruence closure: for quantifier-free formulas, uninterpreted functions
o Simplex methods for quantifier-free linear arithmetic
o Cylindrical algebraic decomposition for real closed fields

More useful versions
o Decision procedures for combinations of theories:
2.car(x) — 3.cdr(x) = f(cdr(zx)) =
g(cons(4.car(z) — 2.f(cdr(x)),y)) = g(cons(6.cdr(z)), y)

o Example: the decision procedures of PVS (based on Shostak)

— Computer Science Laboratory, SRI International

Dealing with Boolean Structure

Many decision procedures (e.g., congruence closure, simplex) work on
conjunctions of literals

They can still be applied to arbitrary formula ¢. For example, write ¢ in DNF:

(@an Ao ANa) Voo oV (@i Ao A Gy

Problem: this is highly inefficient

o DNF can explode
o If several conjuncts share identical literals, we prove the same thing many time:

(flr,y) 4 fly,x) Nz=3z+1ANx=yAz<0) V
(t>glyyNe=yANz+3<O0A f(z,y) # fly,x)) V ...

Better approach: use a Boolean SAT solver to enumerate the conjuncts
o This is done by tools called Satisfiability Modulo Theory (SMT) Solvers

— Computer Science Laboratory, SRI International

Naive SMT Solving

r+y>0AN(z=z2=>2+y=—-1)Az>3t

1) Replace atoms by boolean variables

a— xz+y=0 b — x==z
c — z4+y=-—1 d — z>3t

2) Ask for a model of a A (b= ¢) A d using a SAT solver
o Boolean model: {a, b, ¢, d}
o Convert the model back to arithmetic
r+yz20Ne=zANz+y=—-1ANz>3t

and check its consistency
Answer: not consistent
Explanation: Arithmetic = —-(r+y>0Ax=2ANz2+y=—1)

— Computer Science Laboratory, SRI International

Naive SMT Solving (continued)

3) Feed the explanation to the SAT solver:

o add the clause (—a VvV =bV —¢)

4) Getamodel of (a A (b= ¢)ANd)A(=aV =bV —c)

o Boolean model: {a, b, c,d}
o Convert back to arithmetic:

r+y>20A-(r=2)Az4+y=—1Az>3t

o Check consistency: satisfiable

Conclusion: The original formula is satisfiable

— Computer Science Laboratory, SRI International

Improvements to Naive SMT Solving

Make it incremental

o Don’t wait for a full boolean model to check consistency: interleave boolean
propagation and calls to the theory solver

Theory propagation
o Example: given partial model {a,d,c} (i.e.,z+y >0,z +y = —1,2 > 3t)
linear arithmetic solver can deduce that » must be false
(since Arithmetic Ex+y 2 0Az+y=—1= =(z = 2))
o Theory propagation: detect this and assign —b in the SAT solver.

Benefit of these improvements: prune the SAT solver search space

— Computer Science Laboratory, SRI International

Yices

Yices is SRI’s current SMT solver

o Successor of previous systems and prototypes (ICS, Yices 0.1, Simplics)

o Follows a long tradition of SRI's work on decision procedures (Shostak, PVS
decision procedures)

A state-of-the-art SMT solver

o Yices won several categories in 2005, 2006, 2007 competition on SMT solving
o Uses recent advances in Boolean SAT solving (cf. Chaff, MiniSat, PicoSat)

o Can solve very large formulas (100 to 10,000 atoms/variables/terms)

o Supports all theories in SMT-LIB and more

— Computer Science Laboratory, SRI International

Main Features

Supported Theories

o Uninterpreted functions

o Linear real and integer arithmetic

o Extensional arrays

o Fixed-size bit-vectors

o Scalar types

o Recursive datatypes, tuples, records
o Quantifiers and lambda expressions

Other Features

o Model generation, unsatisfiable cores
o Supports incremental assertions: push, pop, retract
o Dependent types (similar to PVS)

— Computer Science Laboratory, SRI International

Applications of Yices

Backend Solver for the SAL Toolset
o Support bounded model checking of finite and infinite state systems:
— Check satisfiability of formulas of the form
I(Xo) ANT(Xo, X)) N ... ANT(X1, X)) = P(X))

where (X, I, T) encodes a state-transition system and P is a state property:
X: state variables, I: initialization, T': transition relation
- Related applications: k-induction,test-case generation, planning

Integration to PVS

o There is a translation from PVS to Yices (in PVS4.0)
o Allows to use Yices as an endgame prover from PVS

— Computer Science Laboratory, SRI International

Other Applications

Static Analysis

o Extended static checking (e.g., with the Why system)
o Symbolic simulation
o Support for invariant generation in hybrid systems (Gulwani and Tiwari, 2008)

10

— Computer Science Laboratory, SRI International

Some Limitations of Yices 1

Type System

o Dependent subtypes cause problems:

— Type correctness of a formula cannot be established cheaply (if at all)
— Yices behavior on type incorrect formulas is cahotic

APl Issues

o Yices 1 is mostly intended to be used via the yices executable
o Many user want to embed Yices in other system: use it as a library
o A Yices library exists but the API is not complete and fragile

Performance Issues

o Yices is among the best SMT solvers for arithmetic, arrays, uninterpreted
functions

o Not as good for bitvectors and quantifiers

11

— Computer Science Laboratory, SRI International

The Next Yices

Yices 2: complete redesign and new implementation

Goals:

o Increase flexibility and usability as a library
o Simplify the type system to ensure easy type checking
o Maintain or improve performance

12

— Computer Science Laboratory, SRI International

Yices 2 Formulas

Type Systems

o Primitive types: Int, Real, Bool, (Bitvector k)

o Uninterpreted and scalar types:

o Tuple and function types: (7 x ... x 7,) and (7; X ... X 7, — 1)
Subtype Relations

o Int C Real
olfmCoy,...,mmCo,then(m X ... x1,) C (01 X...X0y)
olf yCopgthen (mp x ... X7, = 7)) C (11 X ... X T, — 0g)

Terms

o Boolean, rational, and bitvector constants, uninterpreted constants
o Non-primitive terms: (t; = t5) (ite ¢ty t2) (not) (or ty...t,)
(ftr...tn) V(zy 7,y s T)t) -

Type checking is straightforward

13

— Computer Science Laboratory, SRI International

Yices 2 Architecture

Arithmetic
Y / Solver
DPLL CORE Array/Fun
SAT - > - >
Solver (UF Solver) Solver

I \ Bitvector

Solver

14

— Computer Science Laboratory, SRI International

Main Components

SAT Solver

o Similar to state-of-the-art sat solvers (MiniSat, Picosat)
o Extensions for interaction with theory solvers:
— support mapping of boolean variables to atoms
— addition of clauses and boolean variables on the fly
— support for theory propagation and theory conflict
— many configurable parameters controllable via API

Core

o Congruence-closure solver for uninterpreted functions and tuples

o Ensures consistency between solvers (Nelson-Oppen combination using
interface equalities)

o Improvements over Yices 1 core
— More efficient algorithm for equality propagation
— Built-in support for if-then-else and boolean terms

15

— Computer Science Laboratory, SRI International

Theory Solvers

Satellite Solvers

o Communicate with SAT solver and Core
o Each solver deals with a specific theory:
— Arithmetic solver
- The default solver uses the Simplex method
- Optionally, it can be replaced by other solvers (based on the
Floyd-Warshall algorithm) for difference logic
— Bitvector solver
- Bitvector arithmetic: bit-blasting + equality reasoning
— Array/function theory solver
- Extensionality
- Array updates

16

— Computer Science Laboratory, SRI International

Improved Performance (UF Benchmarks)

abor+t
timeout
+
+
+
18@E
% + ¥ *
+ 1 +
3 . _
= +
o + +
o + * 1 +
= 168 - ;ﬂ#., —
++ +
) 4 +ff +ﬂ§ ¥
L + +++*+$+ +$
z + . . o s+ +
g + e +t
— 18 - :+4.+ F ++
* + 3 MR
5 A RS Y
+
T * +'t|- +-t - ++ ++ 4
o + 4y + +
n + + 47 v o +
o + + Ll P d +4 +
2 1 7 i E-+ ¢+
=) S I N 1 |+ *
! + g +
o W +
Z +ﬁ*#{§* 4+
+ ++H T+ H o+
£ A
g + . f#¥+
a a1 Rg jﬁ;ﬁt} +
. ———
+ +
al # b4
+ + 1 +
+ “1-""""’;:-1-'- bt Ly
B.@1
B.@81 B.1 1 1@ 1@ 1a@a FoEE

summary-yices-1.08.18-longtimeout-18-21-2087. tx+t

— Computer Science Laboratory, SRI International

Improved API

Complete API

o All functionalities supported by the yice2 solver are also available via a C-API
o Supports multiple independent contexts (in addition to push/pop)
o Increased flexibility and customization:

— Heuristics parameters can be modified

— The solver architecture is configurable (e.g., which arithmetic solver to use,
whether the Core is needed or not, etc.)

— Better support for model construction

18

— Computer Science Laboratory, SRI International

Future Work

Short Term Plans

o Yices 2 still under development
o QOur plan is to enter Yices 2 in this year's SMT Competition
o Release Yices 2 later this year

Future Extensions

o Support non-linear arithmetic
o Revisit the quantifier matching algorithms and heuristics

19

— Computer Science Laboratory, SRI International

Conclusion

SMT solvers enable new approaches to verification:

o Bounded model checking requires powerful solvers capable of handling large,
propositionally complex formulas

Yices 1 is one of the most efficient SMT solvers available

With Yices 2 we hope to continue improving:

o Easier to use: simpler language, correct typechecking, increased flexibility
o Embeddable in other software: improved API and library
o Better performance

Visit our website: http://yices.csl.sri.com/

20

http://yices.csl.sri.com/

