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Abstract

In air traffic management, a pairwise conflict is a predicted loss of separation between
two aircraft, referred to as the ownship and the intruder. A conflict prevention bands
system computes ranges of maneuvers for the ownship that characterize regions in
the airspace that are either conflict-free or “don’t go” zones that the ownwhip has
to avoid. Conflict prevention bands are surprisingly difficult to define and analyze.
Errors in the calculation of prevention bands may result in incorrect separation
assurance information being displayed to pilots or air traffic controllers. This paper
presents provably correct 3-dimensional prevention bands algorithms for ranges of
track angle, ground speed, and vertical speed maneuvers. The algorithms have been
mechanically verified in the Prototype Verification System (PVS). The verification
presented in this paper extends in a non-trivial way that of previously published
2-dimensional algorithms.
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Figure 1. A graphical display of prevention bands algorithms for track angle, ground
speed, and vertical speed

1 Introduction

In air traffic management, a (pairwise) conflict is a predicted loss of separation
between two aircraft within a lookahead time. One of the aircraft is called the
ownship and the other aircraft, which represents an arbitrary traffic aircraft, is
called the intruder.

A conflict prevention system consists of algorithms that sense traffic aircraft and
characterize ranges of maneuvers for the ownship that are either conflict-free or that
lead to conflict. The maneuvers are typically constrained to those where only one
parameter of the ownship’s velocity is varied at a time: track angle, vertical speed,
or ground speed.

More precisely, a (pairwise) prevention bands algorithm, for a given parameter
such as track angle, ground speed, or vertical speed, has as input the state infor-
mation of the ownship and intruder aircraft, i.e., their 3-dimensional position and
velocity vectors. It returns a list of regions, called bands, consisting of values for
the specified parameter. There is a natural way to associate a color, either red or
green, to each band. Red bands specify “don’t go” zones, i.e., parameter values that
the ownship has to avoid because they lead to conflict. Conversely, the green bands
specify parameter values for the ownship that yield conflict-free maneuvers.

Figure 1 illustrates in a graphical display prevention bands for the ownship for
track angle, ground speed, and vertical speed maneuvers. Given the current position
and velocity vectors of the aircraft, the displayed bands in Figure 1 indicate that the
aircraft will be in conflict if, for instance, the ownship maneuvers to a track angle of
45o, to a ground speed of 300 knots, or to a vertical speed of 0 feet per min. On the
other hand, if the ownship maneuvers to any value in the green regions the aircraft
will be conflict-free.

A pairwise prevention bands algorithm is correct if every possible value for the
chosen parameter is either contained in a band or is a boundary point of one of the
bands, and if the colors of the bands characterize conflict as follows. For all bands B
and parameter values x ∈ B, the ownship’s maneuver corresponding to the value x
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is in conflict with the traffic aircraft if and only if the color of B is red. Equivalently,
the ownship’s maneuver corresponding to x is not in conflict if and only if the color
of B is green.

Conflict prevention bands are surprisingly difficult to define and analyze [1].
The formal verification of a prevention bands algorithm for horizontal conflicts was
described in [2]. Three-dimensional prevention bands algorithms were presented,
without correctness proofs, in [3]. The 3-dimensional algorithms presented in that
paper compute incorrect bands for some special cases. This paper presents correct
versions of the prevention bands algorithms originally proposed in [3]. The correct-
ness properties of these new algorithms have been formally verified in the Prototype
Verification Systems (PVS) [4].

This paper focuses on pairwise algorithms, i.e., it considers only one traffic air-
craft: the intruder. Prevention bands algorithms for an arbitrary number of traffic
aircraft can be obtained from a pairwise algorithm by simply letting the red region
for n-aircraft be the union of the red regions computed for the ownship and each
individual traffic aircraft. The green regions can be computed as the complement of
the red ones. The correctness of the algorithms for n-aircraft can be easily derived
from the correctness of the pairwise prevention bands algorithms.

Notation

The mathematical development presented in this paper has been fully formalized
in PVS.1 However, for readability, this paper uses standard mathematical notation
instead of PVS syntax.

Vector variables are written in boldface letters and can denoted by their compo-
nents. For example, if w ∈ R3 and u ∈ R2, then w = (wx,wy,wz) and u = (ux,uy).
The notation w(x,y) denotes the projection of w in the horizontal plane, i.e.,2

w(x,y) ≡ (wx,wy),

and the notation u with [z ← r] denotes the 3-dimensional vector whose projection
to R2 is u and whose z-coefficient is r ∈ R, i.e.,

u with [z ← r] ≡ (ux,uy, r).

As usual, the notation ‖w‖ refers to the norm of the vector w and the notation
w ·w′ refers to the dot product of the vectors w and w′. The expression 0 represents
the zero vector, e.g., the vector whose components are 0.

If u ∈ R2, then u⊥ denotes the (right) perpendicular vector:

u⊥ ≡ (uy,−ux).

From this definition, it can be easily proven that u · u⊥ = 0. Furthermore, if u is
nonzero, then the vector w ∈ R2 can be written as a linear combination of u and
u⊥ in the following way:

w =
1
‖u‖2

((u ·w) u + (u⊥ ·w) u⊥). (1)

1Electronically avaialable from http://shemesh.larc.nasa.gov/people/cam/ACCoRD.
2The symbol ≡ is used in this paper to introduce mathematical definitions.
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The function sign: R 7→ {−1, 1} is defined such that sign(x) = 1 if x ≥ 0 and
sign(x) = −1 otherwise. As usual in mathematics, ι = ±1 denotes the fact that
an integer ι belongs to the set {−1, 1}. Moreover, ¬, =⇒ , ⇐⇒ denote logical
negation, implication, and equivalence, respectively.

Finally, by convention, names of predicates and functions used in the specifica-
tion of the problem are written in italics. Functions that represent algorithms to be
implemented in a programming language are written in typewriter font.

2 Statement of the Problem

The prevention bands algorithms discussed here only use state-based information
for the two aircraft, i.e., constant position and velocity vectors that are elements of
the 3-dimensional Euclidean space R3. Aircraft dynamics are represented by a point
moving at constant linear speed. These approximations of real aircraft behavior are
valid for short lookahead times (typically less than 5 minutes). The current state of
the ownship and traffic aircraft are denoted by the following vectors.

so ∈ R3 Initial position of the ownship aircraft
vo ∈ R3 Initial velocity of the ownship aircraft
si ∈ R3 Initial position of the traffic aircraft
vi ∈ R3 Initial velocity of the traffic aircraft

In the airspace system, the separation criterion for two aircraft is specified as a
minimum horizontal separation D and a minimum vertical separation H. A conflict
between the ownship and the intruder occurs when there is a time in the future,
within a lookahead time T , such that the horizontal distance between the aircraft
is less than D, and the vertical distance is less than H. Typically, D is 5 nautical
miles, H is 1000 feet, and T is 5 minutes.

For the remainder of the paper, it is assumed that the ground speeds of the
ownship and intruder aircraft are not zero, i.e., both ‖vo(x,y)‖ 6= 0 and ‖vi(x,y)‖ 6= 0
hold, and that the aircraft are not in loss of separation, i.e., either ‖so(x,y)−si(x,y)‖ ≥
D or |soz − siz| ≥ H hold. Therefore,

vo(x,y) 6= 0,

vi(x,y) 6= 0,

so − si 6= 0.

As noted in the introduction, the possible maneuvers considered for the ownship
are constrained to those where only one parameter of the ownship’s velocity vector
is varied, e.g., track angle, ground speed, or vertical speed.

2.1 Conflicts

The ownship and the intruder aircraft are in conflict if there exists t ∈ [0, T ] such
that, at time t, vertical separation is lost, i.e,

|((so + tvo)− (si + tvi))z| < H,

3



and horizontal separation is lost, i.e.,

‖(so + tvo)(x,y) − (si + tvi)(x,y)‖ < D.

Since (so+tvo)−(si+tvi) = (so−si)+t (vo−vi), the predicate that characterizes
conflict can be defined on s = so − si and v = vo − vi, the relative position and
velocity vector, respectively, of the ownship with respect to the intruder.

That is, conflict can be viewed as a predicate of two vectors s and v rather than
a predicate of four vectors so, vo, si, and vi, a result that greatly simplifies the
notation. Thus, the predicate conflict? can be formally defined as follows.

conflict?(s,v) ≡ ∃t ∈ [0, T ] : |(s + tv)z| < H and
‖s(x,y) + tv(x,y)‖ < D.

(2)

For the remainder of this paper, the relative position and velocity vectors, s and v,
will be used in place of so − si and vo − vi, respectively.

The separation criterion can be understood as an imaginary cylinder of height H
and diameter D around each aircraft and a conflict between two aircraft as a future
overlapping of these cylinders. In this paper, an alternative but equivalent view is
considered where the intruder is surrounded by a cylinder, called protected zone, of
half-height H and radius D. From this perspective, a conflict between these two
aircraft is equivalent to the existence of a time t ∈ [0, T ] at which the ownship is in
the interior of the intruder’s protected zone.

2.2 Track Angle, Ground Speed, and Vertical Speed Maneuvers

A maneuver for the ownship is a new velocity vector v′o that is implemented by the
aircraft in zero time. Track angle, ground speed, and vertical speed maneuvers are
formally defined as follows.

• A track angle maneuver for the ownship is a velocity vector v′o such that
‖v′o(x,y)‖ = ‖vo(x,y)‖ and v′oz = voz. In this case, there exists a function
track : R3 7→ R that computes a real number α = track(v′o), called the track
angle of v′o, such that

v′o(x,y) = (‖vo(x,y)‖ sinα, ‖vo(x,y)‖ cosα).

The function track is easily defined using the arc tangent function and the
signs of v′ox and v′oy.

• A ground speed maneuver for the ownship is a velocity vector v′o such that
v′o(x,y) and vo(x,y) are parallel (have the same track angle) and v′oz = voz. In
this case, there exists a real number p with the property that

v′o = (
p

‖vo(x,y)‖
vox,

p

‖vo(x,y)‖
voy,voz).

The number p is the ground speed of vo, i.e., ‖v′o(x,y)‖ = p.
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• A vertical speed maneuver for the ownship is a velocity vector v′o such that
v′o(x,y) = vo(x,y), i.e., the horizontal velocity vectors are equal. In this case,
there exists a real number r, called the vertical speed of v′o such that

v′o = (vox,voy, r).

The functions νtrk, νgs, νvs : R 7→ R3, implicitly parametrized by vo, are defined
as follows.

νtrk(α) ≡ (‖vo(x,y)‖ sinα, ‖vo(x,y)‖ cosα,voz), (3)

νgs(p) ≡ (
p

‖vo(x,y)‖
vox,

p

‖vo(x,y)‖
voy,voz), (4)

νvs(r) ≡ (vox,voy, r), (5)

These functions assign to each track angle α ∈ R, ground speed p ∈ R, and ver-
tical speed r ∈ R, respectively, the corresponding velocity vector for the ownship.
Important properties of the functions νtrk, νgs, and νvs are:

‖νtrk(α)(x,y)‖ = ‖vo(x,y)‖, (6)

‖νgs(p)(x,y)‖ = p, (7)

νvs(r)z = r. (8)

The constructions in this paper will restrict ground speed maneuvers to those
where the ground speed p is positive.

2.3 Conflict Detection Algorithm

A conflict detection algorithm cd is a function that takes as parameters the relative
position of the aircraft s and the velocity vectors vo, vi, and returns a Boolean
value, i.e., True or False.

Definition 1. The algorithm cd is correct if it holds that

conflict?(s,vo − vi) =⇒ cd(s,vo,vi).

It is cd is complete if it holds that

cd(s,vo,vi) =⇒ conflict?(s,vo − vi).

In other words, a conflict detection algorithm is correct if it does not have missed
alerts, i.e., it detects all conflicts, and it is complete if it does not have false alerts,
i.e., it only detects actual conflicts. Note that a conflict detection algorithm cdT
that always returns True is correct and an algorithm cdF that always returns False
is complete. However, cdT is not complete and cdF is not correct. An example of a
correct and complete conflict detection algorithm is cd3d (see Appendix in [3]).
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2.4 Prevention Bands Algorithms

Given a function ν : R 7→ R3 and a closed interval I = [I1, I2], a prevention bands
algorithm for ν over I is a function with parameters s, vo, and vi that returns a
finite, ordered sequence Lν of elements of I, such that I1 ∈ Lν and I2 ∈ Lν . Each
consecutive pair A and B of entries in Lν determines an open interval (A,B), which
is called a band (for the parameter represented by ν).

By abuse of notation, the syntax (A,B) ∈ Lν will denote that (A,B) is a band
in Lν , i.e., A and B are consecutive entries in Lν .

Definition 2. Given a function ν : R 7→ R3 and a closed interval I ⊂ R, a preven-
tion bands algorithm for ν over I is correct if for any band (A,B) in Lν and real
numbers x, y ∈ (A,B), it holds that

conflict?(s, ν(x)− vi) ⇐⇒ conflict?(s, ν(y)− vi).

The definition above states that all the points in a band computed by a correct
prevention bands algorithm have the same conflict property, e.g., either all the points
yield conflict-free maneuvers or all the points yield maneuvers that lead to conflict.
Typically, ν will be one of the functions νtrk, νgs, or νvs defined in formulas (3), (4),
and (5). The boundaries I1 and I2, of the interval I, are minimum and maximum
values for the argument of ν. For ν = νtrk, the standard values are I1 = 0 and
I2 = 2π. For ν = νgs and ν = νvs, I1 and I2 are typically the minimum and
maximum ground or vertical speeds for the ownship, respectively.

To each band (A,B) in Lν , a color is associated as follows:

color(s,vi, A,B) ≡

if cd(s, ν(
A+B

2
),vi) then

Red

else

Green

endif

(9)

where cd is any correct conflict detection algorithm, such as cd3d.
The following theorem can be easily proven from Definition 2.

Theorem 1. Given a function ν : R 7→ R3 and a closed interval I ⊂ R, a prevention
bands algorithm for ν is correct if and only if for any band (A,B) in Lν ,

color(s,vi, A,B) = Red ⇐⇒ ∀y ∈ (A,B) : conflict?(s, ν(y)− vi), and (10)
color(s,vi, A,B) = Green ⇐⇒ ∀y ∈ (A,B) : ¬conflict?(s, ν(y)− vi). (11)

The relation between a graphical display such as in Figure 1 and the output
of a prevention bands algorithm can be illustrated by considering the track angle
display, that is, where ν = νtrk and I = [0, 2π]. A prevention bands algorithm for
track angle will return a finite, ordered sequence Lνtrk of track angles in the interval
[0, 2π]. This sequence will contain both of the angles 0 and 2π. If the algorithm is
correct, then each consecutive pair, α and β, of track angles in this sequence defines
a band, i.e., an open interval (α, β), with the property that either
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1. all track angles between α and β result in conflict, or

2. all track angles between α and β do not result in conflict.

If the track angles between α and β all result in conflict, the region between α and β
is colored red. Otherwise, this region is colored green. The color of each such region
is determined by conflict information at the midpoint α+β

2 . This is illustrated by
Figure 2.

2.5 Proving Correctness of a Prevention Bands Algorithm

This section provides a general strategy that can be followed to formally verify that
a given prevention bands algorithm is correct. Subsequent sections will describe
the use of this strategy in the formal verification of prevention bands algorithms for
track angle, ground speed, and vertical speed.

Recall that a prevention bands algorithm depends on a function ν : R 7→ R3, (e.g.
ν = νtrk), and a closed interval I = [I1, I2]. Thus, a real-valued argument x of the
function ν is understood as a parameter of the ownship’s velocity vector, and the
value ν(x) is the corresponding velocity vector for that parameter. The following
theorem can be used to verify the correctness of a prevention bands algorithm for ν
over I.

Theorem 2. Let Lν be a finite sequence computed by a prevention bands algorithm
for ν over an interval I and let Ων : R 7→ R be a continuous function, implicitly
parametrized by s and vi, such that

1. Ων characterizes conflict? in the following way:

Ων(x) < 1 ⇐⇒ conflict?(s, ν(x)− vi), and (12)
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2. Lv is Ων-complete: For all real value x ∈ I,

Ων(x) = 1 =⇒ x ∈ Lν , (13)

then the algorithm that computes Lν is correct.

Proof. By Theorem 1, it suffices to prove that Formulas (10) and (11) hold. Let
(A,B) be a band in Lν .

• Suppose that color(s,vi, A,B) = Red and let y be a real number in the open
interval (A,B). Suppose, by reduction to absurdity, that ¬conflict?(s, ν(y)−
vi). By Hypothesis 1, Ων(y) ≥ 1. However, by Hypothesis 2, since (A,B) ∈ Lν
and y is equal to neither A nor B, it follows that Ων(y) > 1. By the definition
of the function color given in Equation (9), it holds that conflict?(s, ν(x)−vi),
where x = A+B

2 . Again by Hypothesis 1, Ων(x) < 1. Since Ων is continuous,
the intermediate value theorem implies that there exists some z between x and
y such that Ων(z) = 1. Since z is therefore in the interval (A,B), A and B are
consecutive in Lν , and the algorithm computes all points where Ων realizes a
value of 1, this is a contradiction.

• Similar reasoning can be used to show that if color(s,vi, A,B) = Green, then
any y in (A,B) satisfies ¬conflict?(s, ν(y)− vi).

3 The Function Ω

Using Theorem 2 to verify that a prevention bands algorithm is correct for track
angle, ground speed, or vertical speed maneuvers, i.e., for the functions νtrk, νgs,
and νvs, will require finding three separate instantiations of the function Ων that
satisfies all the hypotheses of the theorem. This section proposes the definition of a
function Ω that can be used to define Ων for any ν : R 7→ R3, where some of these
hypotheses can be discharged once and for all.

Let Ω: R3 7→ R3 be a continuous function, implicitly parametrized by s (=
so − si), that characterizes conflict? in the following way:

Ω(v) < 1 ⇐⇒ conflict?(s,v). (14)

For any continuous function ν, a continuous function Ων : R 7→ R that satisfies
Equation (12) can be defined as follows:

Ων(x) ≡ Ω(ν(x)− vi). (15)

Therefore, since functions νtrk, νgs, and νvs are continuous, Formula (15) can be used
to construct continuous functions Ωνtrk , Ωνgs , and Ωνvs that satisfy Equation (12) in
Theorem 2.

Given such a function Ω, the verification of correctness of a track angle, ground
speed, and vertical speed prevention bands algorithms over an interval I can be

8



reduced to proving that Lν , i.e., the sequence returned by each algorithm, is Ων-
complete, i.e., it contains all x ∈ I where the function Ων attains a value of 1. Since
each of the algorithms will compute a sequence of values in a distinct way, a special
proof of Ων-completeness will be required for each algorithm that computes Lν . The
function Ω will be of use in this step as well. Indeed, the function Ω will be defined
such that vectors v where Ω(v) = 1 have particular forms. The proof that Lν is
Ων-complete, for ν ∈ {νtrk, νgs, νvs}, will be done by proving that x ∈ Lν if and only
if the vector ν(x) has one of these forms.

The rest of this section concerns the definition of such a function Ω.

3.1 Cylindrical Distance

Recall from Section 2.1 that the protected zone is a cylinder around the intruder
aircraft that has half-height H and radius D. In order to define the function Ω that
satisfies Equation (14), a notion of cylindrical distance is needed.

Definition 3. The cylindrical length of a vector w ∈ R3 is the quantity

‖w‖cyl ≡ max(
‖w(x,y)‖

D
,
|wz|
H

).

Definition 4. The cylindrical distance between two vectors, w1 and w2, is the
quantity ‖w1 −w2‖cyl.

Cylindrical distance is a metric on R3, in the sense of real analysis [5], and R3 is a
metric space with this metric. In particular, this means that the triangle inequality
holds for any w0,w1,w2 ∈ R3:

‖w0 −w2‖cyl ≤ ‖w0 −w1‖cyl + ‖w1 −w2‖cyl. (16)

The key property of cylindrical distance, as it relates to loss of separation of aircraft,
is stated in the following theorem.

Theorem 3. Two aircraft are in loss of separation if and only if ‖s‖cyl < 1, where,
as in Section 1, s = so − si is the relative position vector of the aircraft.

3.2 The Definition of Ω

By Theorem 3, the ownship and the intruder aircraft are in conflict if and only
if there exists some t ∈ [0, T ] such that ‖s + tv‖cyl < 1. Thus, for s such that
‖s‖cyl 6= 1, i.e., for s not on the boundary of the protected zone, the function Ω(v)
is defined as

Ω(v) ≡ min
t∈[0,T ]

‖s + tv‖cyl. (17)

Two important remarks on the definition of the function Ω given by Formula (17)
are in order. First, the function Ω is well-defined since the quantity ‖s + tv‖cyl

actually attains a minimum as t ranges over the interval [0, T ]. That is, there exists
some τ ∈ [0, T ] such that ‖s+τ v‖cyl ≤ ‖s+tv‖cyl for all t ∈ [0, T ]. Indeed, when the
vectors s and v are fixed, the function dcyl : [0, T ] 7→ R defined by dcyl(t) = ‖s+tv‖cyl

9
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Figure 3. Infinite many places where mint∈[0,T ] ‖s + tv‖cyl = 1

is continuous, and every continuous function on a closed interval attains a minimum
on that interval. The function dcyl is continuous because it is the maximum of two
functions, dhoriz and dvert, defined by

dhoriz(t) ≡
‖(s + tv)(x,y)‖

D
,

dvert(t) ≡
|(s + tv)z|

H
,

both of which are continuous.
Second, Formula (17) does not define Ω when ‖s‖|cyl = 1. If ‖s‖cyl = 1, in which

case s is on the boundary of the cylinder, then any v which points outward from
the cylinder will satisfy mint∈[0,T ] ‖s + tv‖cyl = 1. This is because the minimum
is attained at t = 0 for any such v. This is illustrated in Figure 3 in the case
where ‖s(x,y)‖ = D and |sz| < H. Therefore, if ‖s‖cyl = 1, there is an infinite
number of vectors v such that mint∈[0,T ] ‖s + tv‖cyl = 1. Defining Ω in this case
using Formula (17) would make the proof that Lν is Ων-complete impossible, as by
definition of a prevention bands algorithm the sequence Lν is finite.

While this shows that some care is needed when defining Ω on the boundary of
the cylinder, it is possible to define Ω so that

1. it satisfies Equation (12),

2. it is continuous, and

3. it is suitable for showing that a sequence Lν is Ων-complete.

Ω(v) ≡


s(x,y) · v(x,y) if ‖s(x,y)‖ = D and |sz| < H

szvz if ‖s(x,y)‖ < D and |sz| = H

max(s(x,y) · v(x,y), szvz) if ‖s(x,y)‖ = D and |sz| = H

mint∈[0,T ] ‖s + tv‖cyl otherwise, i.e., if ‖s‖cyl 6= 1

(18)

The following theorem is a basic exercise in vector algebra.

Theorem 4. conflict?(s,v) ⇐⇒ Ω(v) < 1.

10



The formal proof that Ω is continuous requires more work and it is explained in
the rest of this section. Section 4 provides a classification theorem for Ω, which is
used then used in sections 5-7 to show that the sequences Lν , for ν ∈ {νtrk, νgs, νvs},
computed by the proposed prevention bands algorithms, are Ων-complete.

3.3 Continuity of Ω

Since the if-statements in the definition of Ω do not depend on v, Ω is continuous
if and only if each of the quantities s(x,y) · v(x,y), szvz, max(s(x,y) · v(x,y), szvz), and
mint∈[0,T ] ‖s+tv‖cyl are continuous functions of v. Only one of these four statements
is nontrivial, that the minimum mint∈[0,T ] ‖s + tv‖cyl is continuous in v. This can
be proved with standard techniques from real analysis [5]. In fact, it follows from a
generalization of the Heine-Cantor theorem, which says that a continuous function
on a closed interval is uniformly continuous. In particular, the following theorem
has been proved.

Theorem 5. If A and B are real numbers with A < B and f : [A,B] × Rn 7→ R
is continuous, then the function g : Rn 7→ R defined by g(v) ≡ mint∈[A,B] f(t,v) is
continuous.

The formal proof of this theorem required the development of a vector analysis
library in PVS, which is now part of the PVS NASA Libraries.3

The continuity of Ω is a direct consequence of Theorem 5, when A = 0, B = T ,
and f(t,v) = ‖s + tv‖cyl.

Theorem 6. The function Ω is continuous.

The purpose for constructing the function Ω was to provide a definition for
Ων : R 7→ R for every function ν : R 7→ R3. The following corollaries follow directly
from theorems 4 and 6.

Corollary 7. For any ν : R 7→ R3, the function Ων , defined in Equation (15),
satisfies Ων(x) < 1 if and only if conflict?(s, ν(x)− vi).

Corollary 8. If ν : R 7→ R3 is continuous, then the function Ων is continuous.

Since functions νtrk, νgs, and νvs are continuous, corollaries 7 and 8 hold for
Ωνtrk , Ωνgs , and Ωνvs .

4 Classification of Critical Vectors

To verify the correctness of a prevention bands algorithm for ν over a closed inter-
val I, it must be shown that the computed sequence Lν is finite and includes all
points x ∈ I such that Ω(ν(x)− vi) = 1. Vectors v that satisfy Ω(v) = 1 are called
critical vectors. This section shows that critical vectors can be analytically classified
in a finite way.

3The PVS NASA Libraries are available from http://shemesh.larc.nasa.gov/fm/ftp/larc/

PVS-library/pvslib.html.
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Figure 4. Case vz 6= 0, 0 < τ < T , |sz + τ vz| = H, and ‖(s + τ v)(x,y)‖ < D

D

v
s T

2H

Figure 5. Case τ = T , |sz + T vz| = H, and ‖(s + T v)(x,y)‖ < D

Consider a relative position vector s that satisfies ‖s‖cyl 6= 1 and a critical vector
v. Since Ω(v) = 1, it holds that mint∈[0,T ] ‖s+tv‖cyl = 1. This minimum is attained
at a real number τ ∈ [0, T ]. Since ‖s‖cyl 6= 1, it follows that τ 6= 0. Thus, either
τ = T or 0 < τ < T . If it holds that vz 6= 0, 0 < τ < T , |sz + τ vz| = H, and
‖(s + τv)(x,y)‖ < D, then it can be shown that mint∈[0,T ] ‖s + tv‖cyl < 1. That
is, there is a time near τ where the aircraft will be in loss of separation. This is
illustrated in Figure 4.

If the same conditions hold, but with vz = 0, then τ is not unique, and it can
also be shown that a particular τ can be chosen so that 0 < τ < T , |sz + τ vz| = H,
and ‖(s + τ v)(x,y)‖ = D.

Since, 1 = Ω(v) = ‖s + τ v‖cyl = max(‖(s+τ v)(x,y)‖
D , |sz+τ vz |

H ), this leaves the
following cases.

1. Case τ = T , |sz + T vz| = H, and ‖(s + T v)(x,y)‖ < D.

2. Case τ = T , |sz + T vz| < H, and ‖(s + T v)(x,y)‖ = D.

3. Case |sz + τ vz| = H and ‖(s + τ v)(x,y)‖ = D.

4. Case 0 < τ < T , |sz + τ vz| < H, and ‖(s + τ v)(x,y)‖ = D.

These four cases are illustrated in figures 5, 6, 7, and 8, respectively.
These cases will be formalized using four predicates: vertical case? (Section 4.1),

circle case 2D? (Section 4.2), circle case 3D? (Section 4.3), and line case? (Sec-
tion 4.4). It will be shown in Section 4.5 that these four predicates are sufficient to
classify solutions to the equation Ω(v) = 1, even in the case where ‖s‖cyl = 1.

12



v
T

D

s

Figure 6. Case τ = T , |sz + T vz| < H, and ‖(s + T v)(x,y)‖ = D

T

2H

D

s v

Figure 7. Case |sz + τ vz| = H, and ‖(s + τ v)(x,y)‖ = D

v

D
s

T

Figure 8. Case 0 < τ < T , |sz + τ vz| < H, and ‖(s + τ v)(x,y)‖ = D
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4.1 Vertical Case

Consider the case 1 where τ = T , |sz+T vz| = H, and ‖(s+T v)(x,y)‖ < D, which is
illustrated by Figure 5. In this case, if (sz + T vz) vz > 0, it can be formally proven
that there is some t ∈ (0, T ) such that ‖s + tv‖cyl < 1, which is a contradiction.
This motivates the definition of the following predicate on sz, vz, a real number t,
and an integer ι = ±1.

vertical case?(sz,vz, t, ι) ≡ |sz + tvz| = H and
ι (sz + tvz) vz ≥ 0.

(19)

Intuitively, the number ι can be thought of as direction, with ι = −1 corresponding
to entry into the protected zone at time t, and ι = 1 corresponding to exit.

Case 1 corresponds to vertical case?(sz,vz, T,−1). The condition

‖(s + T v)(x,y)‖ < D

is explicitly not included in this predicate, because the more general form is useful
when classifying other types of critical vectors. It is important to note that if
|sz + T vz| = H, then vertical case?(sz,vz, T, ι) holds for some ι = ±1.

Vectors v that satisfy the predicate vertical case? are called vertical solutions.

4.2 Circle Case 2D

Consider the case 2 where τ = T , |sz+T vz| < H, and ‖(s+T v)(x,y)‖ = D, which is
illustrated by Figure 6. If (s(x,y)+T v(x,y))·v(x,y) > 0, then it can be formally proven
that there is some t ∈ (0, T ) such that ‖s + tv‖cyl < 1, which is a contradiction.
This motivates the definition of the following predicate on s, v, a real number t,
and ι = ±1.

circle case 2D?(s,v, t, ι) ≡ ‖(s + tv)(x,y)‖ = D and

ι (s(x,y) + tv(x,y)) · v(x,y) ≥ 0.
(20)

Case 2 corresponds to circle case 2D?(s,v, T,−1). The condition

|sz + T vz| < H

is not included in this predicate, because it will be used, along with vertical case?,
to classify other types of critical vectors. As for the predicate vertical case? above,
an important property of circle case 2D? is that ‖(s + tv)(x,y)‖ = D implies that
circle case 2D?(s,v, t, ι) holds for some ι = ±1.

Vectors v that satisfy the predicate circle case 2D? are called 2D circle solutions.

4.3 Circle Case 3D

Consider the case 3 where |sz + τ vz| = H and ‖(s + τ v)(x,y)‖ = D, which is illus-
trated by Figure 7. It follows from the definitions of vertical case? and circle case 2D?
that there exists ι1, ι2, each equal to−1 or 1, such that vertical case?(sz,vz, τ, ι1) and
circle case 2D?(s,v, τ, ι2). If τ is positive and ι1 = ι2, it can be proven that either

14
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Figure 9. Line case: v is tangent to the circle

vertical case?(sz,vz, T,−1) or Ω(v) < 1. In classifying the solutions to the equation
Ω(v) = 1, the case where vertical case?(sz,vz, T,−1) is true is handled separately.
Since it holds that Ω(v) = 1, a requirement for the case where |sz + τ vz| = H and
‖(s + τ v)(x,y)‖ = D is therefore that ι1 = −ι2. This motivates the definition of the
following predicate. Similar to the predicate circle case 2D?, this predicate depends
on s, v, ι = ±1, and a real number t.

circle case 3D?(s,v, t, ι) ≡ t > 0 and
circle case 2D?(s,v, t, ι) and
vertical case?(sz,vz, t,−ι).

(21)

Vectors v that satisfy the predicate circle case 3D? are called 3D circle solutions.

4.4 Line Case

Consider the case 4 where 0 < τ < T , |sz + τ vz| < H, and ‖(s + τ v)(x,y)‖ = D,
which is illustrated by Figure 8. As Figure 9 indicates, the fact that τ satisfies
mint∈[0,T ] ‖s + tv‖cyl = ‖s + τ v‖cyl can be used to show that the trajectory from
s(x,y) along v(x,y) is tangent to the circle of radius D around the origin. In this
figure, the vector v⊥ is the vector (vy,−vx,vz).

It is immediately clear from Figure 9 that the angle α can be no greater than
π/2. Since s(x,y) ·−v(x,y) = ‖s(x,y)‖‖v(x,y)‖ cosα ≥ 0, it follows that s(x,y) ·v(x,y) ≤ 0.
In addition, cosβ = D

‖s(x,y)‖
. Thus,

s(x,y) · v⊥(x,y) = ‖s(x,y)‖‖v(x,y)‖ cosβ

= D‖v(x,y)‖.
(22)

This construction depends on a vector v(x,y) that is tangent to the right side
of the circle. The analogous construction for a vector v(x,y) that is tangent to the
left side of the circle would use −v⊥ in the place of the vector v⊥. This motivates
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the definition of the following predicate, which depends on s, v, and a parameter ε,
which is equal to either −1 for a right-tangent, or 1 for a left-tangent.

line case?(s,v, ε) ≡ s(x,y) · v(x,y) ≤ 0 and

− ε (s(x,y) · v⊥(x,y)) = D‖v(x,y)‖.
(23)

Vectors v that satisfy the predicate line case? are called line solutions.

4.5 The Classification Theorem

Critical vectors can be classified according to the following theorem.

Theorem 9. If Ω(v) = 1, then one of the following conditions holds.

1. ‖s(x,y)‖ ≥ D and line case?(s,v, ι) holds for some ι = ±1.

2. |sz + T vz| < H and circle case 2D?(s,v, T,−1)

3. There exists a real number t > 0 such circle case 3D?(s,v, t, ι) holds for some
ι = ±1.

4. ‖s(x,y) + T v(x,y)‖ ≤ D and vertical case?(sz,vz, T,−1)

This theorem can be used to show that a sequence Lν computed by a prevention
bands algorithm is Ων-complete by proving that Lν contains all the vectors that have
one of the four forms. It follows from this that Lν contains all points x ∈ I such
that Ων(x) = 1. When applying this technique to the case of track angle, ground
speed, and vertical speed bands, it is still possible to find a few special cases where
there are infinitely many points in I at which Ων attains a value of 1. These cases
are handled separately by defining special versions of Ων that avoid this problem.

Section 4.6 defines functions ΘH and ΘD that compute the times where the air-
craft lose vertical separation and horizontal separation, respectively, and illustrates
the relation between these times and the four cases in the classification theorem
(Theorem 9). The functions ΘD and ΘH will be used to define prevention bands al-
gorithms for track angle, ground speed, and vertical speed maneuvers in sections 5, 6,
and 7, respectively.

4.6 Entry and Exit Times

In Figure 5, the time t at which the trajectory from s along v enters the protected
zone vertically, i.e., where (s+tv)z = ±H, is precisely T . In Figure 6, the trajectory
first touches the circle of radius D around the origin at time T . In Figure 7, the time
at which this trajectory enters the circle is precisely the time where its z-component
exits the interval [−H,H]. In Figure 8, the trajectory is tangent to the circle, so
the time where the trajectory first touches the circle is equal to the time where the
trajectory last touches the circle.

All this indicates that there are relationships between the predicates defined in
sections 4.1 to 4.4 and the following quantities:
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• the times where the z-component of the trajectory from s along v enters and
exits the interval [−H,H], and

• the times where the 2-dimensional trajectory from s(x,y) along v(x,y) enters
and exits the circle of radius D around the origin.

This section gives precise definitions of mathematical functions that compute these
times and gives a variant of Theorem 9 that uses them.

The times where the z-component of the trajectory from s along v enters and
exits the interval [−H,H] are real numbers t such that |sz + tvz| = H. This
motivates the definition of the following function.

ΘH(sz,vz, ι) ≡
ι sign(vz)H − sz

vz
, for vz 6= 0, (24)

where the number ι is ±1. It is easy to check that |sz + ΘH(sz,vz, ι) vz| = H. In
addition,

ΘH(sz,vz,−1) < ΘH(sz,vz, 1). (25)

Intuitively, the times ΘH(sz,vz,−1) and ΘH(sz,vz, 1) are the times at which the
z-component of the trajectory from s along v enters and exits the interval [−H,H],
respectively. It can be proved from definitions that ι (sz + ΘH(sz,vz, ι) vz) vz ≥ 0
for vz 6= 0 and ι = ±1.

Lemma 10. If vz 6= 0, then |(s + tv)z| = H if and only if t = ΘH(sz,vz,−1) or
t = ΘH(sz,vz, 1).

Corollary 11. If vz 6= 0 and ι = ±1, then vertical case?(sz,vz, t, ι) if and only if
t = ΘH(sz,vz, ι).

Lemma 12. If vz 6= 0, then |(s + tv)z| < H if and only if ΘH(sz,vz,−1) < t <
ΘH(sz,vz, 1).

A similar construction can be used to find the times at which the trajectory
from s(x,y) along v(x,y) enters and exits the circle of radius D around the origin.
These times are real numbers t such that ‖(s + tv)(x,y)‖2 = D2. This is a quadratic
equation in t:

‖v(x,y)‖2t2 + 2 (s(x,y) · v(x,y)) t+ (‖s(x,y)‖2 −D2) = 0. (26)

The roots of this quadratic equation are therefore given by the following function,
where ι = ±1.

ΘD(s,v, ι) ≡
−s(x,y) · v(x,y) + ι

√
(s(x,y) · v(x,y))2 − ‖v(x,y)‖2(‖s(x,y)‖2 −D2)

‖v(x,y)‖2
. (27)

For this function to return a real number, it is required that the 2-dimensional
vector v(x,y) be nonzero and that discriminant of the quadratic equation (26) is
nonnegative. That is, ∆(s,v) ≥ 0, where

∆(s,v) ≡ (s(x,y) · v(x,y))
2 − ‖v(x,y)‖2(‖s(x,y)‖2 −D2). (28)
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The discriminant of the polynomial is given by 4∆(s,v). If ∆(s,v) ≥ 0, then

ΘD(s,v, 1)−ΘD(s,v,−1) =
2
√

(s(x,y) · v(x,y))2 − ‖v(x,y)‖2(‖s(x,y)‖2 −D2)

‖v(x,y)‖2
.

Thus, ΘD(s,v,−1) ≤ ΘD(s,v, 1), and these two numbers are equal if and only if
there is only one solution to the quadratic equation (26), which is equivalent to the
statement that the line with direction v that passes through s is tangent to the
circle of radius D around the origin. It has been formally proved that ι (s(x,y) +
ΘD(s,v, ι) v(x,y)) · v(x,y) ≥ 0 for ∆(s,v) ≥ 0, v(x,y) 6= 0, and ι = ±1.

Lemma 13. If v(x,y) 6= 0, then ‖(s + tv)(x,y)‖ = D if and only if ∆(s,v) ≥ 0 and
t = ΘD(s,v,−1) or t = ΘD(s,v, 1).

Corollary 14. If ∆(s,v) ≥ 0 and v(x,y) 6= 0, then circle case 2D?(s,v, t, ι) if and
only if t = ΘD(s,v, ι).

Lemma 15. If v(x,y) 6= 0, then ‖(s + tv)(x,y)‖ < D if and only if ∆(s,v) > 0 and
ΘD(s,v,−1) < t < ΘD(s,v, 1).

The next result follows directly from corollaries 11 and 14.

Corollary 16. If ∆(s,v) ≥ 0, v(x,y) 6= 0, and vz 6= 0, then circle case 3D?(s,v, t, ι)
if and only if t > 0 and the following string of equalities holds:

t = ΘD(s,v, ι) = ΘH(sz,vz,−ι).

Finally, the predicate defined in Section 4.4, line case?, can also be be written in
terms of the function ΘD. It is clear from definitions that ΘD(s,v,−1) = ΘD(s,v, 1)
is equivalent to the statement that the 2 dimensional trajectory from s(x,y) along
v(x,y) is tangent to the circle of radius D around the origin. This statement is made
precise in the following corollary, which can be formally proven.

Corollary 17. If s(x,y) · v(x,y) ≤ 0 and v(x,y) 6= 0, then line case?(s,v,−1) or
line case?(s,v, 1) holds if and only if ∆(s,v) ≥ 0 and ΘD(s,v,−1) = ΘD(s,v, 1).

It follows from algebraic manipulations that if ‖s(x,y)‖ ≥ D and Ω(v) = 1, then
s(x,y) · v(x,y) ≤ 0.

5 Track Angle Prevention Bands

This section presents a formally verified algorithm, namely track bands, for track
angle prevention bands over the closed interval [0, 2π], for the function νtrk : R 7→ R3,
defined by Equation (3) in Section 2.2. Given vectors s, vo, and vi, this algorithm
computes track angle maneuvers, i.e., vectors v′o that satisfy ‖v′o(x,y)‖ = ‖vo(x,y)‖
and v′oz = voz.

The definition of track bands depends on the algorithms track line, track circle 2D,
and track circle 3D, which compute track angle maneuvers that are line solutions,
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2D circle solutions, and 3D circle solutions, respectively. These three algorithms
are proved to be complete, i.e., they compute all vectors that satisfy their respec-
tive predicate, and correct, i.e., only vectors that satisfy their respective predicate
are computed. The correctness of track bands depends on the completeness of
track line, track circle 3D, and track circle 2D.

5.1 A Special Version of Ωνtrk

For ν = νtrk, the function Ων , defined in Equation (15) of Section 3, characterizes
conflict in the sense of Corollary 7 (Section 3.3). In this section, ν will refer ex-
clusively to the track angle function νtrk. To prove the correctness of a track angle
prevention bands algorithm, it must be shown that the finite sequence Lν returned
by the algorithm contains all track angles α ∈ [0, 2π] such that Ων(α) = 1. An
obvious requirement is that there be only finitely many track angles in the interval
[0, 2π] for which this equation holds. As it turns out, there are several special cases
where this equation has infinitely many solutions for track angles α ∈ [0, 2π]. Thus,
a variant of Ων , namely Ω∗trk, must be defined for these special cases.

Suppose that s, vo, and vi satisfy s(x,y) = T vi(x,y), ‖vo(x,y)‖2 = D2

T 2 , and
|sz + T vz| < H, where v = vo − vi. In this case,

‖s(x,y) + T v(x,y)‖ = ‖T vi(x,y) + T (vo(x,y) − vi(x,y))‖
= ‖T vo(x,y)‖
= T‖vo(x,y)‖
= D.

(29)

In addition, if α ∈ [0, 2π] is any track angle, then ‖νtrk(α)(x,y)‖ = ‖vo(x,y)‖, and
therefore this equality hold if vo is replaced with the vector νtrk(α). It follows
immediately that for any α, ∆(s, νtrk(α)−vi) ≥ 0. Lemma 13 in Section 4.6 implies
that T is equal to ΘD(s, νtrk(α) − vi, ι) for some ι = ±1. If ‖s(x,y)‖ > 1, there are
infinitely many track angles α such that T = ΘD(s, νtrk(α)− vi,−1), in which case
Lemma 15 in Section 4.6 implies that the minimum mint∈T ‖s+t (νtrk(α)−vi)‖cyl is
attained at t = T . Thus, if ‖s(x,y)‖ > 1, then the function Ων(α) ≡ Ω(νtrk(α)− vi)
intersects the line at 1 at infinitely many points between 0 and 2π. This special case
is specified by the following predicate and illustrated in Figure 10.

track spc?(s,vo,vi, t) ≡ s(x,y) = tvi(x,y) and

‖vo(x,y)‖2 =
D2

T 2
.

(30)

An appropriate replacement Ω∗trk for Ων in this case would have to satisfy the
following two properties.

Ω∗trk(α) < 1 ⇐⇒ Ων(α) < 1.
Ω∗trk(α) ≥ 1 ⇐⇒ Ων(α) ≥ 1.

In addition, the function Ω∗trk should allow only finitely many solutions to the
equation Ω∗trk(α) = 1 for α ∈ [0, 2π]. If track spc?(s,vo,vi, T ) holds as above, then
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Figure 10. A graph of Ων(α) = Ω(νtrk(α)− vi)

the track angles α such that T = ΘD(s, νtrk(α)− vi,−1) are precisely those angles
α such that Ων(α) ≥ 1, and the angles α such that T = ΘD(s, νtrk(α) − vi, 1) are
precisely those angles such that Ων(α) < 1. Thus, it is easy to see that Ω∗trk(α) = 1
should imply that the following two equalities hold.

T = ΘD(s, νtrk(α)− vi,−1) = ΘD(s, νtrk(α)− vi, 1).

By Corollary 14 and the definition of the predicate circle case 2D?, it follows that

(s(x,y) + T (νtrk(α)− vi)(x,y)) · (νtrk(α)− vi)(x,y) = 0.

Replacing s(x,y) with Tvi(x,y) and factoring out T , this is equivalent to the statement
that

0 = νtrk(α)(x,y) · (νtrk(α)− vi)(x,y)
= ‖νtrk(α)(x,y)‖2 − νtrk(α)(x,y) · vi(x,y)
= ‖vo(x,y)‖2 − νtrk(α)(x,y) · vi(x,y)

=
D2

T 2
− νtrk(α)(x,y) · vi(x,y).

This motivates the following definition of the function Ω∗trk : R 7→ R3, which depends
on the explicit parameters vo, vi, t ∈ R, and ι = ±1.

Ω∗trk(vo,vi, t, ι)(α) ≡ ι (νtrk(α)(x,y) · vi(x,y) −
D2

T 2
) + 1. (31)

Identical reasoning to that above can be used to prove that if track spc?(s,vo,vi, t)
holds and Ω∗trk(vo,vi, t, ι)(α) = 1, then the following equalities hold.

t = ΘD(s, νtrk(α)− vi,−1) = ΘD(s, νtrk(α)− vi, 1).

In particular, the following theorem can be formally proved using Corollary 17 in
Section 4.6.

Theorem 18. If track spc?(s,vo,vi, t) holds and Ω∗trk(vo,vi, t, ι)(α) = 1, then
line case?(s, νtrk(α)− vi, ε) holds for some ε = ±1.
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When proving the correctness of the track angle prevention bands algorithm
presented in the next sections, the function Ω∗trk will be used in the place of Ων when
track spc?(s,vo,vi, T ) holds. Thus, it is necessary to prove that Ω∗trk characterizes
conflict in some special cases.

Theorem 19. If track spc?(s,vo,vi, t), then the equivalence

Ω∗trk(vo,vi, t, ι)(α) < 1 ⇐⇒ conflict?(s, νtrk(α)− vi)

holds in each of the following three cases.

1. ‖s(x,y)‖ ≥ D, voz 6= viz, t = ΘH(sz,voz − viz, ι), and 0 < t < T .

2. ‖s(x,y)‖ ≥ D, voz 6= viz, ι = 1, t = ΘH(sz,voz − viz, 1), and t = T .

3. ι = 1, t = T , and |sz + T (voz − viz)| < H.

5.2 Line Solutions For Track Angle Maneuvers

The algorithm track line, defined in this section, takes as parameters s, vo, vi, t,
ε = ±1, and ι = ±1. It returns a vector v′o ∈ R3 that is either the zero vector or is
equal to νtrk(α) for some α ∈ [0, 2π) such that the relative velocity vector v′ = v′o−vi
is tangent to the circle, i.e., it satisfies line case?(s,v′, ε). The main theorem in this
section states that track line is correct and complete for line solutions that are
track angle maneuvers.

The definition of track line requires the definition an auxiliary function, namely
tangent line, that takes as parameter a relative position vector s ∈ R3 such that
‖s(x,y)‖ ≥ D and a number ε = ±1, and returns a vector in R3 that is tangent to
the protected zone.

tangent line(s, ε) ≡
if ‖s(x,y)‖ = D then

ε s⊥

else

let d = ‖s(x,y)‖2 in

(
D2

d
− 1) s +

εD
√
d−D2

d
s⊥

endif

(32)

The proofs of the following lemmas rely on standard vector algebra.

Lemma 20. If ‖s(x,y)‖ ≥ D and ε = ±1, then line case?(s, tangent line(s, ε), ε)
holds.

Lemma 21. If ‖s(x,y)‖ ≥ D, then line case?(s,v, ε) holds if and only if there exists
k ≥ 0 such that

v(x,y) = k tangent line(s, ε)(x,y).
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If v′o ∈ R3 is a track angle maneuver for the ownship such that line case?(s,v′o−
vi, ε) holds, then it holds that

‖vo(x,y)‖2 = ‖k tangent line(s, ε)(x,y) + vi(x,y)‖2. (33)

Equation (33) has the form ‖vo(x,y)‖2 = ‖k u + vi(x,y)‖2, where u ∈ R2. Since it
will be necessary in later sections to solve similar equations of this form, a function
is needed that explicitly solves this equation for k ∈ R.

It follows from the equation ‖vo(x,y)‖2 = ‖k u + vi(x,y)‖2 that

0 = (k u + vi(x,y)) · (k u + vi(x,y))− ‖vo(x,y)‖2

= ‖u‖2k2 + (2 vi(x,y) · u)k + (‖vi(x,y)‖2 − ‖vo(x,y)‖2).
(34)

This is a quadratic equation in k. If ι = ±1, then −b+ι
√
b2−4ac

2a is a root of this
equation, where

a = ‖u‖2,
b = 2 vi(x,y) · u,
c = ‖vi(x,y)‖2 − ‖vo(x,y)‖2.

(35)

Thus, if b2 − 4ac ≥ 0 and k = −b+ι
√
b2−4ac

2a is nonnegative, then the unique vector
v′o such that v′oz = voz and v′o(x,y) = k (x,y) + vi(x,y) satisfies both ‖v′o(x,y)‖ =
‖vo(x,y)‖ and line case?(s,v′o − vi, ε). This motivates the definition of the function
track only line, which returns a real number.

track only line(u,vo,vi, ι) ≡
let

a = ‖u‖2,
b = 2 vi(x,y) · u,
c = ‖vi(x,y)‖2 − ‖vo(x,y)‖2

in

if b2 − 4ac ≥ 0 then

−b+ ι
√
b2 − 4ac

2a
else

0
endif

(36)

The next lemma states that the algorithm track only line computes solutions
for k to the equation v′o(x,y) = k u + vi(x,y), where ‖v′o(x,y)‖ = ‖vo(x,y)‖.

Lemma 22. If u 6= 0, then ‖v′o(x,y)‖ = ‖vo(x,y)‖ and k u = v′o(x,y) − vi(x,y) if and
only if

k = track only line(u,vo,vi, ι),

for some ι = ±1.
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Using track only line, the algorithm track line, which computes track angle
maneuvers v′o ∈ R3 that satisfy line case?(s,v′o − vi, ε) for ε = ±1, can be defined
as follows.

track line(s,vo,vi, ε, ι) ≡
let

k = track only line(tangent line(s, ε)(x,y),vo,vi, ι),

v′o = (k tangent line(s, ε)(x,y) + vi(x,y)) with [z ← voz]

in

if k ≥ 0 then

v′o
else

0

endif

(37)

The correctness and completeness of track line follow from its definition and
Lemma 22.

Theorem 23 (Correctness and completeness of track line). If ‖s(x,y)‖ ≥ D and
v′o(x,y) 6= 0, then ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz = voz, and line case?(s,v′o − vi, ε) holds
if and only if

v′o = track line(s,vo,vi, ε, ι),

for some ι = ±1.

5.3 2D Circle Solutions For Track Angle Maneuvers

The algorithm track circle 2D, defined in this section, takes as parameters s, vo,
vi, t, ι = ±1, and ε = ±1. It returns a vector v′o ∈ R3 that is either the zero vector
or is equal to νtrk(α) for some α ∈ [0, 2π) such that the relative velocity vector
v′ = v′o − vi satisfies circle case 2D?(s,v′, t, ι). The main theorems in this section
state that track circle 2D is correct and complete for 2D circle solutions that are
track angle maneuvers.

If circle case 2D?(s,v′, t, ι) holds, then the vector v′o must satisfy ‖s(x,y)+tv′(x,y)‖2 =
D2. If ‖v′o(x,y)‖ = ‖vo(x,y)‖, then algebraic manipulations can be used to show that

‖s(x,y) + tv′(x,y)‖2 = ‖s(x,y)‖2 + t2‖vo(x,y)‖2 + 2t(s(x,y) − tvi(x,y)) · v′(x,y) −
t2‖vi(x,y)‖2.

Thus, if t > 0, then

(s(x,y) − tvi(x,y)) · v′(x,y) =
1
2t

(D2 − ‖s(x,y)‖2 − t2(‖vo(x,y)‖2 − ‖vi(x,y)‖2)). (38)

This equation has the form u · v′
(x,y)

= j, where u = s(x,y) − tvi(x,y) and

j =
1
2t

(D2 − ‖s(x,y)‖2 − t2(‖vo(x,y)‖2 − ‖vi(x,y)‖2)).
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Since it will be necessary in later sections to solve similar equations of the form
u · v′

(x,y)
= j, a function is needed that explicitly solves this equation for v′o when

‖v′o(x,y)‖ = ‖vo(x,y)‖.
Assuming u 6= 0 , Equation (1) yields

v′
(x,y)

=
1
‖u‖2

((u · v′
(x,y)

)u + (u⊥ · v′
(x,y)

)u⊥)

=
1
‖u‖2

(ju + ku⊥),

where k = u⊥ · v′
(x,y)

. Lemma 22 in Section 5.2 can be used to prove that

k = track only line(u⊥(x,y),vo,vi +
j

‖u(x,y)‖2
u, ι),

for some ι = ±1.

It follows from this that for u 6= 0, the function track only dot, defined below,
solves the equation u · (v′o(x,y) − vi(x,y)) = j for v′o, when ‖v′o(x,y)‖ = ‖vo(x,y)‖.

track only dot(u,vo,vi, j, ι) ≡

let k = track only line(u⊥,vo,vi +
j

‖u(x,y)‖2
u, ι) in

(ku⊥ + vi(x,y) +
j

‖u(x,y)‖2
u) with [z ← voz]

(39)

Lemma 24. If u 6= 0 and v′o(x,y) 6= 0, then ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz = voz, and
u · (v′o(x,y) − vi(x,y)) = j if and only if

v′o = track only dot(u,vo,vi, j, ι),

for some ι = ±1.

The function track only dot is used to solve Equation (38) when vi 6= 0 and
t > 0. Using track only dot, the algorithm track circle 2D, which computes
track angle maneuvers v′o ∈ R3 that satisfy circle case 2D?(s,v′o−vi, t, ι) for ι = ±1,
can be defined as follows.
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track circle 2D(s,vo,vi, t, ι, ε) ≡
let

u = (s− tvi)(x,y),

j =
1
2t

(D2 − ‖s(x,y)‖2 − t2(‖vo(x,y)‖2 − ‖vi(x,y)‖2))

in

if u 6= 0 then

let

v′o = track only dot(u,vo,vi, j, ε)
in

if ι (s + t (v′o − vi)) ≥ 0 then

v′o
else

0

endif

else

0

endif

(40)

The correctness and completeness of track circle 2D follow from its definition
and Lemma 24.

Theorem 25 (Correctness of track circle 2D). If v′o(x,y) 6= 0 and

v′o = track circle 2D(s,vo,vi, t, ι, ε),

then ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz = voz, and circle case 2D?(s,v′o − vi, t, ι) holds.

Theorem 26 (Completeness of track circle 2D). If ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz =
voz, and circle case 2D?(s,v′o−vi, t, ι) holds, then either track spc?(s,vo,vi, t) holds
or

v′o = track circle 2D(s,vo,vi, t, ι, ε)

for some ε = ±1.

5.4 3D Circle Solutions For Track Angle Maneuvers

Theorems 25 and 26 imply that the algorithm track circle 2D can be used to
compute vectors v′o such that circle case 2D?(s,v′o − vi, t, ι) holds, where t > 0.
By the definition of the predicate circle case 3D? in Section 4.3, this algorithm can
be used to compute vectors v′o such that circle case 3D?(s,v′o − vi,ΘH(sz,voz −
viz,−ι), ι) holds when ΘH(sz,voz − viz,−ι) > 0. This motivates the definition of
the algorithm track circle 3D, which takes as a parameters s, vo, vi, ι = ±1,
and ε = ±1. It returns a vector v′o ∈ R3 that is either the zero vector or is equal
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to νtrk(α) for some α ∈ [0, 2π) such that the relative velocity vector v′ = v′o − vi
satisfies circle case 3D?(s,v′,ΘH(sz,voz − viz,−ι), ι).

track circle 3D(s,vo,vi, ι, ε) ≡
if voz = viz then

0

else

let t = ΘH(sz,voz − viz,−ι) in

if t > 0 then

track circle 2D(s,vo,vi, t, ι, ε)
else

0

endif

endif

(41)

The following theorems state that track circle 3D is correct and complete for
3D circle solutions that are track angle maneuvers. These properties follow from
theorems 25 and 26, and properties of the function ΘH presented in Section 4.6.

Theorem 27 (Correctness of track circle 3D). If v′o(x,y) 6= 0 and

v′o = track circle 3D(s,vo,vi, ι, ε),

then ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz = voz, and circle case 3D?(s,v′o − vi,ΘH(sz,voz −
viz,−ι), ι) holds.

Theorem 28 (Completeness of track circle 3D). If ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz =
voz, voz 6= viz, and circle case 3D?(s,v′o − vi,ΘH(sz,voz − viz,−ι), ι) holds, then
either track spc?(s,vo,vi,ΘH(sz,voz − viz,−ι))) holds or

v′o = track circle 3D(s,vo,vi, ι, ε),

for some ε = ±1.

5.5 A Prevention Bands Algorithm For Track Angle Maneuvers

Using the functions defined in the previous section, the prevention bands algorithm
track bands for the function νtrk : R 7→ R3 can be defined as follows, where V is
a sequence of vectors, |V | is its length, L is a set of real numbers, and sort is a
function that takes as parameter a set of real numbers and returns the sequence of
elements in the set that is sorted by increasing order.4

4For readability, the algorithm is written using pseudo-code including assignment and bounded
loop constructions. The PVS development provides a functional version of this code.
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track bands(s,vo,vi) ≡
V0 := track circle 3D(s,vo,vi,−1,−1);
V1 := track circle 3D(s,vo,vi,−1, 1);
V2 := track circle 3D(s,vo,vi, 1,−1);
V3 := track circle 3D(s,vo,vi, 1, 1);
if ‖s(x,y)‖ ≥ D then

V4 := track circle 2D(s,vo,vi, T,−1,−1);
V5 := track circle 2D(s,vo,vi, T,−1, 1);
V6 := track line(s,vo,vi,−1,−1);
V7 := track line(s,vo,vi,−1, 1);
V8 := track line(s,vo,vi, 1,−1);
V9 := track line(s,vo,vi, 1, 1);

endif

L = {0, 2π};
for i = 1 to |V | do

if Vi(x,y) 6= 0 then

L := L ∪ {track(Vi)};
endif

endfor

Lνtrk := sort(L);

(42)

The finite, ordered sequence  Lνtrkreturned by track bands is computed using
every possible instantiation of the parameters ε and ι, both of which can be ±1, in
the functions track line, track circle 2D, and track circle 3D. For each vector
v′o returned by one of these three algorithms for s, vo, and vi with the property
that v′o(x,y) 6= 0, the track angle of v′o is an element of the sequence returned by
track bands.

Theorem 29 (Correctness of track bands). The track angle prevention bands al-
gorithm track bands is correct for νtrk over the interval [0, 2π].

Proof. By Theorem 2 in Section 2.5, it suffices to find a continuous function Ων : R 7→
R, parameterized by s, vo, and vi, that satisfies the following two properties.

1. For all α ∈ [0, 2π],

Ων(α) < 1 ⇐⇒ conflict?(s, νtrk(α)− vi).

2. For all α ∈ [0, 2π],

Ων(α) = 1 =⇒ α ∈ track bands(s,vo,vi).
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In most cases, the function Ων , where ν = νtrk, defined in Equation (15) of Sec-
tion 3, will suffice. However, in some special cases, the function Ω∗trk, defined in
Equation (31) of Section 5.1, will be used. The latter case is considered first.

Suppose that track spc?(s,vo,vi, t), where t > 0, and that one of the following
conditions holds.

1. ‖s(x,y)‖ ≥ D, voz 6= viz, t = ΘH(sz,voz − viz, ι), and 0 < t < T .

2. ‖s(x,y)‖ ≥ D, voz 6= viz, ι = 1, t = ΘH(sz,voz − viz, 1), and t = T .

3. ι = 1, t = T , and |sz + T (voz − viz)| < H.

By Theorem 19 in Section 5.1,

Ω∗trk(vo,vi, t, ι)(α) < 1 ⇐⇒ conflict?(s, νtrk(α)− vi)

holds for any α ∈ R. Thus, all that is required to complete the proof in this special
case is to prove that for all α ∈ [0, 2π], Ω∗trk(α) = 1 implies

α ∈ track bands(s,vo,vi).

If Ω∗trk(α) = 1, then Theorem 18 implies that line case?(s, νtrk(α)− vi, ε), for some
ε = ±1. By the completeness of the algorithm track line (Theorem 23 in Sec-
tion 5.2), if ‖s(x,y)‖ ≥ D, then νtrk(α) is equal to track line(s,vo,vi, ε, ι), for some
ι = ±1. Thus, α = track(νtrk(α)) is equal to track(track line(s,vo,vi, ε, ι)),
which, by definition, is an element of track bands(s,vo,vi). If ‖s(x,y)‖ < D, then it
must be true that the third condition holds: ι = 1, t = T , and |sz +T (voz−viz)| <
H. In this case, it is easy to prove that for any α ∈ R, conflict?(s, νtrk(α)−vi), and
therefore Ω∗trk(α) < 1. This completes the proof in the case where one of the three
conditions above holds.

Now suppose that the second condition above holds, but where ι = 1 is replaced
with ι = −1. That is, suppose that ‖s(x,y)‖ ≥ D, voz 6= viz, t = ΘH(sz,voz −
viz,−1), t = T , and track spc?(s,vo,vi, T ). Since νtrk(α)z = voz for any α ∈ R,
Lemma 12 of Section 4.6 can be used to show that conflict?(s, νtrk(α)−vi) does not
hold for any α ∈ R. In this case, the correctness of the algorithm track bands is
trivial.

The proof has now been reduced to the case where neither of the following
conditions hold.

1. voz 6= viz and there exists ι = ±1 such that track spc?(s,vo,vi, t) and 0 < t ≤
T , where t = ΘH(sz,voz − viz, ι).

2. track spc?(s,vo,vi, T ) and |sz + T (voz − viz)| < H.

By Corollary 7 of Section 3.3, the function Ων , where ν = νtrk, characterizes
conflict. Suppose that α ∈ [0, 2π] and Ων(α) = 1. Since Ων(α) = Ω(νtrk(α) − vi),
Theorem 9 in Section 4.5 implies that one of the following conditions holds, where
v = νtrk(α)− vi.

• ‖s(x,y)‖ ≥ D and either line case?(s,v, ε), for some ε = ±1.
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• |sz + Tvz| < H and circle case 2D?(s,v, T,−1).

• There is some real number t > 0 such that circle case 3D?(s,v, t, ι), for some
ι = ±1.

• ‖s(x,y) + Tv(x,y)‖ ≤ D and vertical case?(sz,vz, T,−1).

These cases are now considered individually.

• Suppose first that ‖s(x,y)‖ ≥ D and line case?(s, νtrk(α) − vi, ε), for some
ε = ±1. By completeness of track line (Theorem 23), νtrk(α) is equal to
track line(s,vo,vi, ε, ι), for some ι = ±1. Thus, α = track(νtrk(α)) is
equal to track(track line(s,vo,vi, ε, ι)), which, by definition, is an element
of track bands(s,vo,vi).

• Suppose that |sz + Tvz| < H and circle case 2D?(s, νtrk(α) − vi, T,−1). By
completeness of the algorithm track circle 2D (Theorem 26), νtrk(α) is equal
to track circle 2D(s,vo,vi, t, ι, ε), for some ι = ±1 and ε = ±1. Thus,
α = track(νtrk(α)) = track(track circle 2D(s,vo,vi, t, ι, ε)). Hence, α is
an element of track bands(s,vo,vi).

• Suppose that there is a real number t > 0 such that circle case 3D?(s,v, t, ι),
where ι = ±1. Assume that voz 6= viz. By completeness of track circle 3D
(Theorem 28), νtrk(α) = track circle 3D(s,vo,vi, ι, ε) for some ι = ±1 and
ε = ±1. Thus, as above,

α = track(νtrk(α)) = track(track circle 3D(s,vo,vi, ι, ε)).

Hence, α is an element of track bands(s,vo,vi). The case where voz = viz
can be equally discharged.

• Finally, suppose that ‖s(x,y) + Tv(x,y)‖ ≤ D and vertical case?(sz,vz, T,−1).
In this case, the fact that νtrk(α)z = voz implies that conflict?(s, νtrk(α)− vi)
does not hold for any α ∈ R. From there, the correctness of the algorithm
track bands is trivial.

6 Ground Speed Prevention Bands

This section presents a formally verified algorithm, namely gs bands, for ground
speed prevention bands over an arbitrary interval [gsmin, gsmax] for the function
νgs : R 7→ R3, defined by Equation (4) in Section 2.2. The boundaries of the interval,
gsmin and gsmax, represent (postitive) minimum and maximum ground speeds
for the ownship aircraft, respectively. Given vectors s, vo, and vi, this algorithm
computes ground speed maneuvers, i.e., vectors v′o that satisfy v′o(x,y) = `vo(x,y),
for some ` > 0, and v′oz = voz.

The definition of gs bands depends on the algorithms gs line, gs circle 2D,
and gs circle 3D, which compute ground speed maneuvers that are line solutions,
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2D circle solutions, and 3D circle solutions, respectively. These three algorithms are
proved to be complete and correct for ground speed maneuvers that satisfy their
respective predicate. The correctness of gs bands depends on the completeness of
gs line, gs circle 3D, and gs circle 2D.

If v′o is a ground speed maneuver for the ownship, then there is some positive
p ∈ R such that νgs(p) = v′o. Therefore, v′o(x,y) = `vo(x,y), where ` = p

‖vo(x,y)‖
and

` > 0.

6.1 Line Solutions For Ground Speed Maneuvers

The algorithm gs line, defined in this section, takes as parameters s, vo, vi, t, and
ε = ±1. It returns a vector v′o ∈ R3 that is either the zero vector or is equal to
νgs(p) for some p ∈ R such that the relative velocity vector v′ = v′o − vi is tangent
to the circle, i.e., it satisfies line case?(s,v′, ε). The main theorem in this section
states that gs line is correct and complete for line solutions that are ground speed
maneuvers.

Suppose ‖s(x,y)‖ ≥ D and that v′o is a vector in R3 such that v′o(x,y) = `vo(x,y).
Suppose further that line case?(s,v′o−vi, ε) holds for some ε = ±1. By Lemma 21 of
Section 5.2, there is some k ≥ 0 such that `vo(x,y) = k tangent line(s, ε) + vi(x,y).
This equation has the form

`vo(x,y) = k u + vi(x,y), (43)

where u ∈ R3. Functions can be defined that explicitly solve this equation for k and
`. It is easily proved that

(vi(x,y) · u⊥) vo(x,y) − (vo(x,y) · u⊥) vi(x,y) = (vi(x,y) · v⊥o (x,y)) u.

Thus, if vo(x,y) · u⊥ 6= 0, then

k =
vi(x,y) · v⊥o (x,y)

vo(x,y) · u⊥
, (44)

` =
vi(x,y) · u⊥

vo(x,y) · u⊥
. (45)

This motivates the definition of the algorithms gs line k and gs line l, which
solve Equation (43) for k and l.

gs line k(u,vo,vi) ≡
if vo(x,y) · u⊥ 6= 0 then

vi(x,y) · v⊥o (x,y)

vo(x,y) · u⊥

else

0
endif

(46)
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gs line l(u,vo,vi) ≡
if vo(x,y) · u⊥ 6= 0 then

max

(
vi(x,y) · u⊥

vo(x,y) · u⊥
, 0

)
else

0
endif

(47)

Lemma 30. If ` > 0 and either vi(x,y) · v⊥o (x,y) 6= 0 or vo(x,y) · u⊥ 6= 0, then Equa-
tion (43) holds if and only if k = gs line k(u,vo,vi) and ` = gs line l(u,vo,vi).

Using gs line k and gs line l, the algorithm gs line, which computes ground
speed maneuvers v′o ∈ R3 that satisfy line case?(s,v′o − vi, ε) for ε = ±1, can be
defined as follows.

gs line(s,vo,vi, ε) ≡
let

u = tangent line(s, ε)(x,y)
k = gs line k(u,vo,vi)
` = gs line l(u,vo,vi)

in

if k ≥ 0 then

`vo(x,y) with [z ← voz]

else

0

endif

endif

(48)

The correctness and completeness of gs line follow from its definition and
Lemma 30.

Theorem 31 (Correctness and completeness of gs line). If ‖s(x,y)‖ ≥ D, v′o(x,y) 6=
0, and either vi(x,y) · v⊥o (x,y) 6= 0 or vo(x,y) · tangent line(s, ε)⊥(x,y) 6= 0, then
v′oz = voz, v′o(x,y) = `vo(x,y) for some ` > 0, and line case?(s,v′o − vi, ε) holds if
and only if

v′o = gs line(s,vo,vi, ε).

This theorem does not hold if ‖s(x,y)‖ ≥ D, vi(x,y) · v⊥o (x,y) = 0, and vo(x,y) ·
tangent line(s, ε)⊥(x,y) = 0. This case has to be handled separately in the verifi-
cation of correctness of the ground speed prevention bands algorithm.
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6.2 2D Circle Solutions For Ground Speed Maneuvers

The algorithm gs circle 2D, defined in this section, takes as parameters s, vo, vi,
t, ι = ±1, and ε = ±1. It returns a vector v′o ∈ R3 such that v′o is either the zero
vector or is equal to νgs(p) for some p > 0 such that the relative velocity vector
v = v′o − vi satisfies circle case 2D?(s,v′o − vi, t, ι). The main theorems in this
section state that gs circle 2D is correct and complete for 2D circle solution that
are ground speed maneuvers.

If circle case 2D?(s,vo − vi, t, ι) holds, then the vector v′o must satisfy

‖s(x,y) + t (v′o(x,y) − vi(x,y))‖2 = D2.

If v′o(x,y) = `vo(x,y), then simple algebraic manipulation can be used to show that
a `2 + b `+ c = 0, where

a = t2 ‖vo(x,y)‖2,
b = 2t (s− tvi)(x,y) · vo(x,y),
c = ‖(s− tvi)(x,y)‖2 −D2.

This is a quadratic equation in `, which can be solved using the quadratic for-
mula. Note that if v′o represents a ground speed maneuver for the ownship, then
` must be positive, since v′o(x,y) = `vo(x,y). This motivates the following definition
of the algorithm gs circle 2D, which computes ground speed maneuvers v′o ∈ R3
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that satisfy circle case 2D?(s,v′o − vi, t, ι) for ι = ±1.

gs circle 2D(s,vo,vi, t, ι, ε) ≡
let

a = t2 ‖vo(x,y)‖2

b = 2t (s− tvi)(x,y) · vo(x,y)
c = ‖(s− tvi)(x,y)‖2 −D2

in

if b2 − 4ac ≥ 0 then

let

` =
b2 + ε

√
b2 − 4ac

2a
v′o = max(`, 0) vo(x,y) with [z ← voz]

in

if ι (s + t (v′o − vi))(x,y) · (v′o − vi)(x,y) ≥ 0 then

v′o
else

0

endif

else

0

endif

(49)

The correctness and completeness of gs circle 2D follow from its definition and
the correctness and completeness of the quadratic formula, which has been proved
in PVS.

Theorem 32 (Correctness of gs circle 2D). If vo(x,y) 6= 0 and

v′o = gs circle 2D(s,vo,vi, t, ι, ε),

then circle case 2D?(s,v′o−vi, t, ι) holds, v′oz = voz, and v′o(x,y) = `vo(x,y) for some
` > 0.

Theorem 33 (Completeness of gs circle 2D). If v′o(x,y) = `vo(x,y), ` > 0, v′oz −
voz, and circle case 2D?(s,v′o − vi, t, ι) holds, then

v′o = gs circle 2D(s,vo,vi, t, ι, ε),

for some ε = ±1.

6.3 3D Circle Solutions For Ground Speed Maneuvers

Theorems 32 and 33 imply that the algorithm gs circle 2D can be used to com-
pute vectors v′o such that circle case 2D?(s,v′o − vi, t, ι) holds, where t > 0. By the
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definition of the predicate circle case 3D? in Section 4.3, this algorithm can be used
to compute vectors v′o such that circle case 3D?(s,v′o − vi,ΘH(sz,voz − viz,−ι), ι)
holds when ΘH(sz,voz − viz,−ι) > 0. This motivates the definition of the al-
gorithm gs circle 3D, which takes as a parameters s, vo, vi, ι, and ε. It re-
turns a vector v′o ∈ R3 such that the relative velocity vector v′ = v′o − vi satisfies
circle case 3D?(s,v′,ΘH(sz,voz − viz,−ι), ι).

gs circle 3D(s,vo,vi, ι, ε) ≡
if voz = viz then

0

else

let

t = ΘH(sz,voz − viz,−ι)
in

if t > 0 then

gs circle 2D(s,vo,vi, t, ι, ε)
else

0

endif

endif

(50)

The following theorems state that gs circle 3D is correct and complete for 3D
circle solutions that are ground speed maneuvers. These properties follow from
theorems 32 and 33, and properties of the function ΘH presented in Section 4.6.

Theorem 34 (Correctness of gs circle 3D). If v′o(x,y) 6= 0 and

v′o = gs circle 3D(s,vo,vi, ι, ε),

then circle case 3D?(s,v′o−vi,ΘH(sz,voz−viz,−ι), ι) holds, v′oz = voz, and v′o(x,y) =
`vo(x,y) for some ` > 0.

Theorem 35 (Completeness of gs circle 3D). If v′o(x,y) = `vo(x,y), ` > 0, v′oz =
voz, voz 6= viz, and circle case 3D?(s,v′o − vi,ΘH(sz,voz − viz,−ι), ι) holds, then

v′o = gs circle 3D(s,vo,vi, ι, ε),

for some ε = ±1.

6.4 A Prevention Bands Algorithm For Ground Speed Maneuvers

The prevention bands algorithm gs bands for the function νgs : R 7→ R3 that com-
putes a sorted sequence Lνgs is defined in a similar way to algorithm track bands
in Section 5.5.

34



gs bands(s,vo,vi) ≡
V0 := gs circle 3D(s,vo,vi,−1,−1);
V1 := gs circle 3D(s,vo,vi,−1, 1);
V2 := gs circle 3D(s,vo,vi, 1,−1);
V3 := gs circle 3D(s,vo,vi, 1, 1);
if ‖s(x,y)‖ ≥ D then

V4 := gs circle 2D(s,vo,vi, T,−1,−1);
V5 := gs circle 2D(s,vo,vi, T,−1, 1);
V6 := gs line(s,vo,vi,−1);
V7 := gs line(s,vo,vi,−1);

endif

L = {gsmin, gsmax};
for i = 1 to |V | do

if Vi(x,y) 6= 0 and gsmin ≤ ‖Vi(x,y)‖ ≤ gsmax then

L := L ∪ {‖Vi(x,y)‖};
endif

endfor

Lνgs := sort(L);

(51)

Theorem 36 (Correctness of gs bands). The ground speed prevention bands algo-
rithm gs bands is correct for νgs over the interval [gsmin, gsmax].

Proof. The first step in the proof is to consider the special case where ‖s(x,y)‖ ≥ D,
vi(x,y) · v⊥o (x,y) = 0, and vo(x,y) · tangent line(s, ε)⊥(x,y) = 0. This case is handled
separately because it is explicity excluded from the hypotheses of Theorem 31. In
this case, it can be proved that the vectors tangent line(s, ε)(x,y), vo(x,y), and
vi(x,y) are all co-linear.

To prove correctness of the algorithm for the special case, it suffices to show that
if p ∈ [gsmin, gsmax], then conflict?(s, νgs(p)− vi) does not hold. Since νgs(p) is a
ground speed maneuver of vo, both vectors point in the same direction. Therefore,
νgs(p)(x,y)−vi(x,y) is also co-linear with tangent line(s, ε)(x,y). The trajectory from
s(x,y) along νgs(p)(x,y) − vi(x,y) is therefore tangent to the circle of radius D around
the origin and is never in horizontal conflict.

In the general case, suppose that it is not true that ‖s(x,y)‖ ≥ D, vi(x,y) ·v⊥o (x,y) =
0, and vo(x,y) · tangent line(s, ε)⊥(x,y) = 0. In this case, by Theorem 2 in Sec-
tion 2.5, it suffices to prove that the function Ων , where ν = νgs, satisfies the
following two properties.

1. For all ground speeds p ∈ [gsmin, gsmax],

Ων(p) < 1 ⇐⇒ conflict?(s, νgs(p)− vi).
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2. For all ground speeds p ∈ [gsmin, gsmax],

Ων(p) = 1 =⇒ p ∈ gs bands(s,vo,vi).

The first of these properties follows immediately from Corollary 7 in Section 3.3. All
that is left to verify is the second property, the proof of which is identical in form
and substance to the general case of the proof of Theorem 29 in Section 5.5.

7 Vertical Speed Prevention Bands

This section presents a formally verified algorithm, namely vs bands, for vertical
speed prevention bands over an arbitrary interval [vsmin, vsmax] for the function
νvs : R → R3, defined by Equation (5) in Section 2.2. The boundaries of the inter-
val, vsmin and vsmax, represent minimum and maximum vertical speeds for the
ownship aircraft, respectively. Given vectors s, vo, and vi, this algorithm computes
vertical speed maneuvers, i.e., vectors v′o that satisfy v′o(x,y) = vo(x,y).

The definition of vs bands depends on the algorithm vs circle, which computes
vertical speed maneuvers that are 3D circle solutions and vertical solutions. This
algorithm is proved to be complete for vertical speed maneuvers. The correctness
of vs bands depends on the completeness of vs circle.

By the definition of circle case 3D? in Equation (21), circle case 3D?(s,v, t, ι)
implies vertical case?(sz,vz, t,−ι) and circle case 2D?(s,v, t, ι) for any t ∈ R and
ι = ±1. Thus, an algorithm for computing 3D circle solutions for vertical speed ma-
neuvers will also compute vertical solutions and 2D circle solutions. If vertical case?(sz,vz, t,−ι)
holds, then |sz + tvz| = H, and therefore there is some ε = ±1 such that sz + tvz =
εH. The function vs at, defined below, takes as parameters sz, a nonzero real
number t, and ε = ±1. It returns the real number vz such that sz + tvz = εH.

vs at(sz, t, ε) ≡
εH − sz

t
. (52)

Lemma 37. If vz is a real number, then sz + tvz = εH if and only if

vz = vs at(sz, t, ε).

The next lemma states that the function vs at can be used to compute vertical
solutions. The proof follows from Equation (19) and Lemma 37.

Lemma 38. If t > 0 and vertical case?(sz,vz, t,−1) holds, then

vz = vs at(sz, t, sign(sz))

.

7.1 3D Circle and Vertical Solutions For Vertical Speed Maneuvers

The algorithm vs circle, defined in this section, takes as parameters s, vo, vi,
t, and ε = ±1. It returns a vector v′o that is either the zero vector or is equal
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to νvs(r) for some r ∈ R such that the relative vector v = v′o − vi satisfies
circle case 3D?(s,v, t, ι). The main theorems in this section state that vs circle
computes all 3D circle solutions and all vertical solutions that are vertical speed
maneuvers.

Suppose that ∆(s,v′o − vi) > 0 and circle case 3D?(s,v′o − vi, t, ι) holds, where
v′o(x,y) = vo(x,y) and v′oz = r. It is easy to prove that ∆(s,vo − vi) > 0 implies
vo(x,y) 6= vi(x,y). Since ∆(s,vo − vi) = ∆(s,v′o − vi), Corollary 14 in Section 4.6
implies that t = ΘD(s,vo−vi, ι). Since vertical case?(sz, (r−viz), t,−ι) holds, there
is some ε = ±1 such that

sz + ΘD(s,vo − vi, ι) (r − viz) = εH. (53)

Since ΘD(s,vo − vi, ι) > 0, the following equivalence holds.

r = viz ⇐⇒ H = ε sz.

Suppose that H 6= ε sz. Multiplying both sides of Equation (53) by ε and applying
the fact that ε2 = 1 yields

ε sz + ΘD(s,vo − vi, ι) ε (r − viz) = H.

Since ΘD(s,vo − vi, ι) > 0, it follows that

− sign(ε (r − viz)) = sign(ε sz − H). (54)

Since vertical case?(sz, (r − viz),ΘD(s,vo − vi, ι),−ι) holds,

−ι (sz + ΘD(s,vo − vi, ι)(r − viz)) (r − viz) ≥ 0.

It therefore follows from Equation (53) that −ι εH (r − viz) ≥ 0. Since H > 0 and
r 6= viz, basic arithmetic manipulations can be used to deduce that

− sign(ε (r − viz)) = ι. (55)

Putting equations (54) and (55) together, the following equality holds.

sign(ε sz − H) = ι (56)

This equation is used to select the appropriate choice of ι in the algorithm vs circle,
defined below in Equation (52), even in the case where ε sz = H. It follows from
Lemma 37 that

r = viz + vs at(sz,ΘD(s,vo − vi, ι), ε). (57)

This equation also appears in the definition of vs circle, which is given below. It
returns a vector v′o ∈ R3 such that either v′o(x,y) = vo(x,y) or v′o = 0.
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vs circle(s,vo,vi, t, ε) ≡
if ∆(s,vo − vi) ≤ 0 then

if ε sz ≥ H and t > 0 then

vo(x,y) with [z ← viz + vs at(sz, t, ε)]

else

0

endif

else

let

Θ−1 = ΘD(s,vo − vi,−1),
Θ+1 = ΘD(s,vo − vi, 1),
τmin = min(t,ΘD(s,vo − vi, 1))

in

if ε sz < H and ‖s(x,y)‖ > D then

vo(x,y) with [z ← viz + vs at(sz,Θ−1, ε)]

elsif ε sz ≥ H and τmin > 0 then

vo(x,y) with [z ← viz + vs at(sz, τmin, ε)]

else

0

endif

endif

(58)

The completeness of vs circle for 3D circle and vertical solutions follows from
its definition, Lemma 38, and properties of the function ΘD presented in Section 4.6.

Theorem 39 (Completeness of vs circle for 3D Circle Solutions). If v′o(x,y) =
vo(x,y), ∆(s,vo − vi) > 0, ι = ±1, t > 0, circle case 3D?(s,v′o − vi, t′, ι), for some
t′ ∈ R, and either ι = −1 or ΘD(s,vo − vi, 1) ≤ t, then

vo = vs circle(s,vo,vi, t, ε),

for some ε = ±1.

Theorem 40 (Completeness of vs circle for Vertical Solutions). If v′o(x,y) =
vo(x,y), vertical case?(sz,v′oz − viz, t,−1), and either ∆(s,vo − vi) ≤ 0 or t ≤
ΘD(s,vo − vi, 1), then

v′o = vs circle(s,vo,vi, t, ε),

for some ε = ±1.
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7.2 A Prevention Bands Algorithm For Vertical Speed Maneuvers

The prevention bands algorithm vs bands for the function νvs : R 7→ R3 that com-
putes a sorted sequence Lνvs is defined in a similar way to the previous algorithms
track bands in Section 5.5 and gs bands in Section 6.4.

vs bands(s,vo,vi) ≡
V0 := vs circle(s,vo,vi, T,−1);
V1 := vs circle(s,vo,vi, T, 1);
L = {vsmin, vsmax};
for i = 1 to |V | do

if Vi(x,y) 6= 0 and vsmin ≤ Viz ≤ vsmax then

L := L ∪ {Viz};
endif

endfor

Lνvs := sort(L);

(59)

Theorem 41 (Correctness of vs bands). The vertical speed prevention bands algo-
rithm vs bands is correct for νvs over the interval [vsmin, vsmax].

Proof. By Theorem 2 in Section 2.5, it suffices to prove that the function Ων , where
ν = νvs, satisfies the following two properties.

1. For all vertical speeds r ∈ [vsmin, vsmax],

Ων(r) < 1 ⇐⇒ conflict?(s, νvs(r)− vi).

2. For all vertical speeds r ∈ [vsmin, vsmax],

Ων(r) = 1 =⇒ r ∈ vs bands(s, T,vo,vi).

The first of these properties follows immediately from Corollary 7 in Section 3.3. To
prove the second property, suppose that r ∈ [vsmin, vsmax] and Ων(r) = 1, where
ν = νvs. Since Ων(r) = Ω(s, νvs(r)−vi), Theorem 9 implies that one of the following
conditions holds, where v = νvs(r)− vi.

• ‖s(x,y)‖ ≥ D and either line case?(s,v,−1) or line case?(s,v, 1).

• |sz + Tvz| < H and circle case 2D?(s,v, T,−1).

• There is some real number t > 0 such that either circle case 3D?(s,v, t, ι), for
some ι = ±1.

• ‖s(x,y) + Tv(x,y)‖ ≤ D and vertical case?(sz,vz, T,−1).

In either of the first two cases, it can easily be shown that conflict?(s, νvs(x) − vi)
does not hold for any x ∈ R. In this case, by Definition 2 in Section 2.4, it follows
that the prevention bands algorithm vs bands is correct for νvs over [vsmin, vsmax].
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The latter two cases are considered individually. For the rest of the proof, it is
assumed that ∆(s,vo − vi) > 0. The proof in the case where ∆(s,vo − vi) ≤ 0 is
left to the reader. Since ∆(s,vo − vi) > 0, it is easy to prove that vo(x,y) 6= vi(x,y).

Suppose that there is some real number t > 0 such that circle case 3D?(s,v, t, ι),
where ι = ±1. By the definition of circle case 3D? (Equation (21) in Section 4.3)
and Corollary 14 in Section 4.6, it follows that t = ΘD(s,vo−vi, ι). By Theorem 39
in Section 7.1 (completenes of vs circle for 3D circle solutions), if either ι = −1
or ΘD(s,vo − vi, ι) ≤ T , then νvs(r) is equal to vs circle(s,vo,vi, T, ε), for some
ε = ±1. Thus, r ∈ vs bands(s, T,vo, vi). Alternatively, if ι = 1 and ΘD(s,vo −
vi, 1) > T , it can be proved from the definition of the function Ων that Ων(r) > 1,
a contradiction.

Finally, suppose that ‖s(x,y) + Tv(x,y)‖ ≤ D and vertical case?(sz,vz, T,−1).
The proof in this case is similar to the case above. By Theorem 40 in Section 7.1
(completeness of vs circle for vertical solutions), if T ≤ ΘD(s,vo − vi, 1), then
νvs(r) is equal to vs circle(s,vo,vi, T, ε), for some ε = ±1. Thus, it holds that
r ∈ vs bands(s, T,vo, vi). Alternatively, if T > ΘD(s,vo − vi, 1), it can be proved
that Ων(r) > 1, a contradiction.

8 Conclusion

In [3], Maddalon et al. present, without verification, 3D algorithms for track angle,
ground speed, and vertical speed prevention bands. Formal verification of horizontal
versions of these algorithms was presented in [2]. This paper provides correct ver-
sions of the algorithms presented in [3], namely track bands (Section 5.5), gs bands
(Section 6.4), and vs bands (Section 7.2). The correctness of these algorithms has
been formally verified using the PVS theorem prover.

Although this paper focuses on track angle, ground speed, and vertical speed
prevention bands, the techniques presented here applied to arbitrary conflict pre-
vention bands algorithms that are based on state information. More precisely, given
a function ν : R→ R3 and an interval I ⊂ R, Section 2.5 describes a general strategy
that can be followed to prove that a given prevention bands algorithm is correct.
In fact, Section 3 develops the theory of a universal function Ω that can be used as
a tool in the verification of prevention bands algorithms for many different choices
of ν.
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