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ANALYZING MODE CONFUSION VIA MODEL CHECKING

GERALD L�UTTGEN�
AND VICTOR CARRE~NOy

Abstract. Mode confusion is one of the most serious problems in aviation safety. Today's complex

digital ight decks make it di�cult for pilots to maintain awareness of the actual states, or modes, of the

ight deck automation. NASA Langley leads an initiative to explore how formal techniques can be used to

discover possible sources of mode confusion. As part of this initiative, a ight guidance system was previously

speci�ed as a �nite Mealy automaton, and the theorem prover PVS was used to reason about it.

The objective of the present paper is to investigate whether state-exploration techniques, especially model

checking, are better able to achieve this task than theorem proving and also to compare several veri�cation

tools for the speci�c application. The ight guidance system is modeled and analyzed in Mur�, SMV, and

Spin. The tools are compared regarding their system description language, their practicality for analyzing

mode confusion, and their capabilities for error tracing and for animating diagnostic information. It turns

out that their strengths are complementary.

Key words. mode confusion, model checking, modeling, state exploration, veri�cation tools

Subject classi�cation. Computer Science

1. Introduction. Although digital system automation in the ight deck of aircrafts has contributed to

aviation safety, we are starting to experience some undesirable side e�ects as a result of the high degree of

automation. Automation has signi�cantly reduced the overall pilot workload; however, in some instances the

workload has just been re-distributed, causing short periods of very high workloads. This is usually the case

during transition periods when the aircraft moves from one phase of ight to another or when data re-entry

is necessary due to, e.g., route changes. It is during these transitional phases that pilots may get confused

about the states, or modes, of the ight deck automation. Mode confusion may cause pilots to interact

inappropriately with the on-board automation, with possibly catastrophic consequences. Indeed, incidents

and accidents in aviation are increasingly attributed to this aspect of pilot-automation interaction [2].

NASA Langley Research Center, in partnership with avionics manufacturers and other organizations,

is engaged in a program to explore ways to minimize the impact of mode confusion on aviation safety.

One approach being studied is to identify the sources of mode confusion by formally modeling and analyzing

avionics systems in order to determine if such sources exist in the systems. The mode logic of a ight guidance

system was selected as a target system to develop this approach and to determine its feasibility. The ight

guidance system o�ers a realistic avionics system and has been modeled and speci�ed in many notations

and languages including CoRE [9, 21], SCR [14, 20], Z [10, 31], ObjecTime [22, 28], and PVS [5, 25]. In the

PVS e�ort, the behavior of the ight guidance system was encoded as a �nite state machine. Properties,

identi�ed as possible sources of mode confusion by engineers, pilots, and experts in human factors [18], were
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de�ned in the PVS language. Some of these properties include inconsistent behavior, ignored crew inputs,

and indirect mode changes. Proofs in the PVS model, which encodes a Mealy automaton, were undertaken to

either show that a property holds or to discover conditions that preclude the property from becoming true.

The employed style of theorem proving resembles a form of state exploration. Hence, the question arises

whether state exploration techniques, such as model checking [6, 8, 26], are better suited for this task. The

issues to be considered are whether model checking techniques are appropriate, whether the modeling and

veri�cation consumes less resources than theorem proving, and whether unsuccessful veri�cation attempts

return su�cient information which lead an engineer to potential design aws. In order to get answers

to our questions, we model and analyze the mode logic by applying three popular and publicly available

state-exploration/model-checking tools, namely Mur� [7, 23], SMV [19, 29], and Spin [15, 30].

The results of this paper show that all three model checking tools have the capability of modeling the

mode logic of the ight guidance system and analyzing properties related to mode confusion. However,

each veri�cation tool has its own strengths and weaknesses. Therefore, we put our emphasis on comparing

the suitability of Mur�, SMV, and Spin in the context of our application. We draw our comparison along

three aspects: (1) the suitability of the tools' languages for modeling the mode logic, (2) the suitability of

the tools for specifying and verifying the mode confusion properties of interest, and (3) the tools' ability to

generate and animate diagnostic information. The �rst aspect is of importance because it inuences the way

in which we model the example system. The second aspect refers to the expressiveness of the language in

which system properties are encoded, and also to the degree of orthogonality between the speci�cation of

the system and the speci�cation of its properties. The third aspect is perhaps the most important one for

engineers since system designs are often incorrect in early design stages. Finally, it should be noted that our

comparative case study is not intended to determine which veri�cation tool is `the best.' All comparisons

made only refer to a certain class of applications; the main characteristics of the ight guidance system are

its synchronous, reactive, and deterministic behavior.

The remainder of this paper is organized as follows. Section 2 gives an overview of the ight guidance

system, of its mode logic, and of potential sources for mode confusion. Sections 3, 4, and 5 show the modeling

and analysis of the mode logic in Mur�, SMV, and Spin, respectively. Section 6 discusses the strengths of

each veri�cation tool for our application and refers to related work, while Section 7 contains our conclusions

and directions for future work. Finally, the appendices include the full models of the mode logic.

2. Flight Guidance Systems and Mode Logics. The ight guidance system is a central component

of the ight control system (see Fig. 2.1). It continuously determines the di�erence between the actual state

of an aircraft { its position, speed, and attitude as measured by its sensors { and its desired state as given by

the crew and/or the ight management system. In response, the ight guidance system generates commands

to minimize this di�erence, which the autopilot may translate into movements of the aircraft's actuators.

These commands are calculated by control law algorithms that are selected by the mode logic.

system

control laws

mode logic flight management

autopilotsensors actuators

crew interface

flight guidance system

Fig. 2.1. Flight control system.
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In the following we focus on the mode-logic part of ight guidance systems. Especially, we leave out

the modeling of the control laws and, if no confusion arises, use interchangeably the terms ight guidance

system and mode logic. For the purposes of this paper, it su�ces to understand the functionality of the

mode logic and how it is decomposed into sub-components. The ight guidance system essentially acts as

a deterministic machine which is composed of several synchronous sub-machines. It receives events from

its environment { i.e., the crew interface, the aircraft's sensors, and the ight management system { in a

nondeterministic fashion and reacts to them by changing its state appropriately. The functionality of a ight

guidance system varies with application, vendor, customer preferences, and other factors.

Fig. 2.2 shows a typical mode logic for a business jet/commuter jet ight guidance system. The mode

logic can be represented and modeled by three interacting components: the lateral guidance, the vertical

guidance, and the ight director. The mode of the ight director { which can be either cues, no-cues, or o�

{ determines whether or not the ight guidance system is being used as a navigational aid either manually

by the crew or automatically through the autopilot. The lateral guidance subsumes the roll mode (Roll),

the heading mode (HDG), the navigation mode (NAV), and the lateral go-around mode (LGA), whereas

the vertical guidance subsumes the pitch mode (Pitch), the vertical speed mode (VS), and the vertical go-

around mode (VGA). Each mode can be either cleared or active, with the navigation mode having additional

sub-states in the active state. The behavior of each component places constraints on the other components.

For example, when the ight director is on, there must be exactly one mode active in the lateral guidance

and one mode active in the vertical guidance. In some situations, an external event may require several

simultaneous mode changes. Indeed, the behavior of the ight guidance system reects a kind of two-level

semantics similar to Statecharts [13], where both semantic levels are not independent but connected via the

synchrony hypothesis [1]. This hypothesis guarantees that a system completes its reaction to an external

event before the next external event arrives.

Flight Director
Lateral Guidance

Roll HDG NAV

Vertical Guidance

Pitch VS VGALGA

Mode Logic

Fig. 2.2. Architecture of the model logic of the ight guidance system.

Before we discuss the modeling of the ight guidance system within the veri�cation tools Mur�, SMV,

and Spin, we briey mention some properties of our system, which can be classi�ed as mandatory properties

and mode confusion properties. Some of the former properties are: (i) if the ight director is o�, all lateral

and vertical guidance modes must be cleared, (ii) if the ight director is on, then exactly one lateral and one

vertical mode is active, and (iii) the lateral and vertical default modes are activated when the ight director

is on and when all other modes are cleared. These and other mandatory properties must be true if we have

accurately modeled the system. Regarding mode confusion, several categories are identi�ed in [18]. We have

selected three categories to use in the analysis of our system: (1) inconsistent behaviors, i.e., a crew interface

input (switch, dial, etc.) has di�erent functionality for di�erent system states, (2) ignored operator inputs,

i.e., a crew input does not result in a change of state, and (3) indirect mode changes, i.e., the system changes

its state although no crew input is present. To discover if there are possible sources of mode confusion, we

formulate the negation of each property { there are no inconsistent behaviors, no ignored inputs, and no
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indirect mode changes { and try to prove it. Conditions that prevent us from successfully completing the

proof, manifested by unprovable subgoals in a theorem prover and error traces in model-checking tools, are

the ones we intend to uncover. As expected, this process is labor intensive when using theorem proving [22].

The work described here investigates if model checking is a more e�cient way of performing the analysis.

3. Modeling the Mode Logic in Mur�. The Mur� Veri�cation System [7, 23], a state-exploration

tool developed by David Dill's group at Stanford University, consists of a compiler and a description language.

The compiler takes a Mur� description and generates a C++ special-purpose veri�er for it. This veri�er can

then be used for checking assertions and deadlock behavior of the system under consideration.

The Mur� description language is a high-level language which borrows from many constructs found

in programming languages, such as Pascal. It may be used to model synchronous as well as asynchronous

hardware and software systems which can be compiled into �nite Kripke structures, i.e., �nite automata whose

states are attached with the semantic information of interest. Mur� descriptions may include declarations of

constants, �nite data-types (such as Booleans, enumeration types, �nite subranges of integers, record types,

and array types), global and local variables, and unnested procedures and functions. Moreover, they contain

transition rules for describing system behavior, a description of the initial states, and a set of state invariants

and assertions. Each transition rule may consist of a guard { which is never needed in our application scenario

{ and an action, i.e., a statement which modi�es the values of global variables. A state in Mur�'s execution

model is an assignment to all global variables in the description under investigation. A transition is then

determined by a rule, taken nondeterministically from the set of transition rules whose condition is true in

the current state. The rule's execution updates all or some global variables according to its action.

Table 3.1

Speci�cation of module simple guidance in Mur�

TYPE sg_modes : ENUM { cleared, active };

TYPE sg_events : ENUM { activate, deactivate, switch, clear };

TYPE sg_signals : ENUM { null, activated, deactivated };

PROCEDURE simple_guidance(VAR mode:sg_modes; event:sg_events; VAR signal:sg_signals);

BEGIN

IF mode=cleared THEN SWITCH event CASE activate : signal := activated; mode := active;

CASE deactivate : signal := null;

CASE switch : signal := activated; mode := active;

CASE clear : signal := null;

END;

ELSE SWITCH event CASE activate : signal := null;

CASE deactivate : signal := null; mode := cleared;

CASE switch : signal := deactivated; mode := cleared;

CASE clear : signal := deactivated; mode := cleared;

END;

END; END;

In the center of the Mur� model of the ight guidance system is the deterministic procedure fgs. This

procedure encodes the system's reaction to some environment event env ev entering the mode logic. For

the purposes of this paper it is not important to name the fourteen di�erent environment events interacting
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with the mode logic. However, by declaring a transition rule for each environment event env ev as RULE

"rule for env event" BEGIN fgs(env ev); END, we model the nondeterministic behavior of the environ-

ment which arbitrarily chooses the event entering the system at each synchronous step. Please observe that

our encoding of the environment does not require us to store event names explicitly in a global variable, but

rather to inject them to fgs via a call-by-value parameter. Due to space constraints we do not completely

specify procedure fgs here. Instead, we concentrate on modeling the vertical-guidance component of the

ight guidance system. Let us de�ne the modes of the vertical-guidance component as instantiations of an

abstract data-type module simple guidance, speci�ed in Mur� as procedure, which encodes each mode's

behavior as a Mealy automaton behaving like a Boolean switch (cf. Table 3.1). The module is parameterized

by the mode mode under consideration (as call-by-reference parameter), the input event event (as call-by-

value parameter), and the output event signal (as call-by-reference or return parameter). The parameters

are of enumeration types sg mode, sg events, and sg signals, respectively, where type sg mode ranges over

the values cleared and active, type sg event ranges over activate, deactivate, switch, and clear, and

type sg signal ranges over null, activated, and deactivated. The body of simple guidance speci�es

the reaction of a mode to input event event, with respect to its current state mode. This reaction is described

by an if-statement, two case-selections, and assignments to variable mode and return parameter signal.

Table 3.2

Speci�cation of module vertical guidance in Mur�

VAR pitch, vs, vga : sg_modes;

PROCEDURE vertical_guidance(env_ev:env_events);

VAR sig : sg_signals;

BEGIN CLEAR sig;

IF pitch_event(env_ev) THEN simple_guidance(pitch, pitch_conv(env_ev), sig);

IF sig=activated THEN simple_guidance(vs, deactivate, sig);

simple_guidance(vga, deactivate, sig);

END;

ELSIF vs_event(env_ev) THEN simple_guidance(vs, vs_conv(env_ev), sig);

IF sig=activated THEN simple_guidance(pitch, deactivate, sig);

simple_guidance(vga, deactivate, sig);

ELSIF sig=deactivated THEN simple_guidance(pitch, activate, sig);

END;

ELSIF vga_event(env_ev) THEN simple_guidance(vga, vga_conv(env_ev), sig);

IF sig=activated THEN simple_guidance(pitch, deactivate, sig);

simple_guidance(vs, deactivate, sig);

ELSIF sig=deactivated THEN simple_guidance(pitch, activate, sig);

END;

END; END;

We can now specify the vertical-guidance module as a procedure, called vertical guidance (cf. Ta-

ble 3.2), by employing procedure simple guidance for describing the behavior of the modes pitch, vs, and

vga, which are de�ned as global variables. The task of procedure vertical guidance is �rstly to recognize

whether the environment event env ev passed to the system refers to mode Pitch, to mode VS, or to mode

VGA. This is achieved with help of the three auxiliary functions pitch event, vs event, and vga event, re-
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spectively. Then env ev is translated to an event of type sg events via the auxiliary functions pitch conv,

vs conv, and vga conv, respectively, and passed to the mode to which it belongs. If this mode is activated

by the event, i.e., simple guidance returns value activated via local variable sig, then the other two

modes must instantly be deactivated by invoking simple guidance with respect to the appropriate modes

and event deactivate. It should be mentioned that the above modeling of components simple guidance

and vertical guidance is carried over one-to-one from the PVS model of the ight guidance system, which

was developed by NASA Langley and Rockwell Collins [5, 22]. In fact, every PVS construct used in [22]

corresponds to a construct in Mur�'s description language. However, we sometimes �nd it useful to translate

functions in PVS to procedures in Mur� that have an additional call-by-reference parameter for returning

the computed value. In PVS, only functions can be speci�ed, although procedures would sometimes be more

preferable from a software-engineering point of view.

Table 3.3

Speci�cation of some mode confusion properties in Mur�

VAR old_pitch, old_vs, old_vga : sg_modes;

PROCEDURE mode_confusion_properties(env_ev:env_events);

BEGIN

ALIAS mode_change : pitch != old_pitch | vs != old_vs | vga != old_vga; DO

IF env_ev=vs_switch_hit THEN

-- check for response to pressing VS button

assert (old_vs=cleared -> vs=active ) "vs_toggle_1";

assert (old_vs=active -> vs=cleared) "vs_toggle_2";

END;

-- search for ignored crew inputs (property violated)

assert (crew_input(env_ev) -> mode_change) "search_for_ignored_crew_inputs";

-- no unknown ignored crew inputs

assert ((crew_input(env_ev) & !ignored_crew_input(ev)) -> mode_change) "no_unknown_ignored";

-- search for indirect mode changes (property violated)

assert (!crew_input(env_ev) -> !mode_change) "search_for_indirect_mode_changes";

-- no unknown indirect mode changes

assert ((!crew_input(env_ev) & !indirect_mode_change(env_ev)) -> !mode_change) "no_unknown...";

END;

-- update state variables

old_pitch := pitch; old_vs := vs; old_vga := vga;

END;

We now turn our focus to specifying mode confusion properties. As states are generated by the Mur�

veri�er, assert statements, that were explicitly included in the action of a rule, are checked. If some

assertion is violated { i.e., the assert statement is evaluated to false in some reachable system state {

the Mur� veri�er halts and outputs the string which the user associated with the assert statement under

consideration. Moreover, the veri�er outputs diagnostic information which consists of a sequence of states

leading from the initial state to the error state. The veri�er also halts if the current state possesses no

successor states, i.e., if it is deadlocked. Let us return to the three categories of mode confusion mentioned

in Section 2 by showing how an exemplary property of each category can be stated as an assertion.
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In the system description of our mode logic, we encapsulate all assertions in the single procedure

mode confusion properties, which is invoked as the last statement in procedure fgs and which takes

the current environment event env ev as parameter (cf. Table 3.3; the notation \--" introduces a comment

line in Mur�, != denotes inequality, and |, &, !, and -> stand for logical disjunction, conjunction, negation,

and implication, respectively). Since all mode confusion properties of interest concern the transition from

one system state to the next, we need to store the global variables' values of the previously visited state.

For this purpose, we introduce new global variables old pitch, old vs, and old vga. The need for this

overhead arises because Mur�'s veri�cation capabilities are restricted to reason about simple state invariants

only and not about more general \state transition invariants." Therefore, such state transition invariants

need to be encoded as state invariants, which doubles the size of the state vector for our system description.

The �rst two assertions in Table 3.3, belonging to the �rst category of mode confusion properties, state that

environment event vs switch hit acts like a toggle with respect to mode VS, i.e., (i) if mode VS was in

state cleared and event vs switch hit arrived, then it is now in state active, and (ii) analogously with

exchanged roles of cleared and active.

As example of the second category of mode confusion properties, we check whether no crew inputs

are ignored, i.e., whenever an event that originated from the crew enters the mode logic, then at least

one global variable changes its value. We can specify this property as implication crew input(env ev)

-> mode change, where crew input is a Boolean function determining whether environment event env ev

originates from the crew and where mode change is a shortcut, introduced as an ALIAS statement inMur�. As

expected (cf. Section 2), this mode confusion property does not always hold. Using the error trace returned

by Mur� helps us in identifying the causes, as is our objective. We do not go into the details here but mention

that we �lter out the identi�ed cause by including an additional predicate ignored crew input, stating the

negation of the cause, in the premise of the assertion (cf. Table 3.3). We then re-run the Mur� veri�er and

iterate the described process until the assertion becomes true, thereby gradually capturing all crew-input

scenarios responsible for mode confusion. When comparing our approach to the one taken in PVS [22] {

i.e., trying theorem proving until either obtaining proof goal true or until reaching an unsatis�able proof

goal { we feel that ours is more e�ective. We discovered that the variant of ignored crew input used in

the PVS model is stronger than necessary, thereby wrongfully identifying some situations as sources of mode

confusion. The di�culty with the analysis in PVS is the following. Mur� returns error traces that pinpoint

the condition violating the assertion, whereas in a PVS failed proof the condition must be extracted from

a proof sequent consisting of assertions and subgoals. Extracting conditions from a proof sequent is often

more time-consuming and usually requires a better understanding of the system's behavior.

Similar to the assertion \checking for ignored crew inputs" we approach the third category of mode

confusion properties. The property we consider is \no indirect mode changes," which prohibits a system's

state to change if the current environment event is not originated by the crew. Using Mur�, we discover

the conditions that invalidate this property. As before, we weaken the property by introducing a predicate

indirect mode change, until all sources of indirect mode changes are detected. The mandatory properties

mentioned in Section 2 are formalized asMur� invariant statements and proved. The di�erence between an

assert statement and an invariant statement in Mur� is that the former appears in the system description

part of the model, while the latter is orthogonal to the system description. The reason for specifying mode

confusion properties in the system description is their reference to the auxiliary variables old pitch, old vs,

and old vga. In order to keep the state space small, the auxiliary variables must be re-assigned to the actual

values of pitch, vs, and vga, respectively, before a step of the synchronous system is completed.
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Summarizing, Mur�'s description language turned out to be very useful for our task, especially since the

already developed PVS model of the ight guidance system [22] could be simply carried over. Unfortunately,

Mur�'s capability for expressing system properties is quite restrictive, forcing us to encode state transition

invariants as state invariants, thereby doubling the number of global variables and, as a consequence, Mur�'s

memory requirements. The full Mur� model subsumes about 30 assertions and leads to a Kripke structure

having 242 states. In each state of the Kripke structure any of the 14 environment events may potentially

enter the system; this gives 3 388 = 242 � 14 transitions in total. The state-space exploration undertaken

by the Mur� veri�er took under 2 seconds on a SUN SPARCstation 20. This is an impressive result when

compared to the semi-automatic proofs in PVS [22].

4. Modeling the Mode Logic in SMV. The SMV system [19, 29], originally developed by Ken

McMillan at Carnegie-Mellon University, is a model-checking tool for verifying �nite-state systems, described

in a simple description language, against speci�cations in the temporal logic CTL [6, 8]. The SMV veri�er

implements a symbolic model-checking algorithm [4] based on Binary Decision Diagrams (BDDs) [3].

SMV's description language is a very simple, yet elegant language for specifying �nite Kripke structures,

which has the feel of a hardware description language. The language's data types are Booleans (where false

and true are encoded as 0 and 1, respectively), enumeration types, and arrays. Its syntax resembles a style

of parallel assignments, and its semantics is similar to single assignment data ow languages. For structuring

speci�cations, SMV allows modular hierarchical descriptions. In contrast to Mur�, SMV descriptions are not

compiled into a special-purpose veri�er, but are interpreted instead. The interpreter makes sure that the

speci�ed system is indeed implementable by checking for multiple assignments to the same variable, circular

assignments, and type errors. The SMV language also includes constructs for stating system speci�cations

in the temporal logic (fair)CTL [8], which allows one to express a rich class of temporal properties, including

safety, liveness, and fairness properties. In the present application of the synchronous ight guidance system,

we focus on safety properties, to which invariants belong.

Table 4.1

Speci�cation of module simple guidance in SMV

MODULE simple_guidance(activate, deactivate, switch, clear)

VAR mode : {cleared, active};

ASSIGN init(mode) := cleared;

next(mode) := case deactivated | deactivate : cleared;

activated : active;

1 : mode;

esac;

DEFINE activated := (mode=cleared) & (activate | switch);

deactivated := (mode=active ) & (clear | switch);

A module description in SMV consists of four parts: (1) the MODULE clause, stating the module's name

and a list of formal (call-by-reference) parameters, (2) the VAR clause, declaring (global) variables needed for

describing the module's behavior, (3) the ASSIGN clause, which speci�es the initial value of all variables (cf.

init) and how each variable is updated from state to state (cf. next), and (4) the DEFINE clause, which allows

one to introduce abbreviations for more complex terms. Similar to the Mur� model, the main module MAIN

of our SMV speci�cation encodes the environment of the ight guidance system, which nondeterministically
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sends events to the mode logic. This is done by de�ning variable env ev of enumeration type env events,

which contains all environment events, and by adding \init(env ev) := env events; next(env ev) :=

env events" to the ASSIGN clause. Analogous to the Mur� model, we specify a module simple guidance

(see Table 4.1) and, thereby, show how Mealy machines may be encoded in SMV. Module simple guidance

takes the four input events activate, deactivate, switch, and clear { which can be either absent or

present { as parameters. The state associated with simple guidance is variable mode which may adopt

values cleared and active. Note that the values of enumeration types are encoded by the SMV interpreter

using a collection of Boolean variables, such that transition relations can be represented by BDDs. The

initial value init(mode) of mode is cleared. The behavioral part of simple guidance is described in the

next(mode) statement, which consists of a case expression. The value of this expression is determined by

the �rst expression on the right hand side of the colon such that the condition on the left hand side is

true. The symbols, =, &, and | stand for equality, logical conjunction, and logical disjunction, respectively.

The terms activated and deactivated are de�ned as abbreviations of more complex terms in the DEFINE

clause. The values of mode, activated and deactivated are accessible from outside the module. Therefore,

a DEFINE clause may be used for encoding output events of Mealy automata.

Table 4.2

Speci�cation of module vertical guidance in SMV

MODULE vertical_guidance(vs_pitch_wheel_changed, vs_switch_hit, ga_switch_hit,

sync_switch_pressed, ap_engaged_event)

VAR pitch : simple_guidance(pitch_activate, pitch_deactivate, 0, 0);

vs : simple_guidance( 0, vs_deactivate, vs_switch_hit, 0);

vga : simple_guidance( 0, vga_deactivate, ga_switch_hit, vga_clear);

DEFINE pitch_activate := (vs_event & vs.deactivated) | (vga_event & ga.deactivated) |

vs_pitch_wheel_changed;

pitch_deactivate := (vs_event & vs.activated) | (vga_event & ga.activated);

vs_deactivate := (pitch_event & pitch.activated) | (vga_event & ga.activated);

vga_deactivate := (pitch_event & pitch.activated) | (vs_event & vs.activated);

vga_clear := ap_engaged_event | sync_switch_pressed;

pitch_event := vs_pitch_wheel_changed;

vs_event := vs_switch_hit;

vga_event := ap_engaged_event | sync_switch_pressed |

ga_switch_hit;

Before we model the vertical guidance component, we comment on why we have encoded the input

event of the simple guidance Mealy machine using four di�erent signal lines { i.e., adopting a hardware-

description language point of view { instead of a single event of some enumeration type subsuming all four

values. If activate, deactivate, switch, and clear were combined in an enumeration type, a syntactic

{ though not semantic { circularity would be introduced which could not be resolved by SMV, i.e., our

description of the mode logic would be rejected. Another di�erence between simple guidance as a module

in SMV and as an abstract data-type in Mur� is that the mode variable is encapsulated within the SMV

module, whereas it is a call-by-reference parameter in Mur�'s abstract data type. We feel that SMV reects

the architecture of the ight guidance system better, since mode belongs to component simple guidance

and should not be declared outside.
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The behavior of each mode of the vertical guidance model (cf. Table 4.2), Pitch, VS, and VGA, can

now be described by instantiating the module simple guidance, as is done in the VAR clause of module

vertical guidance. Thereby, global variables pitch.mode, vs.mode, and vga.mode are created as part

of the state vector of our SMV model. All actual parameters of each simple guidance module can be

speci�ed as Boolean terms on the input parameters of module vertical guidance, which are essentially

environment events triggering an action regarding the vertical aircraft axis. Note that the Boolean functions

pitch event, vs event, and vga event used in theMur� description are encoded here in the DEFINE clause of

vertical guidance. Our modeling of vertical guidance is self-explanatory and visualizes the di�erences

between the SMV and the Mur� languages. While in Mur� each synchronous step of the ight guidance

system can be modeled by a sequential algorithm, it must be described in SMV by parallel assignments.

Table 4.3

Speci�cation of some mode confusion properties in SMV

DEFINE mode_change := !(vertical.pitch.mode = cleared <-> AX vertical.pitch.mode = cleared) |

!(vertical.pitch.mode = active <-> AX vertical.pitch.mode = active ) | ...

-- check for response to pressing VS button

SPEC AG (vertical.vs.mode=cleared & env_ev=vs_switch_hit -> AX vertical.vs.mode=active)

SPEC AG (vertical.vs.mode=active & env_ev=vs_switch_hit -> AX vertical.vs.mode=cleared)

-- search for ignored crew inputs (property violated)

SPEC AG (crew_input -> mode_change)

-- no unknown ignored crew inputs

SPEC AG (crew_input & !ignored_crew_input -> mode_change)

-- search for indirect mode changes (property violated)

SPEC AG (!crew_input -> !mode_change)

-- no unknown indirect mode changes

SPEC AG ((!crew_input & !indirect_mode_change) -> !mode_change)

In SMV, properties are speci�ed in the temporal logic Computational Tree Logic (CTL) [6, 8]. Fairness

constraints may also be imposed on SMV models but are not needed for our purposes since we are strictly

interested in invariants related to aspects of mode confusion. In SMV, temporal properties are introduced

within the same �le as the system description by the keyword SPEC. We do not need to introduce CTL

formally here, as we use only a very limited sublanguage of it. All of our properties are of the form

AG�, where AG stands for \always generally," i.e., every state on every path through the system satis�es

property �. The formula AX� expresses that all successor states of the current state satisfy formula �.

In this light, the �rst formula in Table 4.3, related to checking the response to pressing the VS button,

states: \every reachable state in the underlying Kripke structure of the model satis�es that, if mode VS

in vertical guidance is currently cleared and event vs switch hit enters the system, then mode VS

in vertical guidance is active in every successor state of the current state." Note that the symbols

-> and <-> used in Table 4.3 stand for logical implication and equivalence, respectively. The identi�ers

mode change, crew input, indirect mode change, and ignored crew input are abbreviations of Boolean

expressions de�ned in a DEFINE clause, as exemplarily shown for mode confusion. The presence of operator

AX in CTL remedies the need to keep track of old values of mode variables. Thereby, the size of the associated

state vector of the SMV model is cut in half when compared to the Mur� model. Moreover, a fully orthogonal

treatment of model and property speci�cations is achieved. The SMV system veri�ed about thirty assertions
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in slightly more than half a second using 438 BDD nodes and allocated less than 1 MByte memory on a

SUN SPARCstation 20. The two properties \search for ignored crew inputs" and \search for indirect mode

changes" were invalidated as in the Mur� model. The returned error traces { reporting the assignments of

each variable and each identi�er declared in a DEFINE clause in every state of the traces { are of help in

identifying potential problems with the model. SMV also includes an interactive mode which provides a very

simple assistant for interactive debugging. The state space of the SMV model consists of 3 388 states, which

corresponds to the 242 states of the Mur� model since the actual environment event { out of 14 possible

events { must be stored in a variable in SMV (\242 � 14 = 3 388").

Summarizing, SMV performed very well on our example and showed the suitability of symbolic model

checking to the ight guidance system. In fact, the mode logic's behavior can be described by Boolean terms

and, thus, represented e�ciently using BDDs. CTL turned out to be an excellent language for specifying

mode confusion properties due to the presence of next-state operator AX. SMV's modeling language has

the feel of a hardware description language and is not as high level as Mur�'s language. However, SMV's

module concept allowed us to model the architecture, but not the functionality, of the ight guidance system

one-to-one to the original PVS speci�cation [22].

5. Modeling the Mode Logic in Spin. Last, but not least, we explore the utility of the veri�cation

tool Spin [15, 16, 30], which was developed by Gerard Holzmann at Bell Labs, for our case study. Spin

is designed for analyzing the logical consistency of concurrent systems. It is especially targeted towards

modeling and reasoning about distributed systems, such as communication protocols, where several concur-

rent processes exchange messages by communicating synchronously via handshaking or asynchronously via

bu�ered channels. The description language of Spin, called Promela, allows one to specify nondeterministic

processes, message channels, and variables in a C-like syntax. Given a system description in Promela, whose

semantics is again de�ned as a Kripke structure, Spin can { in contrast to Mur� and SMV { perform random

or interactive simulations of the system's execution. Similar to Mur�, it can generate a special-purpose

veri�er, i.e., a C-program, which performs an exhaustive exploration of the system's state space. Such a

state exploration may { among other things { check for deadlocks and unreachable code, validate invariants,

and verify properties speci�ed in a linear-time logic [8, 11]. Linear-time logic is not as expressive as the

branching-time logic fairCTL employed in SMV. However, it is rich enough to specify all properties of inter-

est in this paper. Spin's veri�er was implemented having memory e�ciency in mind, e.g., it includes optional

partial-order techniques [12] and bitstate hashing [17].

Table 5.1

Speci�cation of the main process init in Spin

init{ env_ev=null;

do

:: atomic{if /* loop body encodes 1 synchronous step */

:: env_ev=vs_switch_hit /* nondeterministic choice of env. event */

:: ... /* 13 more cases, one for each env. event */

fi;

fgs(env_ev); /* perform synchronous step */

env_ev=null } /* env. event is no longer needed */

od }
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Since our ight guidance system is a synchronous system, it falls out of the intended scope of Spin.

Nevertheless, we show that Spin allows us to successfully carry out our case study. The Promela fragment

depicted in Table 5.1 encodes our synchronous model using a single process, namely Spin's main process

init. Here, the global variable env ev is of type mtype, which contains an enumeration of all event and

signal names that may occur in the mode logic. Promela's type system supports basic data types (such

as bit, bool, and byte), as well as arrays, structures (i.e., records), and channels. Unfortunately, it only

allows a single declaration of an enumeration type, which must be named mtype. The statement atomic

in init attempts to execute all statements in its body in one indivisible step. Especially, it does not store

intermediate states which might arise during the execution of the body. Thus, we may use this construct for

encoding our complex algorithm { see procedure fgs of the Mur� model in Section 3 { performing a single

synchronous step. The repetition statement do together with the nested nondeterministic-choice statement

if nondeterministically chooses which environment event to assign to variable env ev. Since env ev is

no longer needed outside of fgs it is reset to dummy value null and, thus, does not contribute to the

observable state space. The reason that we have not simply spelled out fgs(vs switch hit), and so on

for each environment variable, is that { as we argue below { fgs needs to be implemented as an inline.

Expanding this long inline fourteen times turns out to be ine�cient.

Table 5.2

Speci�cation of module simple guidance in Spin

inline simple_guidance(mode, event, signal)

{ if :: mode==cleared -> if :: event==activate -> signal=activated; mode=active

:: event==deactivate -> signal=null

:: event==switch -> signal=activated; mode=active

:: event==clear -> signal=null

fi

:: mode==active -> if :: event==activate -> signal=null

:: event==deactivate -> signal=null; mode=cleared

:: event==switch -> signal=deactivated; mode=cleared

:: event==clear -> signal=deactivated; mode=cleared

fi

fi }

Promela does not possess any kind of procedure construct other than the process declaration proctype.

However, we may not introduce additional processes to the main process init, since then our model would

not reect a synchronous system any more. The only construct of Promela, which we can use for resembling

the architecture of the ight guidance system, is the inline construct which may take (call-by-reference) pa-

rameters, such as the parameters mode, event, and signal for component simple guidance (cf. Table 5.2).

When compiling a Promela description, each occurrence of simple guidance in vertical guidance is re-

placed with its body. The modes instantiating the parameter mode are global variables of type bit, where

cleared and active are de�ned to represent the constants 0 and 1, respectively, using the preprocessor

command #define. The events and signals clear, activate, deactivate, switch, null, activated, and

deactivated are of type mtype. The body of simple guidance contains the Promela statement if. Its

behavior is de�ned by a nondeterministic selection of one of its executable options, which are separated

by double colons, and by executing it. In our case, each option consists of a guarded expression, which is
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executable if the expression on the left of -> evaluates to true in the current system state under consider-

ation, and returns the result of evaluating the expression on the right hand side. As in the programming

language C, the symbols == and = stand for the equality operator and the assignment operator, respectively.

Using the Promela description of simple guidance, we can specify component vertical guidance as an-

other inline parameterized by environment event env ev (cf. Table 5.3). The body of vertical guidance

is self-explanatory and similar to the one of Mur�. It should only be noted that guard else is always

executable and that expression skip leaves the current system state unchanged. Moreover, the Boolean

functions pitch event, vs event, and vga event are spelled out as inlines here.

Table 5.3

Speci�cation of module vertical guidance in Spin

bit pitch_mode=cleared; bit vs_mode=cleared; bit vga_mode=cleared;

inline pitch_event(env_ev) { env_ev==vs_pitch_wheel_changed }

inline vs_event(env_ev) { env_ev==vs_switch_hit }

inline vga_event(env_ev) { env_ev==ga_switch_hit || env_ev==ap_engaged_event || ... }

inline vertical_guidance(env_ev)

{ if :: pitch_event(env_ev) ->

simple_guidance(activate, pitch_mode, pitch_signal);

if :: pitch_signal==activated -> simple_guidance(deactivate, vs_mode, vs_signal);

simple_guidance(deactivate, vga_mode, vga_signal)

:: else -> skip

fi

:: vs_event(env_ev) ->

simple_guidance(switch, vs_mode, vs_signal);

if :: vs_signal==activated -> simple_guidance(deactivate, pitch_mode, pitch_signal);

simple_guidance(deactivate, vga_mode, vga_signal)

:: vs_signal==deactivated -> simple_guidance( activate, pitch_mode, pitch_signal)

:: else -> skip

fi

:: vga_event(env_ev) ->

if :: env_ev==ga_switch_hit -> simple_guidance(switch, vga_mode, vga_signal)

:: else -> simple_guidance( clear, vga_mode, vga_signal)

fi;

if :: vga_signal==activated -> simple_guidance(deactivate, pitch_mode, pitch_signal);

simple_guidance(deactivate, vs_mode, vs_signal)

:: vga_signal==deactivated -> simple_guidance( activate, pitch_mode, pitch_signal)

:: else -> skip

fi

:: else -> skip

fi }

The veri�cation technique we employed in Spin for reasoning about the ight guidance system, namely

assertions, is similar to the one we used inMur�. More precisely, Promela's assertion statement assert aborts

the state exploration conducted by Spin's veri�er whenever its argument expression evaluates to false in some

system state associated with the assertion statement. Our speci�cation of the mode confusion properties are
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Table 5.4

Speci�cation of some mode confusion properties in Spin

bit old_pitch_mode=cleared; bit old_vs_mode=cleared; bit old_vga_mode=cleared;

/* check for response to pressing VS button */

assert(!(old_vs_mode==cleared) || (vs_mode==active));

assert(!(old_vs_mode==active ) || (vs_mode==cleared));

/* search for ignored crew inputs (property violated) */

assert(!(crew_input) || mode_change);

/* no unknown ignored crew inputs */

assert(!(crew_input && !(ignored_crew_input)) || mode_change);

/* search for indirect mode changes (property violated) */

assert(!(!(crew_input)) || !(mode_change));

/* no unknown indirect mode changes */

assert(!(!(crew_input) && !(indirect_mode_change)) || !(mode_change));

/* save the current mode values */

old_pitch_mode=pitch_mode; old_vs_mode=vs_mode; old_vga_mode=vga_mode;

depicted in Table 5.4, where `!', `&&', and `||' stand for the logical connectives not, and, and or, respectively.

Moreover, the symbols /* and */ denote the begin and end of comments. In our speci�cation, crew input,

mode change, ignored crew input, and indirect mode change, which are de�ned as Boolean functions in

Mur�, are simply introduced via #defines. In order to encode expression mode change, we have to keep { as

in the Mur� model { a copy of the `old' values of all global variables of interest. Stating the mode confusion

properties in Spin's linear-time logic would not have any advantages over using assertions. The reason is

that Spin's version of linear-time logic does not include the next-state operator, as we used for specifying

these properties in SMV. This is because many veri�cation methods employed in Spin, such as partial order

techniques, have essentially no bene�cial e�ects when the next-state operator is present. The veri�cation

results returned by the Spin veri�er are similar to the ones for Mur�. The Spin model of the ight guidance

system also possesses 242 states and 3 388 transitions (+ 1 \dummy" transition). Unfortunately, Spin crashes

and core dumps when analyzing the invalid assertions search for ignored crew inputs and search for indirect

mode changes. However, it still writes an error trace which can be fed into Spin's simulator. No other violated

assertions were detected during the exhaustive state-space search which took under 2 seconds and required

about 2.6 MBytes memory on a SUN SPARCstation 20. It should be pointed out that a previous e�ort by a

NASA contractor to analyze a variant of the ight guidance system using Spin was unsuccessful because of

an intractably large state space [24]. Unfortunately, from the report it is not clear what the exact causes are.

We suspect that the manner in which the model was constructed is one of the main causes of the intractable

state space, which was then checked for invariant properties using Spin's bitstate hashing algorithm [17].

Summarizing, the modeling and veri�cation of our ight guidance system was feasible in Spin but less

elegant than in Mur�. This is mainly because of the lack of procedure and function constructs in Promela,

which had to be encoded using inlines and #defines. However, our criticism is quali�ed by the fact that

Spin is actually not intended for modeling and reasoning about synchronous systems. If one is interested in

asynchronous, concurrent systems, Spin provides the process declaration proctype as a means for encapsu-

lating system components. We would like to see a richer type system in Spin, which can handle more than
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one mtype de�nition. Type checking is a powerful tool for detecting inconsistencies and saves us a lot of

time compared to checking speci�cations by hand. Also, we wish for the next-state operator to be included

in Spin's linear-time logic. Similar to our comments for Mur� we remark that this would cut the size of

the state vector and Spin's memory requirements approximately in half. Especially useful to us were Spin's

capabilities to simulate Promela models and to feed back error traces { illustrating the cause of an assertion's

invalidity { into the simulator. Simulations helped us to identify the causes of ignored crew inputs and

indirect mode changes in a very time-e�cient manner. Beside the feature of monitoring variables, we found

it useful that Spin highlights the part of the Promela description corresponding to the system state under

investigation. The absence of rich simulation capabilities in Mur� and SMV makes Spin the tool of choice

for discovering design aws interactively. Finally, Spin's nice graphical user interface, referred to as Xspin,

distinguishes Spin from other veri�cation tools.

6. Discussion and Related Work. In this section we discuss the most important strengths and

weaknesses of each of the veri�cation tools Mur�, SMV, and Spin regarding our case study. We structure

our discussion by separating the issues related to the tools' (i) system description languages, (ii) property

description languages, and (iii) capabilities for system simulation and for animating diagnostic information.

The system description languages of all three veri�cation tools allow us to model the deterministic,

synchronous behavior of the ight guidance system, as well as the nondeterministic behavior of the system's

environment. Especially, Mur�'s system description language proved to be very useful for the following

reasons. First, Mur� implements numerous language constructs and a rich type system, as found in many

standard high-level imperative programming languages, such as Pascal. Second, it supports a modular

programming style via parameterized procedures and functions. Third, it allows us to adapt the existing PVS

speci�cation of the mode logic in a straightforward manner [22]. One major di�erence between the languages

is thatMur� and Spin allow model encoding using a sequential algorithm, whereas SMV requires an algorithm

description by parallel assignments. As a consequence, SMV has the feel of a low-level or hardware description

language. However, SMV's module concept is slightly more elegant than Mur�'s procedure concept for our

application, since mode variables can be declared within the module to which they belong and need not

be declared outside. Regarding Spin's system description language Promela, one notices that it is actually

designed to specify asynchronous systems, especially communication protocols. This is evident by the fact

that it only o�ers the process declaration construct proctype for encapsulating code fragments. By using

inline declarations we were able to circumvent this problem for our purposes. Finally, we want to mention

one desired feature that the system description languages of all three tools are missing, namely the ability to

organize the events of the ight guidance system in a taxonomy, e.g., by including subtyping in the description

languages. The presence of such a concept would help us to naturally divide all events into lateral-mode and

vertical-mode events, and further into Pitch events, HDG events, etc. This taxonomy was encoded in Mur�

and SMV using functions and in Spin using inlines.

Regarding the second issue concerning the property description languages of the three veri�cation tools,

we also identi�ed several important di�erences. We �rst note that all of the mandatory and mode confusion

properties of interest to us are invariants. Therefore, they can be stated as assertions and veri�ed in

reachability analysis tools, such as Mur�, as well as more general model-checking tools, such as SMV and

Spin. When specifying mode confusion properties, SMV's adaptation of the temporal logic CTL is most

convenient, not because of its expressiveness which we hardly use, but since it allows one to implicitly refer

to adjacent states in program paths using the `next-state' operator AX. This is important for describing
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property mode change which requires one to access the mode variables of adjacent states. In contrast to

Mur� and Spin, the encoding of mode confusion properties in SMV does not require the storage of old

values of mode variables. Thereby, the size of the associated state vector is cut in half. Unfortunately,

the `next-state' operator is left out in Spin's version of linear-time logic. Therefore, we could employ Spin

only as an assertion checker, similar to Mur�. In addition to its suitable property description language,

SMV's BDD-based model checker performed very well in our case study. Its high e�ciency is due to the

fact that mode logics have the characteristics of Boolean terms which can be represented in a very compact

way using BDDs. However, the small state space of our example system precludes us from fairly comparing

the run times of the Mur�, SMV, and Spin veri�ers. Finally, we remark again that Mur� and Spin compile

system and property descriptions into C++ and C-code, respectively, which may be considered as building

special-purpose veri�ers. This compilation process, however, is considerably slower than SMV's interpreter.

Regarding the third issue, only Spin provides rich features related to system simulation and to animation

of diagnostic information. System simulation is especially useful when being combined with diagnostic

information. Each tool returns an error trace whenever a desired system property is invalidated in the

model under consideration. More precisely, Mur� and SMV output a textual description of an error trace,

which displays the global variables' assignments at all states of this trace, and allow for textual, interactive

simulations. Spin, however, is able to animate error traces using message sequence charts, time sequence

panels, and data value panels which are integrated in its nice graphical user interface, known as Xspin.

In our case study dealing with a synchronous, single-process system, only the data value panel was of

use. However, this feature, together with the ability to highlight the source code line corresponding to the

current state in the simulation, enabled us to detect sources of mode confusion in a very time-e�cient manner

compared to SMV and Mur�, and especially when compared to the studies of failed proof subgoals in PVS.

Finally, related work other than the PVS case study regarding the ight guidance system [5] should be

mentioned. The CoRE [9] and SCR [14] speci�cations of the ight guidance system [20, 21] were intended for

illustrating the utility of the methods for specifying new generations of systems in a more rigorous, consistent,

and structured way. Especially, they should replace the traditional custom of specifying such systems in plain

English. In contrast to this paper, the SCR and CoRE speci�cations were not subject to any automated

analysis tools, although some tool support for them exists [14]. The well-known Z speci�cation standard [31]

was applied to the ight guidance system in order to formally express concepts that appear rather informally

in CoRE [10], such as the semantics of continuous variables. Recently, tools supporting the analysis of Z

speci�cations emerged, e.g., Z/EVES [27] which interfaces Z to the theorem prover EVES. This tool was

applied to the Z speci�cation of the ight guidance system for validating some of the mandatory properties

mentioned also in this paper, as well as for proving disjointness and completeness of table entries and for

determinism checks. The gained experiences with Z/EVES are very similar to the ones made with PVS [25].

ObjecTime [28] is an environment for testing and simulation and was used as the driving engine of a partial

ight deck visualization of the ight guidance system's behavior [22].

7. Conclusions and Future Work. This paper advocates the use of state-exploration and model-

checking techniques for analyzing ight guidance systems with respect to causes of mode confusion. Com-

pared to theorem provers, model-checking tools are able to verify invariants automatically. When weighting

the strengths of the veri�cation tools Mur�, SMV, and Spin with respect to our application, it turned out

that these are complementary. Mur� has the most pleasant system description language, including a rich

type system and allows for high-level speci�cations. SMV's adaptation of the temporal logic CTL as property

16



description language supports the convenient speci�cation of mode confusion properties. Spin's capability of

animating diagnostic information, which is returned from unsuccessful veri�cation attempts, is very useful.

We hope that our experiences might give tool developers some useful ideas for combining the strengths of

Mur�, SMV, and Spin in a single tool.

Regarding future work, our case study should be extended to include more components of today's digital

ight decks and to explore other interesting properties related to mode confusion. Also, the integration of

veri�cation tools with state-of-the-art speci�cation languages, such as UML [28], must be a primary goal in

order to make formal veri�cation techniques accessible to engineers in industry or at applied research labs.

We thank Ricky Butler and Steve Miller for many enlightening discussions about mode confusion, as

well as Ben Di Vito, Michael Mendler, and C�esar Mu~noz for carefully proofreading a draft of this paper.
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Appendix A. Speci�cation and Veri�cation Using Mur�.

A.1. Full Model of the Mode Logic.

TYPE env_events : ENUM { hdg_switch_hit, nav_switch_hit,

nav_armed_long_enough_event, nav_track_cond_met_event,

ga_switch_hit, vs_pitch_wheel_changed,

vs_switch_hit, fd_switch_hit,

overspeed_start, overspeed_stop,

ap_engaged_event, ap_disengaged_event,

sync_switch_pressed, sync_switch_released

};

TYPE sg_mode : ENUM { sg_cleared, sg_active };

TYPE sg_signals : ENUM { sg_null, sg_activated, sg_deactivated };

TYPE sg_events : ENUM { sg_nil, sg_activate, sg_deactivate, sg_switch, sg_clear };

TYPE ag_mode : ENUM { ag_cleared, ag_track, ag_armed_initial, ag_armed_long_enough };

TYPE ag_signals : ENUM { ag_null, ag_activated, ag_deactivated };

TYPE ag_events : ENUM { ag_nil, ag_activate, ag_deactivate, ag_switch, ag_clear,

ag_armed_long_enough_ev, ag_track_cond_met };

TYPE fd_mode : ENUM { fd_off, fd_cues, fd_no_cues };

TYPE fd_signals : ENUM { fd_null, fd_turned_on, fd_turned_off };

TYPE fd_events : ENUM { fd_nil, fd_force_cues, fd_turn_on, fd_switch, fd_turn_off };

TYPE ag_state : RECORD mode : ag_mode; track_cond_met : boolean; END;

-- variables controled by the environment ----------------------------------------------------

VAR overspeed : boolean; ap_engaged : boolean;

-- mode variables ----------------------------------------------------------------------------

VAR pitch, old_pitch : sg_mode; vs, old_vs : sg_mode; vga, old_vga : sg_mode;

roll, old_roll : sg_mode; hdg, old_hdg : sg_mode; lga, old_lga : sg_mode;

nav, old_nav : ag_state; fd, old_fd : fd_mode;

-- auxiliary functions, building a taxonomy on events ----------------------------------------

FUNCTION hdg_event(env_ev:env_events) : boolean;

BEGIN

IF env_ev=hdg_switch_hit

THEN RETURN true;

ELSE RETURN false;

END;

END;
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FUNCTION nav_event(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=nav_switch_hit) | (env_ev=nav_armed_long_enough_event) |

(env_ev=nav_track_cond_met_event)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION lga_event(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=ga_switch_hit) | (env_ev=ap_engaged_event) | (env_ev=sync_switch_pressed)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION pitch_event(env_ev:env_events) : boolean;

BEGIN

IF env_ev=vs_pitch_wheel_changed

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION vs_event(env_ev:env_events) : boolean;

BEGIN

IF env_ev=vs_switch_hit

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION vga_event(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=ga_switch_hit) | (env_ev=ap_engaged_event) | (env_ev=sync_switch_pressed)

THEN RETURN true;

ELSE RETURN false;

END;

END;
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FUNCTION lateral_mode_requested(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=hdg_switch_hit) | (env_ev=nav_switch_hit) | (env_ev=ga_switch_hit)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION vertical_mode_requested(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=vs_switch_hit) | (env_ev=ga_switch_hit)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION flight_director_event(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=ap_engaged_event) | (env_ev=fd_switch_hit) | (env_ev=overspeed_start) |

lateral_mode_requested(env_ev) | vertical_mode_requested(env_ev)

THEN RETURN true;

ELSE RETURN false;

END;

END;

-- abstract data type module simple guidance -------------------------------------------------

PROCEDURE simple_guidance(VAR mode:sg_mode; event:sg_events; VAR signal:sg_signals);

BEGIN

IF mode=sg_cleared THEN

SWITCH event

CASE sg_nil : signal := sg_null;

CASE sg_activate : mode := sg_active; signal := sg_activated;

CASE sg_deactivate : signal := sg_null;

CASE sg_switch : mode := sg_active; signal := sg_activated;

CASE sg_clear : signal := sg_null;

END;

ELSE

SWITCH event

CASE sg_nil : signal := sg_null;

CASE sg_activate : signal := sg_null;

CASE sg_deactivate : mode := sg_cleared; signal := sg_null;

CASE sg_switch : mode := sg_cleared; signal := sg_deactivated;

CASE sg_clear : mode := sg_cleared; signal := sg_deactivated;

END;

END;

END;

21



-- abstract data object module arming guidance -----------------------------------------------

PROCEDURE arming_guidance(event:ag_events; VAR signal:ag_signals);

BEGIN

IF nav.mode=ag_cleared THEN

SWITCH event

CASE ag_nil : signal := ag_null;

CASE ag_activate : nav.mode := ag_armed_initial; signal := ag_activated;

CASE ag_deactivate : signal := ag_null;

CASE ag_switch : nav.mode := ag_armed_initial; signal := ag_activated;

CASE ag_clear : signal := ag_null;

CASE ag_armed_long_enough_ev : signal := ag_null;

CASE ag_track_cond_met : nav.track_cond_met := true; signal := ag_null;

END;

ELSE

SWITCH event

CASE ag_nil : signal := ag_null;

CASE ag_activate : signal := ag_null;

CASE ag_deactivate : nav.mode := ag_cleared; signal := ag_null;

CASE ag_switch : nav.mode := ag_cleared; signal := ag_deactivated;

CASE ag_clear : nav.mode := ag_cleared; signal := ag_deactivated;

CASE ag_armed_long_enough_ev : IF (nav.mode=ag_armed_initial) & nav.track_cond_met

THEN

nav.mode := ag_track; signal := ag_null;

ELSIF (nav.mode=ag_armed_initial) & !nav.track_cond_met

THEN

nav.mode := ag_armed_long_enough; signal := ag_null;

ELSE

signal := ag_null;

END;

CASE ag_track_cond_met : IF nav.mode=ag_armed_long_enough THEN

nav.mode := ag_track; signal := ag_null;

nav.track_cond_met := true;

ELSE

nav.track_cond_met := true; signal := ag_null;

END;

END; END; END;

-- function module lateral guidance & auxiliary functions ------------------------------------

FUNCTION hdg_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE hdg_switch_hit : RETURN sg_switch;

ELSE RETURN sg_nil;

END;

END;
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FUNCTION nav_conv(env_ev:env_events) : ag_events;

BEGIN

SWITCH env_ev

CASE nav_switch_hit : RETURN ag_switch;

CASE nav_track_cond_met_event : RETURN ag_track_cond_met;

CASE nav_armed_long_enough_event : RETURN ag_armed_long_enough_ev;

ELSE RETURN ag_nil;

END;

END;

FUNCTION lga_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE ga_switch_hit : RETURN sg_activate;

CASE ap_engaged_event : RETURN sg_clear;

CASE sync_switch_pressed : RETURN sg_clear;

ELSE RETURN sg_nil;

END;

END;

PROCEDURE lateral_guidance(env_ev:env_events);

VAR roll_sig, hdg_sig, lga_sig : sg_signals; nav_sig : ag_signals;

BEGIN CLEAR roll_sig; CLEAR hdg_sig; CLEAR lga_sig; CLEAR nav_sig;

IF hdg_event(env_ev) THEN

simple_guidance(hdg, hdg_conv(env_ev), hdg_sig);

IF hdg_sig=sg_activated THEN simple_guidance(roll, sg_deactivate, roll_sig);

simple_guidance(lga, sg_deactivate, lga_sig );

arming_guidance( ag_deactivate, nav_sig );

ELSIF hdg_sig=sg_deactivated THEN simple_guidance(roll, sg_activate, roll_sig );

END;

ELSIF nav_event(env_ev) THEN

arming_guidance( nav_conv(env_ev), nav_sig);

IF nav_sig=ag_activated THEN simple_guidance(roll, sg_deactivate, roll_sig);

simple_guidance(hdg, sg_deactivate, hdg_sig );

simple_guidance(lga, sg_deactivate, lga_sig );

ELSIF nav_sig=ag_deactivated THEN simple_guidance(roll, sg_activate, roll_sig );

END;

ELSIF lga_event(env_ev) THEN

simple_guidance(lga, lga_conv(env_ev), lga_sig);

IF lga_sig=sg_activated THEN simple_guidance(roll, sg_deactivate, roll_sig);

simple_guidance(hdg, sg_deactivate, hdg_sig );

arming_guidance( ag_deactivate, nav_sig );

ELSIF lga_sig=sg_deactivated THEN simple_guidance(roll, sg_activate, roll_sig );

END;

END;

END;
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-- function module vertical guidance & auxiliary functions------------------------------------

FUNCTION pitch_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE vs_pitch_wheel_changed : RETURN sg_activate;

ELSE RETURN sg_nil;

END; END;

FUNCTION vs_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE vs_switch_hit : RETURN sg_switch;

ELSE RETURN sg_nil;

END; END;

FUNCTION vga_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE ga_switch_hit : RETURN sg_switch;

CASE ap_engaged_event : RETURN sg_clear;

CASE sync_switch_pressed : RETURN sg_clear;

ELSE RETURN sg_nil;

END; END;

PROCEDURE vertical_guidance(env_ev:env_events);

VAR pitch_sig, vs_sig, vga_sig : sg_signals;

BEGIN CLEAR pitch_sig; CLEAR vs_sig; CLEAR vga_sig;

IF pitch_event(env_ev) THEN

simple_guidance(pitch, pitch_conv(env_ev), pitch_sig);

IF pitch_sig=sg_activated THEN simple_guidance(vs, sg_deactivate, vs_sig );

simple_guidance(vga, sg_deactivate, vga_sig );

END;

ELSIF vs_event(env_ev) THEN

simple_guidance(vs, vs_conv(env_ev), vs_sig);

IF vs_sig=sg_activated THEN simple_guidance(pitch, sg_deactivate, pitch_sig);

simple_guidance(vga, sg_deactivate, vga_sig );

ELSIF vs_sig=sg_deactivated THEN simple_guidance(pitch, sg_activate, pitch_sig );

END;

ELSIF vga_event(env_ev) THEN

simple_guidance(vga, vga_conv(env_ev), vga_sig);

IF vga_sig=sg_activated THEN simple_guidance(pitch, sg_deactivate, pitch_sig);

simple_guidance(vs, sg_deactivate, vs_sig );

ELSIF vga_sig=sg_deactivated THEN simple_guidance(pitch, sg_activate, pitch_sig );

END;

END;

END;
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-- abstract data object module flight director ----------------------------------------------

PROCEDURE flight_director(event:fd_events; VAR signal:fd_signals);

BEGIN

IF event=fd_nil THEN

signal := fd_null;

ELSIF fd=fd_off THEN

SWITCH event

CASE fd_force_cues : fd := fd_cues; signal := fd_turned_on;

CASE fd_turn_on : fd := fd_cues; signal := fd_turned_on;

CASE fd_switch : fd := fd_cues; signal := fd_turned_on;

CASE fd_turn_off : signal := fd_null;

END;

ELSIF fd=fd_cues THEN

SWITCH event

CASE fd_force_cues : signal := fd_null;

CASE fd_turn_on : signal := fd_null;

CASE fd_switch : IF overspeed | ap_engaged THEN

fd := fd_no_cues; signal := fd_null;

ELSE

fd := fd_off; signal := fd_turned_off;

END;

CASE fd_turn_off : IF overspeed | ap_engaged THEN

fd := fd_no_cues; signal := fd_null;

ELSE

fd := fd_off; signal := fd_turned_off;

END;

END;

ELSE

SWITCH event

CASE fd_force_cues : fd := fd_cues; signal := fd_null;

CASE fd_turn_on : fd := fd_cues; signal := fd_null;

CASE fd_switch : IF overspeed | ap_engaged THEN

fd := fd_cues; signal := fd_null;

ELSE

fd := fd_off; signal := fd_turned_off;

END;

CASE fd_turn_off : IF overspeed | ap_engaged THEN

signal := fd_null;

ELSE

fd := fd_off; signal := fd_turned_off;

END;

END;

END;

END;
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-- mode confusion properties as assertions & auxiliary functions -----------------------------

FUNCTION crew_input(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=ap_engaged_event) | (env_ev=sync_switch_pressed) |

(env_ev=sync_switch_released) | (env_ev=fd_switch_hit) |

lateral_mode_requested(env_ev) | vertical_mode_requested(env_ev) |

(env_ev=vs_pitch_wheel_changed)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION ignored_crew_input(env_ev:env_events) : boolean;

BEGIN

IF ((env_ev=ap_engaged_event) &

!((old_lga=sg_active) | (old_vga=sg_active))) |

-- ((env_ev=ga_switch_hit) & -- PVS model too strong

-- (old_lga=sg_active) & (old_vga=sg_active)) | -- (may be left out)

((env_ev=sync_switch_pressed) &

!((old_lga=sg_active) | (old_vga=sg_active))) |

-- ((env_ev=sync_switch_pressed) & -- PVS model too strong

-- (old_fd=fd_off)) | -- (may be left out)

(env_ev=sync_switch_released) |

((env_ev=vs_pitch_wheel_changed) &

(old_fd=fd_off)) |

((env_ev=vs_pitch_wheel_changed) &

(old_pitch=sg_active))

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION indirect_mode_change(env_ev:env_events) : boolean;

BEGIN

IF ((env_ev=overspeed_start) & !(old_fd=fd_cues)) |

((env_ev=nav_armed_long_enough_event) & (old_nav.mode=ag_armed_initial )) |

((env_ev=nav_track_cond_met_event) & (old_nav.mode=ag_armed_long_enough))

THEN RETURN true;

ELSE RETURN false;

END;

END;
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PROCEDURE mode_confusion_properties(env_ev:env_events);

BEGIN

ALIAS

mode_change : fd != old_fd | pitch != old_pitch | vs != old_vs | vga != old_vga |

roll != old_roll | hdg != old_hdg | lga != old_lga |

nav.mode != old_nav.mode;

DO

SWITCH env_ev

CASE hdg_switch_hit :

-- check for response to pressing HDG button

assert (old_hdg=sg_cleared -> hdg =sg_active) "hdg_selected and hdg_toggle_1";

assert (old_hdg=sg_active -> roll=sg_active) "hdg_deselected";

assert (old_hdg=sg_active -> hdg=sg_cleared) "hdg_toggle_2";

CASE nav_switch_hit :

-- check for response to pressing NAV button

assert (old_nav.mode=ag_cleared -> (nav.mode=ag_armed_initial) |

(nav.mode=ag_armed_long_enough) | (nav.mode=ag_track))

"nav_selected and nav_toggle_1";

assert (((old_nav.mode=ag_armed_initial) | (old_nav.mode=ag_armed_long_enough) |

(old_nav.mode=ag_track)) -> roll=sg_active) "nav_deselected";

assert (((old_nav.mode=ag_armed_initial) | (old_nav.mode=ag_armed_long_enough) |

(old_nav.mode=ag_track)) -> nav.mode=ag_cleared) "nav_toggle_2";

CASE vs_switch_hit :

-- check for response to pressing VS button

assert (old_vs=sg_cleared -> vs =sg_active) "vs_selected and vs_toggle_1";

assert (old_vs=sg_active -> pitch=sg_active) "vs_deselected";

assert (old_vs=sg_active -> vs =sg_cleared) "vs_toggle_2";

CASE fd_switch_hit :

-- check for response to pressing the FD button

assert (old_fd=fd_off -> fd=fd_cues)

"fd_off";

assert ((!(old_fd=fd_off) & !(ap_engaged | overspeed)) -> fd=fd_off) "fd_on";

assert (((old_fd=fd_cues) & (ap_engaged | overspeed)) -> fd=fd_no_cues) "fd_cues";

assert (((old_fd=fd_no_cues) & (ap_engaged | overspeed)) -> fd=fd_cues) "fd_no_cues";

END;

-- search for ignored crew inputs

-- assert (crew_input(env_ev) -> mode_change) "search_for_ignored_crew_inputs";

-- property violated

-- no unknown ignored crew inputs

assert ((crew_input(env_ev) & !(ignored_crew_input(env_ev))) -> mode_change)

"no_unknown_ignored_crew_inputs";
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-- search for indirect mode changes

-- assert (!(crew_input(env_ev)) -> !mode_change) "search_for_indirect_mode_changes";

-- property violated

-- no unknown indirect mode changes

assert ((!(crew_input(env_ev)) & !(indirect_mode_change(env_ev))) -> !mode_change)

"no_unknown_indirect_mode_changes";

END;

-- update old state variables

old_pitch := pitch; old_vs := vs; old_vga := vga; old_roll := roll;

old_hdg := hdg; old_lga := lga; old_fd := fd; old_nav := nav;

END;

----------------------------------------------------------------------------------------------

PROCEDURE clear_all_modes();

BEGIN

pitch := sg_cleared; vs := sg_cleared; vga := sg_cleared; roll := sg_cleared;

hdg := sg_cleared; lga := sg_cleared; nav.mode := ag_cleared;

END;

PROCEDURE select_default_mode();

BEGIN

pitch := sg_active; roll := sg_active;

END;

PROCEDURE process_external_event(env_ev:env_events);

BEGIN

SWITCH env_ev

CASE ap_engaged_event : ap_engaged := true;

CASE ap_disengaged_event : ap_engaged := false;

CASE overspeed_start : overspeed := true;

CASE overspeed_stop : overspeed := false;

END;

END;

FUNCTION fd_event(env_ev:env_events) : fd_events;

BEGIN

IF env_ev=ap_engaged_event THEN RETURN fd_turn_on;

ELSIF lateral_mode_requested(env_ev) THEN RETURN fd_turn_on;

ELSIF vertical_mode_requested(env_ev) THEN RETURN fd_turn_on;

ELSIF env_ev=fd_switch_hit THEN RETURN fd_switch;

ELSIF env_ev=overspeed_start THEN RETURN fd_force_cues;

ELSE RETURN fd_nil;

END;

END;
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PROCEDURE process_fd_event(env_ev:env_events);

VAR fd_sig : fd_signals;

BEGIN

IF flight_director_event(env_ev) THEN

flight_director(fd_event(env_ev),fd_sig);

IF fd_sig=fd_turned_off THEN clear_all_modes();

ELSIF fd_sig=fd_turned_on THEN select_default_mode();

END;

END;

END;

PROCEDURE process_flight_mode_event(env_ev:env_events);

BEGIN

IF !(fd=fd_off) THEN lateral_guidance(env_ev); vertical_guidance(env_ev); END;

END;

PROCEDURE fgs(env_ev:env_events);

BEGIN

process_external_event(env_ev); process_fd_event(env_ev);

process_flight_mode_event(env_ev); mode_confusion_properties(env_ev);

END;

-- model of the environment using rules ------------------------------------------------------

RULE "hdg_switch_hit" BEGIN fgs(hdg_switch_hit); END;

RULE "nav_switch_hit" BEGIN fgs(nav_switch_hit); END;

RULE "nav_armed_long_enough_event" BEGIN fgs(nav_armed_long_enough_event); END;

RULE "nav_track_cond_met_event" BEGIN fgs(nav_track_cond_met_event); END;

RULE "ga_switch_hit" BEGIN fgs(ga_switch_hit); END;

RULE "vs_pitch_wheel_changed" BEGIN fgs(vs_pitch_wheel_changed); END;

RULE "vs_switch_hit" BEGIN fgs(vs_switch_hit); END;

RULE "fd_switch_hit" BEGIN fgs(fd_switch_hit); END;

RULE "overspeed_start" BEGIN fgs(overspeed_start); END;

RULE "overspeed_stop" BEGIN fgs(overspeed_stop); END;

RULE "ap_engaged_event" BEGIN fgs(ap_engaged_event); END;

RULE "ap_disengaged_event" BEGIN fgs(ap_disengaged_event); END;

RULE "sync_switch_pressed" BEGIN fgs(sync_switch_pressed); END;

RULE "sync_switch_released" BEGIN fgs(sync_switch_released); END;

-- start state -------------------------------------------------------------------------------

STARTSTATE

BEGIN

overspeed := false; ap_engaged := false;

CLEAR pitch; CLEAR vs; CLEAR vga; CLEAR roll; CLEAR hdg; CLEAR lga;
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CLEAR nav.mode; nav.track_cond_met := false; CLEAR fd;

CLEAR old_pitch; CLEAR old_vs; CLEAR old_vga; CLEAR old_roll; CLEAR old_hdg;

CLEAR old_lga; CLEAR old_nav.mode; old_nav.track_cond_met := false; CLEAR old_fd;

END;

-- mandatory properties as invariants --------------------------------------------------------

ALIAS

nav_active : (nav.mode=ag_armed_initial) | (nav.mode=ag_armed_long_enough) |

(nav.mode=ag_track);

DO

-- the flight director is on if the autopilot is engaged

INVARIANT "fd_on_if_ap_engaged"

ap_engaged -> !(fd=fd_off);

-- at least one lateral mode is active iff the flight director is on

INVARIANT "at_least_one_lateral_mode_active"

(!(fd=fd_off) -> (roll=sg_active | hdg=sg_active | lga=sg_active | nav_active)) &

((roll=sg_active | hdg=sg_active | lga=sg_active | nav_active ) -> !(fd=fd_off));

-- there is never more than one lateral mode active

INVARIANT "at_most_one_lateral_mode_active"

((lga=sg_active) -> (roll=sg_cleared & hdg=sg_cleared & nav.mode=ag_cleared)) &

((roll=sg_active) -> (lga =sg_cleared & hdg=sg_cleared & nav.mode=ag_cleared)) &

((hdg=sg_active) -> (roll=sg_cleared & lga=sg_cleared & nav.mode=ag_cleared)) &

(nav_active -> (roll=sg_cleared & hdg=sg_cleared & lga=sg_cleared));

-- at least one vertical mode is active iff the flight director is on

INVARIANT "at_least_one_vertical_mode_active"

(!(fd=fd_off) -> (vga=sg_active | vs=sg_active | pitch=sg_active)) &

((vga=sg_active | vs=sg_active | pitch=sg_active) -> !(fd=fd_off));

-- at most one vertical mode is active

INVARIANT "at_most_one_vertical_mode_active"

(vga =sg_active -> (pitch=sg_cleared & vs =sg_cleared)) &

(vs =sg_active -> (pitch=sg_cleared & vga=sg_cleared)) &

(pitch=sg_active -> (vga =sg_cleared & vs =sg_cleared));
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-- if the flight director is off, all modes must be cleared

INVARIANT "fd_off_implies_all_modes_cleared"

(fd=fd_off -> (pitch=sg_cleared & vs=sg_cleared & vga=sg_cleared &

roll =sg_cleared & hdg=sg_cleared & lga=sg_cleared & nav.mode=ag_cleared)

);

-- the default modes are active if the flight director is on and all other modes are cleared

INVARIANT "default_modes"

((!(fd=fd_off) & vs=sg_cleared & vga=sg_cleared & hdg=sg_cleared &

lga=sg_cleared & nav.mode=ag_cleared

) -> (pitch=sg_active & roll=sg_active));

END;

-- -------------------------------------------------------------------------------------------

A.2. Output of the Mur� veri�er.

This program should be regarded as a DEBUGGING aid, not as a

certifier of correctness.

Call with the -l flag or read the license file for terms

and conditions of use.

Run this program with "-h" for the list of options.

Bugs, questions, and comments should be directed to

"murphi@verify.stanford.edu".

Murphi compiler last modified date: Jan 29 1999

Include files last modified date: Jan 29 1999

==========================================================================

==========================================================================

Murphi Release 3.1

Finite-state Concurrent System Verifier.

Copyright (C) 1992 - 1999 by the Board of Trustees of

Leland Stanford Junior University.

==========================================================================

Protocol: fgs

Algorithm:

Verification by breadth first search.

with symmetry algorithm 3 -- Heuristic Small Memory Normalization

with permutation trial limit 10.
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Memory usage:

* The size of each state is 160 bits (rounded up to 20 bytes).

* The memory allocated for the hash table and state queue is

8 Mbytes.

With two words of overhead per state, the maximum size of

the state space is 327869 states.

* Use option "-k" or "-m" to increase this, if necessary.

* Capacity in queue for breadth-first search: 32786 states.

* Change the constant gPercentActiveStates in mu_prolog.inc

to increase this, if necessary.

Warning: No trace will not be printed in the case of protocol errors!

Check the options if you want to have error traces.

==========================================================================

Status:

No error found.

State Space Explored:

242 states, 3388 rules fired in 1.80s.

Rules Information:

Fired 242 times - Rule "sync_switch_released"

Fired 242 times - Rule "sync_switch_pressed"

Fired 242 times - Rule "ap_disengaged_event"

Fired 242 times - Rule "ap_engaged_event"

Fired 242 times - Rule "overspeed_stop"

Fired 242 times - Rule "overspeed_start"

Fired 242 times - Rule "fd_switch_hit"

Fired 242 times - Rule "vs_switch_hit"

Fired 242 times - Rule "vs_pitch_wheel_changed"

Fired 242 times - Rule "ga_switch_hit"

Fired 242 times - Rule "nav_track_cond_met_event"

Fired 242 times - Rule "nav_armed_long_enough_event"

Fired 242 times - Rule "nav_switch_hit"

Fired 242 times - Rule "hdg_switch_hit"
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Appendix B. Speci�cation and Veri�cation Using SMV.

B.1. Full Model of the Mode Logic.

MODULE simple_guidance(activate, deactivate, switch, clear, fd_is_on)

VAR

mode : {cleared, active};

ASSIGN

init(mode) := cleared;

next(mode) := case

!fd_is_on : mode;

deactivated | deactivate : cleared;

activated : active;

1 : mode;

esac;

DEFINE

activated := (mode=cleared) & (activate | switch);

deactivated := (mode=active ) & (clear | switch);

-- -------------------------------------------------------------------------------------------

MODULE arming_guidance(activate, deactivate, switch, clear, track_cond_met_event,

armed_long_enough_event, fd_is_on)

VAR

mode : {cleared, track, armed_initial, armed_long_enough};

track_cond_met : boolean;

ASSIGN

init(track_cond_met) := 0;

next(track_cond_met) := track_cond_met | track_cond_met_event;

init(mode) := cleared;

next(mode) := case

!fd_is_on : mode;

deactivated | deactivate : cleared;

(mode=armed_long_enough) & track_cond : track;

(mode=armed_initial) & track_cond &

armed_long_enough_event : track;

activated : armed_initial;

(mode=armed_initial) & !track_cond &

armed_long_enough_event : armed_long_enough;

1 : mode;

esac;
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DEFINE

track_cond := track_cond_met | track_cond_met_event;

mode_armed := (mode=armed_initial) | (mode=armed_long_enough);

mode_active := (mode_armed) | (mode=track);

activated := (mode=cleared) & (activate | switch);

deactivated := mode_active & (clear | switch);

-- -------------------------------------------------------------------------------------------

MODULE lateral_guidance(_hdg_switch_hit, _ga_switch_hit, _ap_engaged_event,

_sync_switch_pressed, _nav_switch_hit, _nav_armed_long_enough_event,

_nav_track_cond_met_event, clear, select_default, fd_is_on)

VAR

roll : simple_guidance(roll_activate, roll_deactivate,

roll_switch, roll_clear , fd_is_on);

hdg : simple_guidance(hdg_activate, hdg_deactivate,

hdg_switch, hdg_clear , fd_is_on);

ga : simple_guidance(ga_activate, ga_deactivate,

ga_switch, ga_clear , fd_is_on);

nav : arming_guidance(nav_activate, nav_deactivate,

nav_switch, nav_clear,

nav_track_cond_met, nav_armed_long_enough, fd_is_on);

DEFINE

roll_activate := (hdg_event & hdg.deactivated) | (nav_event & nav.deactivated) |

(lga_event & ga.deactivated ) | select_default;

roll_deactivate := (hdg_event & hdg.activated) | (nav_event & nav.activated) |

(lga_event & ga.activated );

roll_switch := 0;

roll_clear := (clear & !select_default);

hdg_activate := 0;

hdg_deactivate := (nav_event & nav.activated) | (lga_event & ga.activated );

hdg_switch := _hdg_switch_hit;

hdg_clear := clear;

ga_activate := _ga_switch_hit;

ga_deactivate := (hdg_event & hdg.activated) | (nav_event & nav.activated);

ga_switch := 0;

ga_clear := _ap_engaged_event | _sync_switch_pressed | clear;

nav_activate := 0;

nav_deactivate := (hdg_event & hdg.activated) | (lga_event & ga.activated );

nav_switch := _nav_switch_hit;
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nav_clear := hdg.activated | ga.activated | clear;

nav_track_cond_met := _nav_track_cond_met_event;

nav_armed_long_enough := _nav_armed_long_enough_event;

hdg_event := _hdg_switch_hit;

lga_event := _ga_switch_hit | _ap_engaged_event | _sync_switch_pressed;

nav_event := _nav_switch_hit | _nav_armed_long_enough_event |

_nav_track_cond_met_event;

-- -------------------------------------------------------------------------------------------

MODULE vertical_guidance(_vs_pitch_wheel_changed, _vs_switch_hit, _ga_switch_hit,

_ap_engaged_event, _sync_switch_pressed,

clear, select_default, fd_is_on)

VAR

pitch : simple_guidance(pitch_activate, pitch_deactivate,

pitch_switch, pitch_clear, fd_is_on);

vs : simple_guidance(vs_activate, vs_deactivate,

vs_switch, vs_clear, fd_is_on);

ga : simple_guidance(ga_activate, ga_deactivate,

ga_switch, ga_clear, fd_is_on);

DEFINE

pitch_activate := (vs_event & vs.deactivated) | (vga_event & ga.deactivated) |

_vs_pitch_wheel_changed |

select_default;

pitch_deactivate := (vs_event & vs.activated) | (vga_event & ga.activated);

pitch_switch := 0;

pitch_clear := (clear & !select_default);

vs_activate := 0;

vs_deactivate := (pitch_event & pitch.activated) | (vga_event & ga.activated );

vs_switch := _vs_switch_hit;

vs_clear := clear;

ga_activate := 0;

ga_deactivate := (pitch_event & pitch.activated) | (vs_event & vs.activated );

ga_switch := _ga_switch_hit;

ga_clear := _ap_engaged_event | _sync_switch_pressed | clear;

pitch_event := _vs_pitch_wheel_changed;

vs_event := _vs_switch_hit;

vga_event := _ga_switch_hit | _ap_engaged_event | _sync_switch_pressed;

-- -------------------------------------------------------------------------------------------
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MODULE flight_director(force_cues, turn_on, switch, turn_off,

_ap_engaged, _overspeed)

VAR

mode : {off, cues, no_cues};

ASSIGN

init(mode) := off;

next(mode) := case

turned_off : off;

turned_on : cues;

(mode=no_cues) &

(force_cues | turn_on | (switch & (_overspeed | _ap_engaged))) : cues;

(mode=cues) & switch & (_overspeed | _ap_engaged) : no_cues;

1 : mode;

esac;

DEFINE

mode_on := (mode=cues) | (mode=no_cues);

turned_on := (mode=off) & (turn_on | force_cues | switch);

turned_off := (mode_on) & (switch | turn_off) & !_overspeed & !_ap_engaged;

-- -------------------------------------------------------------------------------------------

MODULE main

VAR

env_ev : {hdg_switch_hit, nav_switch_hit,

nav_armed_long_enough_event, nav_track_cond_met_event,

ga_switch_hit, vs_pitch_wheel_changed,

vs_switch_hit, fd_switch_hit,

overspeed_start, overspeed_end,

ap_engaged_event, ap_disengaged_event,

sync_switch_pressed, sync_switch_released };

overspeed : boolean;

ap_engaged : boolean;

fd : flight_director(fd_force_cues, fd_turn_on, fd_switch,

fd_turn_off, fd_ap_engaged, fd_overspeed);

lateral : lateral_guidance(lg_hdg_switch_hit, lg_ga_switch_hit,

lg_ap_engaged, lg_sync_switch_pressed,

lg_nav_switch_hit, lg_nav_armed_long_enough,

lg_nav_track_cond_met,

lg_clear, lg_select_default,

fd_is_on);
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vertical : vertical_guidance(vg_vs_pitch_wheel_changed, vg_vs_switch_hit,

vg_ga_switch_hit, vg_ap_engaged,

vg_sync_switch_pressed,

vg_clear, vg_select_default,

fd_is_on);

ASSIGN

init(env_ev) := all_events;

next(env_ev) := all_events;

init(overspeed) := 0;

next(overspeed) := new_overspeed;

init(ap_engaged) := 0;

next(ap_engaged) := new_ap_engaged;

DEFINE

all_events := {hdg_switch_hit, nav_switch_hit,

nav_armed_long_enough_event, nav_track_cond_met_event,

ga_switch_hit, vs_pitch_wheel_changed,

vs_switch_hit, fd_switch_hit,

overspeed_start, overspeed_end,

ap_engaged_event, ap_disengaged_event,

sync_switch_pressed, sync_switch_released };

new_overspeed := case

(env_ev=overspeed_start) : 1;

(env_ev=overspeed_end) : 0;

1 : overspeed;

esac;

new_ap_engaged := case

(env_ev=ap_engaged_event) : 1;

(env_ev=ap_disengaged_event) : 0;

1 : ap_engaged;

esac;

fd_is_on := !(fd.mode=off) | fd.turned_on;

lateral_mode_requested := (env_ev=hdg_switch_hit) | (env_ev=nav_switch_hit) |

(env_ev=ga_switch_hit);

vertical_mode_requested := (env_ev=vs_switch_hit) | (env_ev=ga_switch_hit);

flight_director_event := (env_ev=ap_engaged_event) | (env_ev=fd_switch_hit) |

(env_ev=overspeed_start) |

lateral_mode_requested | vertical_mode_requested;
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fd_force_cues := (env_ev=overspeed_start);

fd_turn_on := (env_ev=ap_engaged_event) |

lateral_mode_requested | vertical_mode_requested;

fd_switch := (env_ev=fd_switch_hit);

fd_turn_off := 0;

fd_ap_engaged := new_ap_engaged;

fd_overspeed := new_overspeed;

lg_hdg_switch_hit := (env_ev=hdg_switch_hit);

lg_ga_switch_hit := (env_ev=ga_switch_hit);

lg_ap_engaged := (env_ev=ap_engaged_event);

lg_sync_switch_pressed := (env_ev=sync_switch_pressed);

lg_nav_switch_hit := (env_ev=nav_switch_hit);

lg_nav_armed_long_enough := (env_ev=nav_armed_long_enough_event);

lg_nav_track_cond_met := (env_ev=nav_track_cond_met_event);

lg_clear := flight_director_event & fd.turned_off;

lg_select_default := flight_director_event & fd.turned_on;

vg_vs_pitch_wheel_changed := (env_ev=vs_pitch_wheel_changed);

vg_vs_switch_hit := (env_ev=vs_switch_hit);

vg_ga_switch_hit := (env_ev=ga_switch_hit);

vg_ap_engaged := (env_ev=ap_engaged_event);

vg_sync_switch_pressed := (env_ev=sync_switch_pressed);

vg_clear := flight_director_event & fd.turned_off;

vg_select_default := flight_director_event & fd.turned_on;

-- mandatory properties ----------------------------------------------------------------------

-- the flight director is on if the autopilot is engaged

DEFINE fd_on_if_ap_engaged := AG (ap_engaged -> !(fd.mode=off));

SPEC fd_on_if_ap_engaged

-- at least one lateral mode is active iff the flight director is on

DEFINE at_least_one_lateral_mode_active :=

AG (!(fd.mode=off) <-> (lateral.roll.mode=active | lateral.hdg.mode=active |

lateral.ga.mode=active | lateral.nav.mode_active )

);

SPEC at_least_one_lateral_mode_active
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-- there is never more than one lateral mode active

DEFINE at_most_one_lateral_mode_active :=

AG((lateral.ga.mode=active -> (lateral.roll.mode=cleared & lateral.hdg.mode=cleared &

lateral.nav.mode=cleared )

) &

(lateral.roll.mode=active -> (lateral.ga.mode=cleared & lateral.hdg.mode=cleared &

lateral.nav.mode=cleared )

) &

(lateral.hdg.mode=active -> (lateral.roll.mode=cleared & lateral.nav.mode=cleared &

lateral.ga.mode=cleared )

) &

(lateral.nav.mode_active -> (lateral.roll.mode=cleared & lateral.hdg.mode=cleared &

lateral.ga.mode=cleared )

)

);

SPEC at_most_one_lateral_mode_active

-- at least one vertical mode is active iff the flight director is on

DEFINE at_least_one_vertical_mode_active :=

AG (!(fd.mode=off) <-> (vertical.ga.mode=active | vertical.vs.mode=active |

vertical.pitch.mode=active )

);

SPEC at_least_one_vertical_mode_active

-- at most one vertical mode is active

DEFINE at_most_one_vertical_mode_active :=

AG ((vertical.ga.mode=active -> (vertical.pitch.mode=cleared & vertical.vs.mode=cleared)) &

(vertical.vs.mode=active -> (vertical.pitch.mode=cleared & vertical.ga.mode=cleared)) &

(vertical.pitch.mode=active -> (vertical.ga.mode=cleared & vertical.vs.mode=cleared))

);

SPEC at_most_one_vertical_mode_active

-- if the flight director is off, all modes must be cleared

DEFINE fd_off_implies_all_modes_cleared :=

AG (fd.mode=off -> (vertical.pitch.mode=cleared & vertical.vs.mode =cleared &

vertical.ga.mode =cleared & lateral.roll.mode =cleared &

lateral.hdg.mode =cleared & lateral.ga.mode =cleared &

lateral.nav.mode =cleared

)

);
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SPEC fd_off_implies_all_modes_cleared

-- the default modes are active if the flight director is on and all other modes are cleared

DEFINE default_modes :=

AG ((!(fd.mode=off) & vertical.vs.mode =cleared & vertical.ga.mode =cleared &

lateral.hdg.mode =cleared & lateral.ga.mode =cleared &

lateral.nav.mode =cleared

) ->

(vertical.pitch.mode=active & lateral.roll.mode=active)

);

SPEC default_modes

-- mode confusion properties -----------------------------------------------------------------

-- check for response to pressing HDG button

DEFINE

hdg_selected_and_hdg_toggle_1 :=

AG (lateral.hdg.mode=cleared & env_ev=hdg_switch_hit -> AX lateral.hdg.mode=active);

hdg_deselected :=

AG (lateral.hdg.mode=active & env_ev=hdg_switch_hit -> AX lateral.roll.mode=active);

hdg_toggle_2 :=

AG (lateral.hdg.mode=active & env_ev=hdg_switch_hit -> AX lateral.hdg.mode=cleared);

SPEC hdg_selected_and_hdg_toggle_1

SPEC hdg_deselected

SPEC hdg_toggle_2

-- check for response to pressing NAV button

DEFINE

nav_selected_and_nav_toggle_1 :=

AG (lateral.nav.mode=cleared & env_ev=nav_switch_hit -> AX lateral.nav.mode_active);

nav_deselected :=

AG (lateral.nav.mode_active & env_ev=nav_switch_hit -> AX lateral.roll.mode=active);

nav_toggle_2 :=

AG (lateral.nav.mode=active & env_ev=nav_switch_hit -> AX lateral.nav.mode=cleared);

SPEC nav_selected_and_nav_toggle_1

SPEC nav_deselected

SPEC nav_toggle_2
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-- check for response to pressing VS button

DEFINE

vs_selected_and_vs_toggle_1 :=

AG (vertical.vs.mode=cleared & env_ev=vs_switch_hit -> AX vertical.vs.mode=active);

vs_deselected :=

AG (vertical.vs.mode=active & env_ev=vs_switch_hit -> AX vertical.pitch.mode=active);

vs_toggle_2 :=

AG (vertical.vs.mode=active & env_ev=vs_switch_hit -> AX vertical.vs.mode=cleared);

SPEC vs_selected_and_vs_toggle_1

SPEC vs_deselected

SPEC vs_toggle_2

-- check for response to pressing the FD button

DEFINE

fd_off := AG (fd.mode=off & env_ev=fd_switch_hit -> AX fd.mode=cues);

fd_on := AG (!(fd.mode=off) & env_ev=fd_switch_hit &

!(ap_engaged | overspeed) ->

AX fd.mode=off

);

fd_cues := AG (fd.mode=cues & env_ev=fd_switch_hit &

(ap_engaged | overspeed) ->

AX fd.mode=no_cues

);

fd_no_cues := AG (fd.mode=no_cues & env_ev=fd_switch_hit &

(ap_engaged | overspeed) ->

AX fd.mode=cues

);

SPEC fd_off

SPEC fd_on

SPEC fd_cues

SPEC fd_no_cues

-- search for ignored crew inputs

DEFINE

crew_input := env_ev=ap_engaged_event | env_ev=fd_switch_hit |

env_ev=sync_switch_pressed | env_ev=sync_switch_released |

lateral_mode_requested | vertical_mode_requested |

env_ev=vs_pitch_wheel_changed;
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mode_change :=

!(fd.mode=off <-> AX fd.mode=off) |

!(fd.mode=cues <-> AX fd.mode=cues) |

!(fd.mode=no_cues <-> AX fd.mode=no_cues) |

!(lateral.roll.mode = cleared <-> AX lateral.roll.mode = cleared) |

!(lateral.roll.mode = active <-> AX lateral.roll.mode = active ) |

!(lateral.hdg.mode = cleared <-> AX lateral.hdg.mode = cleared) |

!(lateral.hdg.mode = active <-> AX lateral.hdg.mode = active ) |

!(lateral.ga.mode = cleared <-> AX lateral.ga.mode = cleared) |

!(lateral.ga.mode = active <-> AX lateral.ga.mode = active ) |

!(lateral.nav.mode = cleared <-> AX lateral.nav.mode = cleared) |

!(lateral.nav.mode = track <-> AX lateral.nav.mode = track ) |

!(lateral.nav.mode = armed_initial <->

AX lateral.nav.mode = armed_initial) |

!(lateral.nav.mode = armed_long_enough <->

AX lateral.nav.mode = armed_long_enough) |

!(vertical.pitch.mode = cleared <-> AX vertical.pitch.mode = cleared) |

!(vertical.pitch.mode = active <-> AX vertical.pitch.mode = active ) |

!(vertical.vs.mode = cleared <-> AX vertical.vs.mode = cleared) |

!(vertical.vs.mode = active <-> AX vertical.vs.mode = active ) |

!(vertical.ga.mode = cleared <-> AX vertical.ga.mode = cleared) |

!(vertical.ga.mode = active <-> AX vertical.ga.mode = active );

search_for_ignored_crew_inputs := AG (crew_input -> mode_change);

SPEC search_for_ignored_crew_inputs -- property violated

-- no unknown ignored crew inputs

DEFINE

ignored_crew_input :=

(env_ev=ap_engaged_event & !(lateral.ga.mode=active | vertical.ga.mode=active)) |

-- (ev=ga_switch_hit & (lateral.ga.mode=active & vertical.ga.mode=active)) |

-- PVS model too strong (may be left out)

(env_ev=sync_switch_pressed & !(lateral.ga.mode=active | vertical.ga.mode=active)) |

-- (ev=sync_switch_pressed & fd.mode=off) |

-- PVS model too strong (may be left out)

(env_ev=sync_switch_released) |

(env_ev=vs_pitch_wheel_changed & fd.mode=off) |

(env_ev=vs_pitch_wheel_changed & vertical.pitch.mode=active);

no_known_ignored_crew_inputs :=

AG (crew_input & !ignored_crew_input -> mode_change);

SPEC no_known_ignored_crew_inputs
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-- search for indirect mode changes

DEFINE

search_for_indirect_mode_changes := AG (!crew_input -> !mode_change);

SPEC search_for_indirect_mode_changes -- property violated

-- no unknown indirect mode changes

DEFINE

indirect_mode_change :=

(env_ev=overspeed_start & !(fd.mode=cues)) |

(env_ev=nav_armed_long_enough_event & lateral.nav.mode=armed_initial) |

(env_ev=nav_track_cond_met_event & lateral.nav.mode=armed_long_enough);

no_unknown_indirect_mode_change :=

AG ((!crew_input & !indirect_mode_change) -> !mode_change);

SPEC no_unknown_indirect_mode_change

-- -------------------------------------------------------------------------------------------

B.2. Output of the SMV veri�er.

-- specification fd_on_if_ap_engaged is true

-- specification at_least_one_lateral_mode_active is true

-- specification at_most_one_lateral_mode_active is true

-- specification at_least_one_vertical_mode_active is true

-- specification at_most_one_vertical_mode_active is true

-- specification fd_off_implies_all_modes_cleared is true

-- specification default_modes is true

-- specification hdg_selected_and_hdg_toggle_1 is true

-- specification hdg_deselected is true

-- specification hdg_toggle_2 is true

-- specification nav_selected_and_nav_toggle_1 is true

-- specification nav_deselected is true

-- specification nav_toggle_2 is true

-- specification vs_selected_and_vs_toggle_1 is true

-- specification vs_deselected is true

-- specification vs_toggle_2 is true

-- specification fd_off is true

-- specification fd_on is true

-- specification fd_cues is true

-- specification fd_no_cues is true

-- specification search_for_ignored_crew_inputs is false

-- as demonstrated by the following execution sequence

-- loop starts here --
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state 1.1:

vg_select_default = 0

vg_clear = 0

vg_sync_switch_pressed = 0

vg_ap_engaged = 0

vg_ga_switch_hit = 0

vg_vs_switch_hit = 0

vg_vs_pitch_wheel_changed = 0

lg_select_default = 0

lg_clear = 0

lg_nav_track_cond_met = 0

lg_nav_armed_long_enough = 0

lg_nav_switch_hit = 0

lg_sync_switch_pressed = 0

lg_ap_engaged = 0

lg_ga_switch_hit = 0

lg_hdg_switch_hit = 0

fd_overspeed = 0

fd_ap_engaged = 0

fd_turn_off = 0

fd_switch = 0

fd_turn_on = 0

fd_force_cues = 0

flight_director_event = 0

vertical_mode_requested = 0

lateral_mode_requested = 0

fd_is_on = 0

new_ap_engaged = 0

new_overspeed = 0

all_events = hdg_switch_hit,nav_switch_hit,nav_armed_...

fd_on_if_ap_engaged = 1

at_least_one_lateral_mode_active = 1

at_most_one_lateral_mode_active = 1

at_least_one_vertical_mode_active = 1

at_most_one_vertical_mode_active = 1

fd_off_implies_all_modes_cleared = 1

default_modes = 1

hdg_toggle_2 = 1

hdg_deselected = 1

hdg_selected_and_hdg_toggle_1 = 1

nav_toggle_2 = 1

nav_deselected = 1

nav_selected_and_nav_toggle_1 = 1

vs_toggle_2 = 1

vs_deselected = 1

vs_selected_and_vs_toggle_1 = 1

fd_no_cues = 1
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fd_cues = 1

fd_on = 1

fd_off = 1

search_for_ignored_crew_inputs = 0

mode_change = 0

crew_input = 1

no_known_ignored_crew_inputs = 1

ignored_crew_input = 1

search_for_indirect_mode_changes = 0

no_unknown_indirect_mode_change = 1

indirect_mode_change = 0

env_ev = sync_switch_released

overspeed = 0

ap_engaged = 0

fd.turned_off = 0

fd.turned_on = 0

fd.mode_on = 0

fd.mode = off

lateral.nav_event = 0

lateral.lga_event = 0

lateral.hdg_event = 0

lateral.nav_armed_long_enough = 0

lateral.nav_track_cond_met = 0

lateral.nav_clear = 0

lateral.nav_switch = 0

lateral.nav_deactivate = 0

lateral.nav_activate = 0

lateral.ga_clear = 0

lateral.ga_switch = 0

lateral.ga_deactivate = 0

lateral.ga_activate = 0

lateral.hdg_clear = 0

lateral.hdg_switch = 0

lateral.hdg_deactivate = 0

lateral.hdg_activate = 0

lateral.roll_clear = 0

lateral.roll_switch = 0

lateral.roll_deactivate = 0

lateral.roll_activate = 0

lateral.roll.deactivated = 0

lateral.roll.activated = 0

lateral.roll.mode = cleared

lateral.hdg.deactivated = 0

lateral.hdg.activated = 0

lateral.hdg.mode = cleared

lateral.ga.deactivated = 0

lateral.ga.activated = 0
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lateral.ga.mode = cleared

lateral.nav.deactivated = 0

lateral.nav.activated = 0

lateral.nav.mode_active = 0

lateral.nav.mode_armed = 0

lateral.nav.track_cond = 0

lateral.nav.mode = cleared

lateral.nav.track_cond_met = 0

vertical.vga_event = 0

vertical.vs_event = 0

vertical.pitch_event = 0

vertical.ga_clear = 0

vertical.ga_switch = 0

vertical.ga_deactivate = 0

vertical.ga_activate = 0

vertical.vs_clear = 0

vertical.vs_switch = 0

vertical.vs_deactivate = 0

vertical.vs_activate = 0

vertical.pitch_clear = 0

vertical.pitch_switch = 0

vertical.pitch_deactivate = 0

vertical.pitch_activate = 0

vertical.pitch.deactivated = 0

vertical.pitch.activated = 0

vertical.pitch.mode = cleared

vertical.vs.deactivated = 0

vertical.vs.activated = 0

vertical.vs.mode = cleared

vertical.ga.deactivated = 0

vertical.ga.activated = 0

vertical.ga.mode = cleared

state 1.2:

-- specification no_known_ignored_crew_inputs is true

-- specification search_for_indirect_mode_changes is false

-- as demonstrated by the following execution sequence

state 2.1:

vg_select_default = 0

vg_clear = 0

vg_sync_switch_pressed = 0

vg_ap_engaged = 0

vg_ga_switch_hit = 0

vg_vs_switch_hit = 0

vg_vs_pitch_wheel_changed = 0

lg_select_default = 0
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lg_clear = 0

lg_nav_track_cond_met = 0

lg_nav_armed_long_enough = 0

lg_nav_switch_hit = 0

lg_sync_switch_pressed = 0

lg_ap_engaged = 0

lg_ga_switch_hit = 0

lg_hdg_switch_hit = 0

fd_overspeed = 0

fd_ap_engaged = 0

fd_turn_off = 0

fd_switch = 0

fd_turn_on = 0

fd_force_cues = 0

flight_director_event = 0

vertical_mode_requested = 0

lateral_mode_requested = 0

fd_is_on = 0

new_ap_engaged = 0

new_overspeed = 0

all_events = hdg_switch_hit,nav_switch_hit,nav_armed_...

fd_on_if_ap_engaged = 1

at_least_one_lateral_mode_active = 1

at_most_one_lateral_mode_active = 1

at_least_one_vertical_mode_active = 1

at_most_one_vertical_mode_active = 1

fd_off_implies_all_modes_cleared = 1

default_modes = 1

hdg_toggle_2 = 1

hdg_deselected = 1

hdg_selected_and_hdg_toggle_1 = 1

nav_toggle_2 = 1

nav_deselected = 1

nav_selected_and_nav_toggle_1 = 1

vs_toggle_2 = 1

vs_deselected = 1

vs_selected_and_vs_toggle_1 = 1

fd_no_cues = 1

fd_cues = 1

fd_on = 1

fd_off = 1

search_for_ignored_crew_inputs = 0

mode_change = 0

crew_input = 1

no_known_ignored_crew_inputs = 1

ignored_crew_input = 1

search_for_indirect_mode_changes = 0
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no_unknown_indirect_mode_change = 1

indirect_mode_change = 0

env_ev = sync_switch_released

overspeed = 0

ap_engaged = 0

fd.turned_off = 0

fd.turned_on = 0

fd.mode_on = 0

fd.mode = off

lateral.nav_event = 0

lateral.lga_event = 0

lateral.hdg_event = 0

lateral.nav_armed_long_enough = 0

lateral.nav_track_cond_met = 0

lateral.nav_clear = 0

lateral.nav_switch = 0

lateral.nav_deactivate = 0

lateral.nav_activate = 0

lateral.ga_clear = 0

lateral.ga_switch = 0

lateral.ga_deactivate = 0

lateral.ga_activate = 0

lateral.hdg_clear = 0

lateral.hdg_switch = 0

lateral.hdg_deactivate = 0

lateral.hdg_activate = 0

lateral.roll_clear = 0

lateral.roll_switch = 0

lateral.roll_deactivate = 0

lateral.roll_activate = 0

lateral.roll.deactivated = 0

lateral.roll.activated = 0

lateral.roll.mode = cleared

lateral.hdg.deactivated = 0

lateral.hdg.activated = 0

lateral.hdg.mode = cleared

lateral.ga.deactivated = 0

lateral.ga.activated = 0

lateral.ga.mode = cleared

lateral.nav.deactivated = 0

lateral.nav.activated = 0

lateral.nav.mode_active = 0

lateral.nav.mode_armed = 0

lateral.nav.track_cond = 0

lateral.nav.mode = cleared

lateral.nav.track_cond_met = 0

vertical.vga_event = 0
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vertical.vs_event = 0

vertical.pitch_event = 0

vertical.ga_clear = 0

vertical.ga_switch = 0

vertical.ga_deactivate = 0

vertical.ga_activate = 0

vertical.vs_clear = 0

vertical.vs_switch = 0

vertical.vs_deactivate = 0

vertical.vs_activate = 0

vertical.pitch_clear = 0

vertical.pitch_switch = 0

vertical.pitch_deactivate = 0

vertical.pitch_activate = 0

vertical.pitch.deactivated = 0

vertical.pitch.activated = 0

vertical.pitch.mode = cleared

vertical.vs.deactivated = 0

vertical.vs.activated = 0

vertical.vs.mode = cleared

vertical.ga.deactivated = 0

vertical.ga.activated = 0

vertical.ga.mode = cleared

state 2.2:

vg_select_default = 1

lg_select_default = 1

fd_overspeed = 1

fd_force_cues = 1

flight_director_event = 1

fd_is_on = 1

new_overspeed = 1

mode_change = 1

crew_input = 0

ignored_crew_input = 0

indirect_mode_change = 1

env_ev = overspeed_start

fd.turned_on = 1

lateral.roll_activate = 1

lateral.roll.activated = 1

vertical.pitch_activate = 1

vertical.pitch.activated = 1

state 2.3:

vg_select_default = 0

lg_select_default = 0

fd_force_cues = 0
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flight_director_event = 0

mode_change = 0

crew_input = 1

ignored_crew_input = 1

indirect_mode_change = 0

env_ev = sync_switch_released

overspeed = 1

fd.turned_on = 0

fd.mode_on = 1

fd.mode = cues

lateral.roll_activate = 0

lateral.roll.activated = 0

lateral.roll.mode = active

vertical.pitch_activate = 0

vertical.pitch.activated = 0

vertical.pitch.mode = active

-- specification no_unknown_indirect_mode_change is true

resources used:

user time: 0.58 s, system time: 0.17 s

BDD nodes allocated: 5940

Bytes allocated: 983040

BDD nodes representing transition relation: 438 + 1

reachable states: 3388 (2^11.7262) out of 86016 (2^16.3923)
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Appendix C. Speci�cation and Veri�cation Using Spin.

C.1. Full Model of the Mode Logic.

/** values of modes *************************************************************************/

#define cleared 0

#define active 1

#define track 2

#define armed_initial 3

#define armed_long_enough 4

#define off 5

#define cues 6

#define no_cues 7

/** events and signals **********************************************************************/

mtype = { /* environment events */

hdg_switch_hit, nav_switch_hit,

nav_armed_long_enough_event, nav_track_cond_met_event,

ga_switch_hit, vs_pitch_wheel_changed,

vs_switch_hit, fd_switch_hit,

overspeed_start, overspeed_stop,

ap_engaged_event, ap_disengaged_event,

sync_switch_pressed, sync_switch_released,

/* simple guidance, arming guidance and flight director events */

clear, activate,

deactivate, switch,

turn_on, turn_off,

force_cues, armed_long_enough_event,

track_cond_met_event,

/* signals */

activated, deactivated,

turned_on, turned_off,

null

}

typedef ag_state { byte mode = cleared;

bool track_cond_met = false

};

/** variables controled by the environment **************************************************/

bool overspeed = false;

bool ap_engaged = false;
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/** mode and signal variables & variable for env. event *************************************/

bit pitch = cleared; bit old_pitch = cleared;

bit vs = cleared; bit old_vs = cleared;

bit vga = cleared; bit old_vga = cleared;

bit roll = cleared; bit old_roll = cleared;

bit hdg = cleared; bit old_hdg = cleared;

bit lga = cleared; bit old_lga = cleared;

byte fd = off; byte old_fd = off;

ag_state nav; ag_state old_nav;

mtype pitch_signal = null; mtype vs_signal = null;

mtype vga_signal = null; mtype roll_signal = null;

mtype hdg_signal = null; mtype lga_signal = null;

mtype nav_signal = null; mtype fd_signal = null;

mtype env_ev = null;

/** useful abbreviations ********************************************************************/

#define lateral_mode_requested

((env_ev==hdg_switch_hit) || (env_ev==nav_switch_hit) || (env_ev==ga_switch_hit))

#define vertical_mode_requested

((env_ev==vs_switch_hit) || (env_ev==ga_switch_hit))

inline flight_director_event(env_ev) { (env_ev==ap_engaged_event) ||

(env_ev==fd_switch_hit) ||

(env_ev==overspeed_start) ||

lateral_mode_requested ||

vertical_mode_requested

}

/** auxiliary "functions" *******************************************************************/

inline hdg_event(env_ev) { env_ev==hdg_switch_hit }

inline nav_event(env_ev) { (env_ev==nav_switch_hit) ||

(env_ev==nav_armed_long_enough_event) ||

(env_ev==nav_track_cond_met_event)

}

inline lga_event(env_ev) { (env_ev==ga_switch_hit) ||

(env_ev==ap_engaged_event) ||

(env_ev==sync_switch_pressed)

}
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inline pitch_event(env_ev) { env_ev==vs_pitch_wheel_changed }

inline vs_event(env_ev) { env_ev==vs_switch_hit }

inline vga_event(env_ev) { (env_ev==ga_switch_hit) || (env_ev==ap_engaged_event) ||

(env_ev==sync_switch_pressed)

}

/** abstract data type module simple guidance ***********************************************/

inline simple_guidance(mode, event, signal)

{

if

:: mode==cleared ->

if

:: event==activate -> mode=active; signal=activated

:: event==deactivate -> signal=null

:: event==switch -> mode=active; signal=activated

:: event==clear -> signal=null

fi

:: mode==active ->

if

:: event==activate -> signal=null

:: event==deactivate -> mode=cleared; signal=null

:: event==switch -> mode=cleared; signal=deactivated

:: event==clear -> mode=cleared; signal=deactivated

fi

fi

}

/** abstract data object module arming guidance *********************************************/

inline arming_guidance(event, signal)

{

if

:: nav.mode==cleared ->

if

:: event==activate -> nav.mode =armed_initial;

signal =activated

:: event==deactivate -> signal =null

:: event==switch -> nav.mode =armed_initial;

signal =activated

:: event==clear -> signal =null

:: event==armed_long_enough_event -> signal =null

:: event==track_cond_met_event -> nav.track_cond_met=true;

signal =null

fi
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:: else ->

if

:: event==activate -> signal =null

:: event==deactivate -> nav.mode=cleared;

signal =null

:: event==switch -> nav.mode=cleared;

signal =deactivated

:: event==clear -> nav.mode=cleared;

signal =deactivated

:: event==armed_long_enough_event ->

if

:: (nav.mode==armed_initial) &&

nav.track_cond_met -> nav.mode=track;

signal =null

:: (nav.mode==armed_initial) &&

!nav.track_cond_met -> nav.mode=armed_long_enough;

signal =null

:: else -> signal =null

fi

:: event==track_cond_met_event ->

if

:: nav.mode==armed_long_enough -> nav.mode =track;

nav.track_cond_met=true;

signal =null

:: else -> nav.track_cond_met=true;

signal =null

fi

fi

fi

}

/** function module lateral guidance ********************************************************/

inline lateral_guidance(env_ev)

{

if

:: hdg_event(env_ev) ->

simple_guidance(hdg, switch, hdg_signal);

if

:: hdg_signal==activated -> simple_guidance(roll, deactivate, roll_signal);

simple_guidance(lga, deactivate, lga_signal );

arming_guidance( deactivate, nav_signal )

:: hdg_signal==deactivated -> simple_guidance(roll, activate, roll_signal)

:: else -> skip

fi
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:: nav_event(env_ev) ->

if

:: env_ev==nav_switch_hit ->

arming_guidance(switch, nav_signal)

:: env_ev==nav_track_cond_met_event ->

arming_guidance(track_cond_met_event, nav_signal)

:: env_ev==nav_armed_long_enough_event ->

arming_guidance(armed_long_enough_event, nav_signal)

fi;

if

:: nav_signal==activated -> simple_guidance(roll, deactivate, roll_signal);

simple_guidance(hdg, deactivate, hdg_signal );

simple_guidance(lga, deactivate, lga_signal )

:: nav_signal==deactivated -> simple_guidance(roll, activate, roll_signal)

:: else -> skip

fi

:: lga_event(env_ev) ->

if

:: env_ev==ga_switch_hit -> simple_guidance(lga, activate, lga_signal)

:: else -> simple_guidance(lga, clear, lga_signal)

fi;

if

:: lga_signal==activated -> simple_guidance(roll, deactivate, roll_signal);

simple_guidance(hdg, deactivate, hdg_signal );

arming_guidance( deactivate, nav_signal )

:: lga_signal==deactivated -> simple_guidance(roll, activate, roll_signal)

:: else -> skip

fi

:: else ->

skip

fi

}

/** function module vertical guidance *******************************************************/

inline vertical_guidance(env_ev)

{

if

:: pitch_event(env_ev) ->

simple_guidance(pitch, activate, pitch_signal);

if

:: pitch_signal==activated -> simple_guidance(vs, deactivate, vs_signal );

simple_guidance(vga, deactivate, vga_signal)

:: else -> skip

fi
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:: vs_event(env_ev) ->

simple_guidance(vs, switch, vs_signal);

if

:: vs_signal==activated -> simple_guidance(pitch, deactivate, pitch_signal);

simple_guidance(vga, deactivate, vga_signal )

:: vs_signal==deactivated -> simple_guidance(pitch, activate, pitch_signal)

:: else -> skip

fi

:: vga_event(env_ev) ->

if

:: env_ev==ga_switch_hit -> simple_guidance(vga, switch,vga_signal)

:: else -> simple_guidance(vga, clear, vga_signal)

fi;

if

:: vga_signal==activated -> simple_guidance(pitch, deactivate, pitch_signal);

simple_guidance(vs, deactivate, vs_signal )

:: vga_signal==deactivated -> simple_guidance(pitch, activate, pitch_signal)

:: else -> skip

fi

:: else ->

skip

fi

}

/** abstract data object module flight director ********************************************/

inline flight_director(event, signal)

{

if

:: fd==off ->

if

:: event==force_cues -> fd=cues; signal=turned_on;

:: event==turn_on -> fd=cues; signal=turned_on

:: event==switch -> fd=cues; signal=turned_on

:: event==turn_off -> signal=null

fi

:: fd==cues ->

if

:: event==force_cues -> signal=null

:: event==turn_on -> signal=null

:: event==switch ->

if

:: overspeed || ap_engaged -> fd=no_cues; signal=null

:: else -> fd=off; signal=turned_off

fi
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:: event==turn_off ->

if

:: overspeed || ap_engaged -> fd=no_cues; signal=null

:: else -> fd=off; signal=turned_off

fi

fi

:: else ->

if

:: event==force_cues -> fd=cues; signal=null

:: event==turn_on -> fd=cues; signal=null

:: event==switch ->

if

:: overspeed || ap_engaged -> fd=cues; signal=null

:: else -> fd=off; signal=turned_off

fi

:: event==turn_off ->

if

:: overspeed || ap_engaged -> signal=null

:: else -> fd=off; signal=turned_off

fi

fi

fi

}

/** mandatory and mode confusion properties as assertions ***********************************/

#define nav_active

((nav.mode==armed_initial) || (nav.mode==armed_long_enough) || (nav.mode==track))

#define crew_input

((env_ev==ap_engaged_event) || (env_ev==sync_switch_pressed) ||

(env_ev==sync_switch_released) || (env_ev==fd_switch_hit) ||

lateral_mode_requested || vertical_mode_requested ||

(env_ev==vs_pitch_wheel_changed))

#define ignored_crew_input

(((env_ev==ap_engaged_event) && !((old_lga==active)||(old_vga==active))) ||

((env_ev==sync_switch_pressed) && !((old_lga==active)||(old_vga==active))) ||

(env_ev==sync_switch_released) ||

((env_ev==vs_pitch_wheel_changed) && (old_fd==off)) ||

((env_ev==vs_pitch_wheel_changed) && (old_pitch==active)))

#define indirect_mode_change

(((env_ev==overspeed_start) && !(old_fd==cues)) ||

((env_ev==nav_armed_long_enough_event) && (old_nav.mode==armed_initial)) ||

((env_ev==nav_track_cond_met_event) && (old_nav.mode==armed_long_enough)))
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#define mode_change

((fd != old_fd) || (pitch != old_pitch) || (vs != old_vs) || (vga != old_vga) ||

(roll != old_roll) || (hdg != old_hdg) || (lga != old_lga) ||

(nav.mode != old_nav.mode))

inline mandatory_and_mode_confusion_properties(env_ev)

{

/** the flight director is on if the autopilot is engaged **/

assert(!ap_engaged || !(fd==off));

/** at least one lateral mode is active iff the flight director is on **/

assert(((fd==off) || (roll==active || hdg==active || lga==active || nav_active)) &&

(!(roll==active || hdg==active || lga==active || nav_active) || !(fd==off))

);

/** there is never more than one lateral mode active **/

assert((!(lga ==active) || (roll==cleared && hdg==cleared && nav.mode==cleared)) &&

(!(roll==active) || (lga==cleared && hdg==cleared && nav.mode==cleared)) &&

(!(hdg ==active) || (roll==cleared && lga==cleared && nav.mode==cleared)) &&

(!(nav_active) || (roll==cleared && hdg==cleared && lga ==cleared))

);

/** at least one vertical mode is active iff the flight director is on **/

assert(((fd==off) || (vga==active || vs==active || pitch==active)) &&

(!(vga==active || vs==active || pitch==active) || !(fd==off))

);

/** at most one vertical mode is active **/

assert((!(vga ==active) || (pitch==cleared && vs==cleared)) &&

(!(vs ==active) || (pitch==cleared && vga==cleared)) &&

(!(pitch==active) || ( vga==cleared && vs==cleared))

);

/** if the flight director is off, all modes must be cleared **/

assert(!(fd==off) || (pitch==cleared && vs==cleared && vga==cleared && roll==cleared &&

hdg==cleared && lga==cleared && nav.mode==cleared)

);

/** the default modes are active if the flight director is on and **/

/** all other modes are cleared **/

assert(!(!(fd==off) && vs==cleared && vga==cleared &&

hdg==cleared && lga==cleared && nav.mode==cleared

) || (pitch==active && roll==active)

);
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/** mandatory properties **/

if

:: env_ev==hdg_switch_hit ->

/** check for response to pressing HDG button **/

assert(!(old_hdg==cleared) || ( hdg==active ));

assert(!(old_hdg==active ) || (roll==active ));

assert(!(old_hdg==active ) || ( hdg==cleared))

:: env_ev==nav_switch_hit ->

/** check for response to pressing NAV button **/

assert(!(old_nav.mode==cleared) || ((nav.mode==armed_initial) ||

(nav.mode==armed_long_enough) || (nav.mode==track)

)

);

assert(!((old_nav.mode==armed_initial) || (old_nav.mode==armed_long_enough) ||

(old_nav.mode==track)

) || (roll==active)

);

assert(!((old_nav.mode==armed_initial) || (old_nav.mode==armed_long_enough) ||

(old_nav.mode==track)

) || (nav.mode==cleared)

)

:: env_ev==vs_switch_hit ->

/** check for response to pressing VS button **/

assert(!(old_vs==cleared) || (vs==active));

assert(!(old_vs==active ) || (pitch==active));

assert(!(old_vs==active ) || (vs==cleared))

:: env_ev==fd_switch_hit ->

/** check for response to pressing the FD button **/

assert(!(old_fd==off) || (fd==cues));

assert((!(!(old_fd==off) && !(ap_engaged || overspeed))) || (fd==off));

assert(!((old_fd==cues) && (ap_engaged || overspeed)) || (fd==no_cues));

assert(!((old_fd==no_cues) && (ap_engaged || overspeed)) || (fd==cues));

:: else ->

skip

fi;

/** search for ignored crew inputs **/

/** assert(!(crew_input) || mode_change); **/

/** property violated **/

/** no unknown ignored crew inputs **/

assert(!(crew_input && !(ignored_crew_input)) || mode_change);
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/** search for indirect mode changes **/

/** assert(!(!(crew_input)) || !(mode_change)); **/

/** property violated **/

/** no unknown indirect mode changes **/

assert(!(!(crew_input) && !(indirect_mode_change)) || !(mode_change));

/** save the current mode values **/

old_pitch = pitch; old_vs = vs; old_vga = vga; old_roll = roll;

old_hdg = hdg; old_lga = lga; old_fd = fd;

old_nav.mode = nav.mode; old_nav.track_cond_met = nav.track_cond_met

}

/********************************************************************************************/

inline clear_all_modes()

{

pitch=cleared; vs=cleared; vga=cleared; roll=cleared;

hdg=cleared; lga=cleared; nav.mode=cleared

}

/********************************************************************************************/

inline select_default_mode()

{

pitch=active; roll=active

}

/********************************************************************************************/

inline process_external_event(env_ev)

{

if

:: env_ev==ap_engaged_event -> ap_engaged=true

:: env_ev==ap_disengaged_event -> ap_engaged=false

:: env_ev==overspeed_start -> overspeed =true

:: env_ev==overspeed_stop -> overspeed =false

:: else -> skip

fi

}

/********************************************************************************************/
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inline process_fd_event(env_ev)

{

if

:: flight_director_event(env_ev) ->

if

:: env_ev==fd_switch_hit -> flight_director(switch, fd_signal)

:: env_ev==overspeed_start -> flight_director(force_cues, fd_signal)

:: else -> flight_director(turn_on, fd_signal)

fi;

if

:: fd_signal==turned_off -> clear_all_modes()

:: fd_signal==turned_on -> select_default_mode()

:: else -> skip

fi

:: else ->

skip

fi

}

/********************************************************************************************/

inline process_flight_mode_event(env_ev)

{

if

:: !(fd==off) -> lateral_guidance(env_ev); vertical_guidance(env_ev)

:: else -> skip

fi

}

/********************************************************************************************/

inline clear_signals()

{

pitch_signal = null; vs_signal = null; vga_signal = null; roll_signal = null;

hdg_signal = null; lga_signal = null; nav_signal = null; fd_signal = null

}

/** main module performing modeling one synchronous step of the system **********************/

inline fgs(env_ev)

{

process_external_event(env_ev);

process_fd_event(env_ev);

process_flight_mode_event(env_ev);

clear_signals(); /** signals are no longer needed **/

mandatory_and_mode_confusion_properties(env_ev)

}
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/** init process, including model of the environment ****************************************/

init{ end_main: do :: atomic{ if /* nondeterministically choose env. event */

:: env_ev=hdg_switch_hit

:: env_ev=nav_switch_hit

:: env_ev=nav_armed_long_enough_event

:: env_ev=nav_track_cond_met_event

:: env_ev=ga_switch_hit

:: env_ev=vs_pitch_wheel_changed

:: env_ev=vs_switch_hit

:: env_ev=fd_switch_hit

:: env_ev=overspeed_start

:: env_ev=overspeed_stop

:: env_ev=ap_engaged_event

:: env_ev=ap_disengaged_event

:: env_ev=sync_switch_pressed

:: env_ev=sync_switch_released

fi;

fgs(env_ev); /* perform synchronous step */

env_ev=null /* env. event is no longer needed */

}

od }

/********************************************************************************************/

C.2. Output of the Spin veri�er.

(Spin Version 3.2.4 -- 10 January 1999)

Full statespace search for:

never-claim - (none specified)

assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 32 byte, depth reached 4151, errors: 0

242 states, stored

3147 states, matched

3389 transitions (= stored+matched)

165976 atomic steps

hash conflicts: 0 (resolved)

(max size 2^19 states)

2.604 memory usage (Mbyte)

real 1.9

user 1.7

sys 0.2
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