
Strategy-Enhanced Interactive Proving and Arithmetic
Simplification for PVS

Ben L. Di Vito

NASA Langley Research Center, Hampton VA 23681, USA
b.l.divito@larc.nasa.gov

http://shemesh.larc.nasa.gov/~bld

Abstract. We describe an approach to strategy-based proving for improved interactive deduction
in specialized domains. An experimental package of strategies (tactics) and support functions called
Manip has been developed for PVS to reduce the tedium of arithmetic manipulation. Included are
strategies aimed at algebraic simplification of real-valued expressions. A general deduction architecture
is described in which domain-specific strategies, such as those for algebraic manipulation, are supported
by more generic features, such as term-access techniques applicable in arbitrary settings. An extended
expression language provides access to subterms within a sequent.

1 Introduction

Recent verification research at NASA Langley has emphasized extensive theorem proving over the domain of
reals [4, 5], with PVS [15] serving as the primary proof tool. Efforts in this area have met with some difficulties,
prompting a search for improved techniques for interactive proving. Significant productivity gains will be
needed to fully realize our formal methods goals.

For arithmetic reasoning, PVS relies on decision procedures augmented by automatic rewriting. When a
conjecture fails to yield to these tools, which often happens with nonlinear arithmetic, considerable interactive
work may be required to complete the proof. Large productivity variances are the result.

SRI continues to increase the degree of automation in PVS. In particular, decision procedures for real
arithmetic are a planned future enhancement. We look forward to these improvements. Nevertheless, there
will always be a point where the automation runs out. When that point is reached, tactic-based1 techniques
can be applied to good effect.

In this paper we describe an approach to strategy-based proving for improved interactive deduction in
specialized domains. An experimental package of strategies (tactics) and support functions called Manip has
been developed for PVS to reduce the tedium of arithmetic manipulation. Included are strategies aimed at
algebraic simplification of real-valued expressions. A general deduction architecture is described in which
domain-specific strategies, such as those for algebraic manipulation, are supported by more generic features,
such as term-access techniques applicable in arbitrary settings. User-defined proof strategies can be seen as
a type of “deductive middleware.” Our approach is general enough to serve other problem domains in the
pursuit of such middleware.

By way of motivation, consider the following lemma for reasoning about trigonometric approximations:

0 < a ≤ π/2 ⊃ |Tn(a)| > 2 |Tn+1(a)| (1)

where Ti(a) is the ith term in the power series expansion of the sine function:

sin(a) =
∞∑

i=1

(−1)i−1a2i−1/(2i− 1)! .

1 In PVS nomenclature, a rule is an atomic prover command while a strategy expands into one or more atomic
steps. A defined rule is defined as a strategy but invoked as an atomic step. For our purposes, we regard the terms
“tactic,” “strategy” and “defined rule” as roughly synonymous.

2 Ben L. Di Vito

Using only built-in rules, an early proof attempt for (1) required 68 steps. A common technique to carry
out algebraic manipulation in such proofs is to use the case rule to force a case split on the (usually obvious)
equality of two subexpressions, such as:

(CASE "a!1 * a!1 * (b!1 * b!1) = (b!1 * a!1) * (b!1 * a!1)") (2)

Although not peculiar to PVS, this need to identify equivalent subexpressions and bring them to the prover’s
attention via cut-and-paste methods is rather awkward. It leads to a tedious style of proof that tries the
patience of most users.

In contrast, by using the Manip package we were able to prove the lemma more naturally in 18 steps,
8 of which are strategies from our package, as shown in Fig. 1. Unlike the case-split technique, none of
the steps contains excerpts from the sequent, such as those seen in (2). This proof represents one of the
better examples of improvement from the use of our strategies. Although many proofs will experience a less
dramatic reduction in complexity, the results have been encouraging thus far.

("" (SKOSIMP*)

(REWRITE "sin_term_next")

(RECIP-MULT! (! 1 R (-> "abs") 1)) ; strategy

(APPLY (REPEAT (REWRITE "abs_mult")))

(PERMUTE-MULT 1 R 3 R) ; strategy

(OP-IDENT 1 L 1*) ; strategy

(CANCEL 1) ; strategy

(("1" (EXPAND "abs")

(ASSERT)

(PERMUTE-MULT 1 R 2 R) ; strategy

(CROSS-MULT 1) ; strategy

(MULT-INEQ -2 -2) ; strategy

(TYPEPRED "PI")

(EXPAND "PI_ub")

(MULT-INEQ -4 -4) ; strategy

(ASSERT))

("2" (USE "sin_term_nonzero")

(GRIND NIL :REWRITES ("abs")))))

Fig. 1. Proof steps for lemma (1) using built-in rules plus manipulation strategies

2 Architecture

We have integrated several elements to arrive at a strategy-based deduction architecture for user enhance-
ments to PVS.

1. Domain-specific proof strategies. Common reasoning domains, such as nonlinear real arithmetic, provide
natural targets for increasing automation. Extracting terms from sequents using suitable access facilities
is vital for implementing strategies that do meaningful work.

2. Extended expression language. Inputs to existing prover rules are primarily formula numbers and ex-
pressions in the PVS language. For greater effectiveness, we provide users with a language for specifying
subexpressions by location reference and pattern matching.

3. Higher-order strategies with substitution. Strategies that apply other proof rules offer the usual conve-
nience of functional programming. Adding command-line substitutions derived from sequent expressions
yields a more powerful way to construct and apply rules dynamically.

4. Prelude extension libraries. The PVS prelude holds built-in core theories. Strategies use prelude lem-
mas but often need additional facts. PVS’s prelude extension feature adds such theorems in a manner
transparent to the user.

Strategy-Enhanced Interactive Proving and Arithmetic Simplification for PVS 3

5. User-interface utilities. To improve command line invocation of proof rules as well as offer various proof
maintenance functions, a set of Emacs-based interface enhancements is included.

Note that only elements 1 and 4 are domain specific; the others are quite generic. In this paper we will focus
on elements 1–3.

Several benefits accrue from the complementary elements of this architecture.

– User interaction is more natural, less laborious and occurs at a higher level of abstraction.
– Many manipulations apply lemmas from the prelude or its extensions. Strategies enable proving without

explicit knowledge of these lemmas.
– The brittleness of proofs (breakage caused by changes in definitions or lemmas) is reduced by avoiding

the inclusion of expressions from the current sequent in stored proof steps.
– Proving becomes more approachable for those with mathematical sophistication but little experience

using mechanical provers.

We envision some features as being more useful during later stages of proof development, especially when
finalizing a proof to make the permanent version more robust. During the early stages, it is easier to work
directly with actual expressions. Once the outline of a proof is firm, extended expression features can be
introduced to abstract away excessive detail.

3 Domain-Specific Strategies

Systematic strategy development for various domains could improve user productivity considerably. This
section proposes a general scheme for structuring and implementing strategies in PVS and briefly sketches a
particular set of strategies for manipulating arithmetic expressions.

3.1 Design Considerations

Input to the PVS prover is via Lisp s-expressions. Internally the prover uses CLOS (Common Lisp Object
System) classes to represent expressions and other data. PVS provides macros for creating user-defined proof
rules, which may include fragments of Lisp code to compute new values for invoking other rules.

We suggest the following guidelines for developing a strategy package.

1. Introduce domain-relevant arguments. For arithmetic strategies, a user typically needs to specify values
such as the side of a relation (L, R), the sign of a term (+, -), and term numbers. Variations on the
conventions of existing prover input handle these cases nicely.

2. Augment term access functions. Besides the access functions provided by the prover, additional ones may
be needed to extract relevant values, e.g., the ith term of an additive expression. A modest set of access
functions suffices for working with common language elements, such as arithmetic terms.

3. Use text-based expression construction. A proper implementation style would be to use object construc-
tors to create new expression values. This requires knowledge of a large interface. Instead, it is adequate
for most uses to exploit the objects’ print methods and construct the desired expressions in textual form,
which can then be supplied as arguments to other proof rules.

4. Use Lisp-based symbolic construction. To build final proof rules for invocation, the standard Lisp tech-
niques for s-expression construction, such as backquote expressions, work well.

5. Incorporate prelude extensions as needed. When prelude lemmas are inadequate to support the desired
deductions, a few judiciously crafted lemmas, custom designed for specific strategies, can be added
invisibly.

Applications of items 1–4 are demonstrated in the simple example of Fig. 2. Most strategies are rather more
complicated than this example, often requiring the services of auxiliary Lisp functions and intermediate
helper strategies.

An example of a prelude extension lemma of the sort described in guideline (5) is the following:

div_mult_pos_neg_lt1: LEMMA
z/n0y < x IFF IF n0y > 0 THEN z < x * n0y ELSE x * n0y < z ENDIF

4 Ben L. Di Vito

(DEFSTEP has-sign (term &optional (sign +) (try-just nil))

(LET ((term-expr (ee-obj-or-string (car (eval-ext-expr term))))

(relation (case sign

((+) ’>) ((-) ’<) ((0) ’=)

((0+) ’>=) ((0-) ’<=) ((+-) ’/=) (t ’>)))

(case-step ‘(CASE ,(format nil "~A ~A 0" term-expr relation)))

(step-list

(list ’(SKIP) (try-justification ’has-sign try-just))))

(SPREAD case-step step-list))

"Try claiming that a TERM has the designated SIGN (relationship to 0).

Symbols for SIGN are (+ - 0 0+ 0- +-), which have meanings positive,

negative, zero, nonnegative, nonpositive, and nonzero. Proof of the

justification step can be tried or deferred. Use TRY-JUST to supply

a step for the justification proof or T for the default rule (GRIND)."

"~%Claiming the selected term has the designated sign")

Fig. 2. Sample strategy built using PVS defstep macro

This lemma simply combines two existing lemmas in prelude theory real props into a conditional form to
allow rewriting for any nonzero divisor. In ordinary settings, rewriting to such a conditional expression is
likely to be undesirable. In this case, however, the lemma accommodates rewriting plus follow-up steps such
as case splitting.

Following the design guidelines above will lead to strategies that are sound by construction. Prover objects
are examined but not modified. Proof steps are obtained by expanding the strategies into rule applications for
execution by the prover. New PVS expressions are submitted through the parser and typechecked. There are
no mechanisms to enforce these good intentions, however. Coding errors could have unintended consequences,
but with proper care there should be no side effects on the proof state.

3.2 Algebraic Manipulation Strategies

Users often want to manipulate expressions in the familiar style of conventional algebra, as one would do on
paper. We now present a brief sampling of an arithmetic package to support this goal. Selected strategies
are discussed that illustrate typical design choices. Appendix A lists the primary strategies in this family.
Full details are available in a technical report [8] and user’s manual [9].

– move-terms fnum side &optional (term-nums *)

With move-terms a user can move a set of additive terms numbered term-nums in relational formula
fnum from side (L or R) to the other side, adding or subtracting individual terms from both sides as
needed. term-nums can be specified in a manner similar to the way formula numbers are presented to
the prover. Either a list or a single number may be provided, as well as the symbol “*” to denote all
terms on the chosen side. Example: invoking (move-terms 3 L (2 4)) moves terms 2 and 4 from the
left to the right side of formula 3.

– cross-mult &optional (fnums *)

To eliminate divisions, cross-mult may be used to explicitly perform “cross multiplication” on one or
more relational formulas. For example, a/b < c/d will be transformed to ad < cb. The strategy determines
which lemmas to apply based on the relational operator and whether negative divisors are involved. Cross
multiplication is applied recursively until all outermost division operators are gone.

– cancel &optional (fnums *) (sign nil)

When the top-level operator on both sides of a relation in fnums is the same operator drawn from the
set {+,−, ∗, /}, cancel tries to eliminate common terms using a small set of rewrite rules and possible
case splitting. Cancellation applies when fnum has the form x ◦ y R x ◦ z or y ◦ x R z ◦ x. In the default
case, when sign is NIL, x is assumed to be (non)positive or (non)negative as needed for the appropriate

Strategy-Enhanced Interactive Proving and Arithmetic Simplification for PVS 5

rewrite rules to apply. Otherwise, an explicit sign can be supplied to force a case split so the rules will
apply. If sign is + or -, x is claimed to be strictly positive or negative. If sign is 0+ or 0-, x is claimed
to be nonnegative or nonpositive. If sign is *, x is assumed to be an arbitrary real and a three-way case
split is used. Example: (cancel 3 0+) tries to cancel from both sides of formula 3 after first splitting
on the assumption that the common term is nonnegative.

– factor fnums &optional (side *) (term-nums *) (id? nil)
factor! expr-loc &optional (term-nums *) (id? nil)

If the expression on side of each formula in fnums has multiple additive terms, factor may be used to
extract common multiplicative factors and rearrange the expression. The additive terms indicated by
term-nums are regarded as bags of factors to be intersected for common factors. Terms not found in
term-nums are excluded from this process. In the !-variant, the expr-loc argument supplies a location
reference to identify the target expression so that it may be factored in place. As an example, suppose
formula 4 has the form

f(x) = 2 * a * b + c * d - 2 * b

and the command “(factor 4 R (1 3))” is issued. Then the strategy will rearrange formula 4 to:

f(x) = 2 * b * (a - 1) + c * d

We provide several strategies for manipulating products or generating new products. This supports an
overall approach of first converting divisions into multiplications where necessary, then using a broad array
of tools for reasoning about multiplication. Three examples follow.

– permute-mult fnums &optional (side R) (term-nums 2) (end L)

For end = L, the action of permute-mult is as follows. Let the expression on side of a formula in fnums be a
product of terms, P = t1∗. . .∗tn. Identify a list of indices I (term-nums) drawn from {1, . . . , n}. Construct
the product ti1 ∗ . . . ∗ til

where ik ∈ I. Construct the product tj1 ∗ . . . ∗ tjm
where jk ∈ {1, . . . , n} − I.

Then rewrite the original product P to the new product ti1 ∗ . . . ∗ til
∗ tj1 ∗ . . . ∗ tjm . Thus the new

product is a permutation of the original set of factors with the selected terms brought to the left. For
end = R, the selected terms are placed on the right. Example: (permute-mult 3 L (4 2)) rearranges
the product on the left side of formula 3 to be t4 * t2 * t1 * t3, with the default association rules
making it internally represented as ((t4 * t2) * t1) * t3.

– mult-eq rel-fnum eq-fnum &optional (sign +)

Given a relational formula a R b and an antecedent equality x = y, mult-eq forms a new antecedent or
consequent relating their products, a∗x R b∗y. If R is an inequality, the sign argument can be set to one
of the symbols in {+, -, 0+, 0-} to indicate the polarity of x and y. Example: (mult-eq -3 -2 -)
multiplies the sides of formula −3 by the sides of equality −2, which are assumed to be negative.

– mult-ineq fnum1 fnum2 &optional (signs (+ +))

Given two relational formulas fnum1 and fnum2 having the forms a R1 b and x R2 y, mult-ineq forms a
new antecedent relating their products, a∗x R3 b∗y. If R2 is an inequality having the opposite direction
as R1, mult-ineq proceeds as if it had been y R′2 x instead, where R′2 is the reverse of R2. The choice
of R3 is inferred automatically based on R1, R2, and the declared signs of the terms. R3 is chosen to be
a strict inequality if either R1 or R2 is. If either formula appears as a consequent, its relation is negated
before carrying out the multiplication. Not all combinations of term polarities can produce useful results
with mult-ineq. Therefore, the terms of each formula are required to have the same sign, designated
by the symbols + and - in argument signs. Example: (mult-ineq -3 -2 (- +)) multiplies the sides of
inequality formula −3 by the sides of inequality −2, which are assumed to relate negative and positive
values, respectively.

Figure 3 illustrates these strategies by displaying several proof steps for lemma (1) (see Fig. 1).

6 Ben L. Di Vito

sin_terms_decr.1 :

[-1] 0 < a!1

[-2] a!1 <= PI / 2

|-------

{1} 1 > 2 *

((1 / (4 * (n!1 * n!1)

+ 2 * n!1))

* --1 * a!1 * a!1)

Rule? (PERMUTE-MULT 1 R 2 R)

Permuting factors in selected

expressions, this simplifies to:

sin_terms_decr.1 :

[-1] 0 < a!1

[-2] a!1 <= PI / 2

|-------

{1} 1 > 2 * --1 * a!1 * a!1 *

(1 / (4 * (n!1 * n!1)

+ 2 * n!1))

Rule? (CROSS-MULT 1)

Multiplying both sides of selected

formulas by LHS/RHS divisor(s),

this simplifies to:

sin_terms_decr.1 :

[-1] 0 < a!1

[-2] a!1 <= PI / 2

|-------

{1} 1 * (4 * (n!1 * n!1) + 2 * n!1)

> 2 * (--1 * a!1 * a!1)

Rule? (MULT-INEQ -2 -2)

Multiplying terms from formulas -2

and -2 to derive a new inequality,

this simplifies to:

sin_terms_decr.1 :

{-1} a!1 * a!1 <= (PI / 2) * (PI / 2)

[-2] 0 < a!1

[-3] a!1 <= PI / 2

|-------

[1] 1 * (4 * (n!1 * n!1) + 2 * n!1)

> 2 * (--1 * a!1 * a!1)

Fig. 3. Proof trace fragment for selected steps from Fig. 1

4 Extended Expression Language

Many prover rules accept PVS expressions as arguments, which take the form of literal strings such as
“2 * PI * a!1”. Strategies in our package may be supplied extended expressions as well as the familiar text
string form. This works equally well at the command line and within strategy definitions.

The main extensions provided are location references and textual pattern matching. Location references
allow a user to indicate a precise subexpression within a formula by giving a path of indices to follow when
descending through the formula’s expression tree. Pattern matching allows strings to be found and extracted
using a specialized pattern language that is based on, but much less elaborate than, regular expressions.

4.1 Location References

In the location reference form (! <ext-expr> i1 ... in), the starting point <ext-expr> must describe
the location of a valid PVS expression within the current sequent. Usually this is a simple formula number
or one of the formula-list symbols {+,−, ∗}. The index values {ij} are used to descend the parse tree to
arrive at a subexpression, which becomes the final value of the overall reference. Actually, the final value is a
list of expressions, which allows for wild-card indices to traverse multiple paths through the tree. Moreover,
the index values may include various other forms and indicators used to control path generation.

Location references may be used as arguments for certain strategies where a mere text string is inadequate.
For example, the factor! strategy can factor an expression in place using this feature even if the target
terms appear in the argument to a function. Thus, location references are reminiscent of array or structure
references in procedural programming languages.

An example of a simple location reference is (! -3 2), which evaluates to the right-hand side (argument
2) of formula -3. If this formula is “x!1 = cos(a!1)”, then the string form of the location reference is
“cos(a!1)”. Adding index values reaches deeper into the formula, e.g., (! -3 2 1) evaluates to “a!1”.
Breadth can be achieved as well as depth; (! -3 *) evaluates to a list containing “x!1” and “cos(a!1)”.

Index values and directives {ij} may assume one of the following forms:

Strategy-Enhanced Interactive Proving and Arithmetic Simplification for PVS 7

– An integer i in the range 1, . . . , k, where k is the arity of the function at the current point in the expression
tree. Paths follow the ith branch or argument, returning the argument as value if i is the last index. The
symbols L and R are synonyms for 1 and 2.

– The index value 0, which returns the function symbol of the current expression. If the function is itself
an expression, as f(x) in f(x)(y), indices after the 0 will retrieve components of the expression.

– The wild-card symbol *, which indicates that this path should be replicated for each argument expression,
returning values from all n paths.

– A list (j1 ... jm) of integers indicating which argument paths should be included for replication, i.e.,
a subset of the * case.

– One of the deep wild-card symbols {-*, *-, **}, which indicates that this path should be replicated as
many times as needed to visit all nodes in the current subtree. The values returned are the leaf objects
(terminal nodes) for -*, the nonterminal nodes for *-, and all nodes (subexpressions) for **.

– A text string serving as a guard to select desired paths from multiple candidates. If the current function
symbol matches the string, path elaboration continues. Otherwise, the path is terminated, returning an
empty list.

– A list (s1 ... sk) of strings that serves as a guard by matching each pattern si in the manner of
Section 4.2.

– A form (-> g1 ... gk) that serves as a go-to operator to specify a systematic search down and across
the subtree until the first path is found having intermediate points satisfying all the guards {gi} in
sequence. The form (->* g1 ... gk) returns all eligible paths.

Table 1 illustrates the formulation of location references using this notation.
Note that indexing works for both infix and prefix function applications. For arithmetic expressions, spe-

cial indexing rules result in some “flattening” of the parse tree during traversal. These conventions are more
convenient for arithmetic terms and correspond more closely to our usual algebraic intuition for numbering
terms. In particular, additive (multiplicative) terms are counted left to right irrespective of the associative
groupings that may be in effect. They are treated as if they were all arguments of a single addition/subtraction
(multiplication) operator of arbitrary arity.

In practice, not all of the location reference features are likely to be equally useful. We provide a variety
of traversal and search mechanisms to ensure some measure of thoroughness. Some users may choose to limit
themselves to simple numeric indexing.

Table 1. Examples of location reference expressions applied to the formulas below

Loc. reference Expr. strings Loc. reference Expr. strings

(! -2) r!1 = 2 * x!1 + 1 (! -1 L * *) x!1, r!1, y!1, r!1
(! -2 R) 2 * x!1 + 1 (! 1 R 1 **) sq(x!1 / 4),
(! -2 R 1) 2 * x!1 x!1 / 4, x!1, 4
(! -1 L 2 1) y!1 (! - "=") r!1 = 2 * x!1 + 1

(! 1 R 1) sq(x!1 / 4) (! -2 * "+") 2 * x!1 + 1

(! -2 *) r!1, 2 * x!1 + 1 (! 1 (-> "sq")) sq(x!1 / 4)

(! -1 L 2 *) y!1, r!1 (! 1 (-> "sq") 1) x!1 / 4

(! -1 L * 1) x!1, y!1 (! -1 (->* "*")) x!1 * r!1, y!1 * r!1

{-1} x!1 * r!1 + y!1 * r!1 > r!1 - 1

[-2] r!1 = 2 * x!1 + 1

|-------

[1] sqrt(r!1) < sqrt(sq(x!1 / 4))

8 Ben L. Di Vito

4.2 Pattern Matching

Each pattern pj in (? <ext-expr> p1 ... pn) is expressed as a text string using a specialized pattern
language. Unlike location references, pattern matches usually produce only a text string and lack a corre-
sponding CLOS object for a PVS expression. The patterns p1, . . . , pn are applied in order to the textual
representation of each member of the base expression list. In each case, matching stops after the first suc-
cessful match among the {pj} is obtained. All resulting output strings are collected and concatenated into a
single list of output strings.

A pattern string may denote either a simple or a rich pattern. Simple patterns are easier to express and
are expected to suffice for many everyday applications. When more precision is required, rich patterns offer
more expressive power.

Simple patterns allow matching against literal characters, whitespace fields, and arbitrary substrings.
Pattern strings comprise a mixture of literal characters and meta-strings for designating text fields. Meta-
strings denote either whitespace or non-whitespace fields. A whitespace field is indicated by a space character
in the pattern. A non-whitespace field is a meta-string consisting of the percent (%) character followed by a
digit character (0–9), which matches zero or more arbitrary characters in the target string.

Both capturing and non-capturing fields are provided. A capturing field causes the matching substring
to be returned as an output. The meta-string %0 denotes a noncapturing field, while those with nonzero
digits are capturing fields. If a nonzero digit d is the first occurrence of d in the pattern, a new capturing
field is thereby indicated. Otherwise, it is a reference to a previously captured field whose contents must be
matched. Table 2 illustrates the formulation of simple patterns using this notation.

Rich patterns follow the same basic approach as simple patterns, but add features for multiple matching
types and multiple text-field types. The match types include full and partial string matching as well as
top-down and bottom-up expression matching.

Table 2. Examples of simple pattern matching applied to the formulas below

Pattern Matching string(s) Captured fields

(? 1 "%1(r!1)") sqrt(r!1) sqrt

(? 1 "sqrt(sq(%1))") sqrt(sq(x!1 / 4)) x!1 / 4

(? -2 "r!1 = %1") r!1 = 2 * x!1 + 1 2 * x!1 + 1

(? 1 "%1(%0) <") sqrt(r!1) < sqrt

(? -1 "> %1 - %0") > r!1 - 1 r!1

(? 1 "%1(%0) < %1(%2)") All of formula 1 sqrt, sq(x!1 / 4)

{-1} x!1 * r!1 + y!1 * r!1 > r!1 - 1

[-2] r!1 = 2 * x!1 + 1

|-------

[1] sqrt(r!1) < sqrt(sq(x!1 / 4))

5 Higher-Order Strategies with Substitution

Extended expressions allow us to capture subexpressions from the current sequent. Next we add a parameter
substitution technique to formulate prover commands. To complete the suite, we add higher-order strategies
that substitute strings and formula numbers into parameterized commands. These features are intended
primarily for command line use. In LCF-family provers, ML scripting can achieve similar effects.

5.1 Parameter Substitution

A parameterized command is regarded as a template expression (actually, a Lisp form) in which embedded
text strings and special symbols serve as substitutable parameters. The outcome of evaluating extended

Strategy-Enhanced Interactive Proving and Arithmetic Simplification for PVS 9

expressions is used to carry out textual and symbolic substitutions. Each descriptor computed during evalu-
ation contains a text string and, optionally, a formula number and CLOS object. Descriptors are the source
of substitution data while the parameterized command is its target.

Within this framework, we allow two classes of substitutable data: literal text strings and Lisp symbols.
The top-level s-expression is traversed down to its leaves. Wherever a string or symbol is encountered,
a substitution is attempted. The final command thus produced will be invoked as a prover command in
the manner defined for the chosen higher-order strategy. (In Lisp programming terms, this process can
be imagined as evaluating a backquote expression with specialized implicit unquoting. It also has some
similarities to substitution in Unix shell languages as well as the scripting language Tcl.)

Parametric variables for substitution are allowed as follows. Within literal text strings, the substrings
%1, . . . , %9 serve as implicit text variables. The substring %1 will be replaced by the string component of the
first expression descriptor. The other %-variables will be replaced in order by the corresponding strings of
the remaining descriptors.

Certain reserved symbols beginning with the $ character serve as symbolic parameters. Such symbols
are not embedded within strings as are the %-variables; they appear as stand-alone symbols within the list
structure of the parameterized command. The symbols $1, $2, etc., represent the first, second, etc., expression
descriptors from the list of available descriptors.

Variants of these symbols exist to retrieve the text string, formula number, and CLOS object components
of a descriptor. These are needed to supply arguments for built-in prover commands, which are not cognizant
of extended expressions. The symbols $1s, $1n and $1j serve this purpose. Aggregations may be obtained
using the symbol $* and it variants. Table 3 summarizes the special symbols usable in substitutions.

Table 3. Special symbols for command substitution

Symbol Value

$1, $2, ... nth expression descriptor
$* List of all expression descriptors
$1s, $2s, ... nth expression string
$*s List of all expression strings
$1n, $2n, ... Formula number for nth expression
$+n List of formula numbers (no duplicates)
$*n List of all formula numbers (includes duplicates)
$1j, $2j, ... CLOS object for nth expression
$*j List of all CLOS objects

5.2 Invocation Strategies

Next we describe a set of general-purpose, higher-order strategies. They are not specialized for arithmetic.
Some offer generic capabilities useful in implementing other strategies for specific purposes. For each of these
strategies, multiple expression specifications may be supplied as arguments. In such cases, each specification
gives rise to an arbitrary number of descriptors. All descriptor lists are then concatenated to build a single
list before substitutions are performed. Table 4 lists the strategies provided; several are discussed below.

invoke command &rest expr-specs

This strategy is used to invoke command after applying substitutions extracted by evaluating the expression
specifications expr-specs.

As an example, suppose formula 3 is

f(x!1 + y!1) <= f(a!1 * (z!1 + 1))

Then the command

10 Ben L. Di Vito

Table 4. Summary of higher-order strategies

Syntax Function

(invoke command &rest expr-specs) Invoke command by instantiating
from expressions and patterns

(for-each command &rest expr-specs) Instantiate and invoke separately
for each expression

(for-each-rev command &rest expr-specs) Invoke in reverse order
(show-subst command &rest expr-specs) Show but don’t invoke the

instantiated command
(claim cond &opt (try-just nil) Claims condition on terms

&rest expr-specs)

(name-extract name &rest expr-specs) Extract & name expr, then replace

(invoke (case "%1 <= %2") (? 3 "f(%1) <= f(%2)"))

would apply pattern matching to formula 3 to create bindings %1 = "x!1 + y!1" and %2 = "a!1 * (z!1 + 1)",
which would result in the prover command

(case "x!1 + y!1 <= a!1 * (z!1 + 1)")

being invoked. An alternative way to achieve the same effect using location referencing is the following:

(invoke (case "%1 <= %2") (! 3 * 1))

As another example, suppose we wish to hide most of the formulas in the current sequent, retaining only
those that mention the sqrt function. We search for all formulas containing a reference to sqrt using a
simple pattern, then collect all the formula numbers and use them to invoke the hide-all-but rule:

(invoke (hide-all-but ($+n)) (? * "sqrt"))

for-each command &rest expr-specs

This strategy is used to invoke command repeatedly, with a different substitution for each expression gener-
ated by expr-specs. The effect is equivalent to applying (invoke command e_i) n times.

As an example, suppose we wish to expand every function in the consequent formulas having the string
“cos” as part of its name. The following command carries this out, assuming there is only one instance per
formula.

(for-each (expand "%1") (! + *- ("cos") 0))

for-each-rev command &rest expr-specs

This strategy is identical to for-each except that the expressions are taken in reverse order.
Imagine we wish to find all antecedent equalities and use them for replacement, hiding each one as we

go. This needs to be done in reverse order because formula numbers will change after each replacement.

(for-each-rev (replace $1n :hide? t) (! - "="))

claim cond &optional (try-just nil) &rest expr-specs

The claim strategy is basically the same as the primitive rule case, except that the condition is derived
using the parameterization technique. The condition presented in cond is instantiated by the terms found in
expr-specs. Argument try-just allows the user to try proving the justification step (the second case resulting
from the case split).

For example, to claim that a numerical expression lies between two others, we could use something like

Strategy-Enhanced Interactive Proving and Arithmetic Simplification for PVS 11

(claim "%1 <= %2 & %2 <= %3" nil "a/b" "x+y" "c/d")

to generate a case split on the formula “a/b <= x+y & x+y <= c/d”.
Invocation strategies are useful as building blocks for more specialized strategies that users might need

for particular circumstances. Extended expressions can support an alternative to the more code-intensive
strategy-writing style that requires accessing the data structures (CLOS objects) representing PVS ex-
pressions. This alternative can make lightweight strategy writing more accessible to users without a deep
background in Lisp programming.

6 Related Work

Tactic-based proving was pioneered by Milner and advanced by many others, beginning with the work on
Edinburgh LCF [11]. The introduction of ML and its use for accessing subterms was also introduced in LCF.
Constable and his students developed the Nuprl system [6], which included heavy reliance on tactic-based
proof techniques. Tactic-based proving also has been used extensively in more recent interactive provers such
as HOL [10], Isabelle [16] and Coq [12]. Although much of this has been devoted to low-level automation,
there also have been higher level tactics developed.

In the case of PVS, strategy development has not been as much a focus as tactic development has been
for provers in the LCF family. Partly this is due to greater use of decision procedures in PVS as well as an
increasing emphasis on rewrite rules. For example, Shankar [17] sketches an approach to the use of rewrite
libraries for arithmetic simplification. While these methods are certainly helpful, we believe they need to be
augmented by proof interaction of the sort we advocate.

Several researchers have developed PVS strategy packages for specialized types of proving. Examples
include a mechanization of the TRIO temporal logic [1], a proof assistant for the Duration Calculus [18], and
the verification of simple properties for state-based requirements models [7]. A notable example is Archer’s
account of the TAME effort [2], which has a good discussion on developing PVS strategies for timed automata
models and using them to promote “human-style” theorem proving.

In the area of arithmetic strategy packages for PVS, a semi-decision procedure for the field of real
numbers [13], which had been developed originally for Coq, was recently ported to PVS. This package is called
Field; it achieves simplification by eliminating divisions and rearranging multiplicative terms extensively.
Field has been designed to use some Manip strategies for working with multiplication. César Muñoz continues
to enhance Field and maintains an active line of development.

Our work on Manip emphasizes applied interactive proving, features for extracting terms from the working
sequent, and flexible mechanisms for exploiting such terms. Many PVS strategy approaches stress control
issues, giving less attention to the equally important data issues. Only by placing nontrivial term-access
facilities at the user interface can the full potential of interactive strategies be realized.

In a typical control-oriented approach, a strategy might have several plausible sets of rules to apply in
speculative fashion. If a given try fails to produce results, bracktracking is performed and an alternative is
attempted. By placing more emphasis on data or proof state, the strategy can determine which alternative
to select based on attributes of the current state. Allowing users to indicate relevant terms from the sequent
sharpens the focus even further during interactive proving.

Currently under study are term access features that allow selection by mouse gestures. “Proof by pointing”
techniques [3] are examples of applicable methods that can improve usability in this area. Once selected, a
term can be matched with an extended expression for locating it. This can be done without burdening the
user to derive the extended expression.

7 Conclusion

The Manip arithmetic package has been used experimentally at NASA Langley and made available to the
PVS user community. Along with Field [13], it is now being used to prove new lemmas as they are introduced
in Langley’s PVS libraries [14]. Proofs for the real analysis and vectors libraries, in particular, have made
regular use of Manip strategies. As of May 2003, a total of 325 Manip strategy instances were counted in the

12 Ben L. Di Vito

proofs distributed as part of the Langley libraries. Further evaluation is needed to gauge effectiveness and
suggest new strategies.

Tactic-based theorem proving still holds substantial promise for automating domain-specific reasoning.
In the case of PVS, much effort has gone into developing decision procedures and rewrite rule capabilities.
While these are undoubtedly valuable, there is still ample room for other advances, particularly those that
can leverage the accumulated knowledge of experienced users of deduction systems. Such users are well poised
to introduce the wide variety of deductive middleware needed by the formal methods and computational
logic communities. Our tools and techniques aim to further this goal.

Future activities will focus on refining the techniques and introducing new strategy packages for additional
domains. One domain of interest is reasoning about sets, especially finite sets. We expect that ideas from
the arithmetic strategies can be readily adapted.

Acknowledgments

The need for this package and many initial ideas on its operation were inspired by Ricky Butler of NASA
Langley. Additional ideas and useful suggestions have come from César Muñoz of NIA, and John Rushby
and Sam Owre of SRI.

References

1. A. Alborghetti, A. Gargantini, and A. Morzenti. Providing automated support to deductive analysis of time
critical systems. In Proc. of the 6th European Software Engineering Conf. (ESEC/FSE’97), volume 1301 of
LNCS, pages 221–226, 1997.

2. Myla Archer. TAME: Using PVS strategies for special-purpose theorem proving. Annals of Mathematics and
Artificial Intelligence, 29(1-4):139–181, 2000.

3. Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In Proc. of Theoretical Aspects of Computer Software
(TACS’94), volume 789 of LNCS, 1994.

4. R.W. Butler, V. Carreño, G. Dowek, and C. Muñoz. Formal verification of conflict detection algorithms. In
Proceedings of the 11th Working Conference on Correct Hardware Design and Verification Methods CHARME
2001, volume 2144 of LNCS, pages 403–417, Livingston, Scotland, UK, 2001.

5. Vı́ctor Carreño and César Muñoz. Aircraft trajectory modeling and alerting algorithm verification. In Theorem
Proving in Higher Order Logics: 13th International Conference, TPHOLs 2000, pages 90–105, 2000.

6. R. L. Constable and et al. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall,
1986.

7. Ben L. Di Vito. High-automation proofs for properties of requirements models. Software Tools for Technology
Transfer, 3(1):20–31, September 2000.

8. Ben L. Di Vito. A PVS prover strategy package for common manipulations. NASA Technical Memorandum
NASA/TM-2002-211647, April 2002.

9. Ben L. Di Vito. Manip User’s Manual, Version 1.1, February 2003. Complete package available through NASA
Langley PVS library page [14].

10. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Environment for Higher-Order
Logic. Cambridge University Press, 1993.

11. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic of Computation. Springer
LNCS 78, 1979.

12. INRIA. The Coq Proof Assistant Reference Manual, Version 7.1, October 2001.
13. C. Muñoz and M. Mayero. Real automation in the field. NASA/CR-2001-211271 Interim ICASE Report No. 39,

December 2001.
14. NASA Langley PVS library collection. Theories and proofs available at

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS2-library/pvslib.html.
15. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification for fault-tolerant

architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering, 21(2):107–125,
February 1995.

16. L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer LNCS 828, 1994.
17. N. Shankar. Arithmetic simplification in PVS. Final Report for SRI Project 6464, Task 15; NASA Langley

contract number NAS1-20334., December 2000.
18. J. Skakkebaek and N. Shankar. Towards a duration calculus proof assistant in PVS. In Third Intern. School and

Symp. on Formal Techniques in Real Time and Fault Tolerant Systems, volume 863 of LNCS, 1994.

Strategy-Enhanced Interactive Proving and Arithmetic Simplification for PVS 13

A Algebraic Manipulation Strategies

The following list summarizes the set of manipulation strategies. A few variants have been omitted in the
interest of brevity.

Syntax Function

(swap lhs operator rhs &opt (infix? T)) x ◦ y =⇒ y ◦ x
(group term1 operator term2 term3 L: x ◦ (y ◦ z) =⇒ (x ◦ y) ◦ z

&opt (side L) (infix? T)) R: (x ◦ y) ◦ z =⇒ x ◦ (y ◦ z)
(swap-group term1 operator term2 term3 L: x ◦ (y ◦ z) =⇒ y ◦ (x ◦ z)

&opt (side L) (infix? T)) R: (x ◦ y) ◦ z =⇒ (x ◦ z) ◦ y
(swap-rel &rest fnums) Swap sides and reverse relations
(equate lhs rhs &opt (try-just nil)) . . . lhs . . . =⇒ . . . rhs . . .
(has-sign term &opt Claims term has sign indicated

(sign +) (try-just nil))

(mult-by fnums term &opt (sign +)) Multiply both sides by term
(div-by fnums term &opt (sign +)) Divide both sides by term
(split-ineq fnum &opt (replace? nil)) Split ≤ (≥) into < (>) and = cases
(flip-ineq fnums &opt (hide? T)) Negate and move inequalities

(move-terms fnum side Move additive terms to other side
&opt (term-nums *))

(isolate fnum side term-num) Move all but one term
(isolate-replace fnum side term-num Isolate then replace with equation

&opt (targets *))

(cancel &opt (fnums *) (sign nil)) Cancel terms from both sides
(cancel-terms &opt (fnums *) (end L) Cancel speculatively & defer proof

(sign nil) (try-just nil))

(op-ident fnum &opt Apply operator identity to rewrite
(side L) (operation *1)) expression

(cross-mult &opt (fnums *)) Multiply both sides by denom.
(cross-add &opt (fnums *)) Add subtrahend to both sides
(factor fnums &opt (side *) Extract common multiplicative factors

(term-nums *) (id? nil)) from additive terms given
(transform-both fnum transform Apply transform to both

&opt (swap nil) (try-just nil)) sides of formula

(permute-mult fnums &opt (side R) Rearrange factors in a product
(term-nums 2) (end L))

(name-mult name fnum side Select factors, assign name to
&opt (term-nums *)) their product, then replace

(recip-mult fnums side) x/d =⇒ x ∗ (1/d)
(isolate-mult fnum &opt (side L) Select a factor and divide both

(term-num 1) (sign +)) both sides to isolate factor
(mult-eq rel-fnum eq-fnum Multiply sides of relation by

&opt (sign +)) sides of equality
(mult-ineq fnum1 fnum2 Multiply sides of inequality by

&opt (signs (+ +))) sides of another inequality
(mult-cases fnum Generate case analyses for products

&opt (abs? nil) (mult-op *1))

(mult-extract name fnum &opt Extract selected terms, name
(side *) (term-nums *)) replace them, then simplify

