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Chapter 1

Introduction

The aviation industry is gradually moving toward the use of integrated modular avionics (IMA)
for civilian transport aircraft. IMA o�ers economic advantages by hosting multiple avionics ap-
plications on a single hardware platform. An important concern for IMA is ensuring that
applications are safely partitioned so they cannot interfere with one another, particularly when
high levels of criticality are involved. Furthermore, IMA implementations would allow applica-
tions of di�erent criticality to reside on the same platform, raising the need for strong assurances
of partitioning.

NASA's Langley Research Center (LaRC) has been pursuing investigations into the avionics
partitioning problem. This research is aimed at ensuring safe partitioning and logical noninter-
ference among separate applications running on a shared Avionics Computer Resource (ACR).
The investigations are strongly inuenced by ongoing standardization e�orts, in particular, the
work of RTCA committee SC-182, and the recently completed ARINC 653 application executive
(APEX) interface standard [1].

In support of this e�ort, we have developed a formal model of partitioning suitable for evalu-
ating the design of an ACR. The model draws from the conceptual and mathematical modeling
techniques developed for computer security applications. This report presents a formulation
of partitioning requirements expressed �rst using conventional mathematical concepts and no-
tation, then formalized using the language of PVS (Prototype Veri�cation System). PVS is
an environment for formal speci�cation and veri�cation developed at SRI International's Com-
puter Science Laboratory [9]. A description of PVS is located on the World-Wide Web at URL
http://www.csl.sri.com/pvs/overview.html. The system is freely available under license
from SRI.

This work was performed in the context of a broader program of applied formal methods
activity at LaRC [2]. Additional background and overview material on the use of formal methods
in aerospace applications can be found in Rushby's formal methods handbooks [12, 13], and in
a recent set of NASA guidebooks [7, 8].
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Chapter 2

Avionics Computer Resource

The Avionics Computer Resource1 (ACR) is an embedded generic computing platform that
is able to host multiple applications (avionics functions), provide space (memory) and time
(scheduling) protection for the applications as well as interrupt routing from a single source
to the multiple applications. An ACR will be con�gurable and will apply to a wide range of
aircraft types. The platform provides logical separation of applications present on the same
ACR. It also provides a means to detect and annunciate any attempts to violate separation
(fault containment).

2.1 De�nitions

Several key terms are used throughout the following presentation. We collect them here to help
clarify the conceptual model.

� Applications: Comprise the independent, active software entities (executable programs)
that perform avionics functions.

� Input ports: Connection points from hardware devices external to the computing sub-
system, e.g., sensors, cockpit switches and controls.

� Output ports: Connection points to hardware devices external to the computing sub-
system, e.g., actuators, cockpit instruments and displays.

� Resources: Internal entities needed by applications to perform their functions, including
processor execution time, memory space, disk space, communication links, etc.

� Processors: Hardware computing devices capable of executing or interpreting the soft-
ware instructions issued by an application.

� Kernel: The core component of a processor's operating system, which is responsible
for enforcing partitioning among applications in addition to other resource management
functions.

1The term \resource" is overloaded in this domain. In the name \ACR," resource refers to a large structure

composed of processor hardware and operating system software. Most of the time, however, we use the term

resource to refer to smaller entities such as memory locations.
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� Services: Individual functions or operations that may be requested from a kernel by
either applications or higher layers of an operating system.

2.2 Operating System

A software operating system is a fundamental part of the ACR platform. Its purpose is to
ensure that:

� The execution of an application does not interfere with the execution of any other appli-
cation.

� Dedicated computer resources allocated to applications do not conict or lead to memory,
schedule, or interrupt clashes.

� Shared computer resources are allocated to applications in a way that maintains the
integrity of the resources and the separation of the applications.

� Resources are allocated to each application independently of the presence or absence of
other applications.

� Standardized interfaces to applications are provided.

� Software applications and the hardware resources needed to host them are independent.

The ACR operating system will provide highly robust, kernel-level services that may be used
directly by the application developer or may serve as the basis for a more extensive operating
system. In actual practice, the kernel services must be developed in accordance with the
requirements of RTCA DO-178B [10] (or other applicable guidelines) and must be able to meet
the highest level of criticality supported by DO-178B. While speci�c ACR implementations may
be quali�ed to lower levels of integrity, kernel services must be su�cient to ensure isolation of
applications of varying levels of criticality residing on the same ACR. The kernel services and
the ACR itself must be quali�ed at or above the level of the most critical application allowed
to reside on the ACR.

A key attribute of the ACR kernel is the requirement for a robust partition management
mechanism. The partitioning mechanism underlies all aspects of the kernel. The kernel controls
scheduling of partitions through a de�ned, deterministic scheduling regime (�xed round-robin
algorithm or rate monotonic algorithm); controls communications between partitions; and pro-
vides consistent time management services, low-level I/O services, and ACR-level health man-
agement services. Figure 2.1 shows the ACR reference architecture assumed by SC-182.

To carry out its partitioning function, an ACR manages all hardware resources residing
within the ACR and monitors access to all hardware resources connected to the ACR. The ACR
kernel runs on the ACR hardware with su�cient control over all hardware and software resources
to ensure partitions are noninterfering. The kernel performs an essential access mediation
function that is independent of other services provided by the ACR. Access mediation must be
complete, tamper-proof, and assured, where these attributes are de�ned as follows:

� Complete. There shall be no way for software running in any partition to bypass the
kernel and access hardware resources not under the kernel's control.

3
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Figure 2.1: ACR Reference Architecture.

� Tamper-proof. There shall be no way for software in any partition to tamper with the
kernel or its data so as to subvert the kernel's control of system resources.

� Assured. The kernel shall contain minimal functionality and shall meet all of the regu-
lator's requirements for the criticality rating of the overall ACR.

Collectively these attributes ensure that an ACR has the minimum structural properties
needed to achieve high-integrity partitioning. An ACR must possess these attributes regard-
less of which operating system services are o�ered to applications running within the ACR's
partitions.

Some additional assumptions about the way applications are handled are listed below.

� A computing hardware platform is available that is capable of supporting basic operating
system functions. The platform allows an executive to manage hardware and software
resources; achieve separate execution domains and enforce separation of higher software
layers; protect itself from faults, errors, or tampering that might defeat partitioning; and
mediate all shared access to hardware and software resources according to an established
policy.

� The kernel executes in its own protected domain with the highest privilege level available
on the computer. Services are requested through a well-de�ned interface mechanism
allowing users to pass parameters and receive results.

� Partitions de�ne the boundaries of resource protection. If processes or tasks are provided
within partitions, ACR resource protection is not extended to enforce separation among
the processes or tasks.

� It is possible to have multiple instances of the same application within an ACR con�gura-
tion. In such cases, each instance is considered separate and independent, and is protected
from the other instances as if they were dissimilar applications.
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Chapter 3

Formalizing Partitioning

We begin the formalization discussion by motivating the approach taken. A brief overview of
the rationale is presented next. The complete formal models appear in Chapters 4 and 5. Note
that the scope of the formal models is limited to issues of space partitioning. Time partitioning
and other notions of separation are not covered in this report.

3.1 Security-Oriented Noninterference

Research in computer security has been active for nearly 30 years. Three broad problem areas
are generally recognized by the security community: 1) con�dentiality (secrecy), 2) integrity
(no unauthorized modi�cation), and 3) denial of service. Much study has been directed at DoD
security needs, e.g., the \multilevel security" problem, which is primarily concerned with con-
�dentiality. In this work, the motivation comes from an operating environment where multiple
users access a common computer system. The users have di�erent access permissions and the
information they access is marked with di�erent levels of sensitivity. The goal is to prevent
users from viewing information they are not authorized to see.

While many security models have been devised to characterize and formalize security, re-
searchers have had much success with the family of noninterference models. Originally in-
troduced to address the con�dentiality problem, these models can be applied to the integrity
problem as well, which is the main concern in achieving space partitioning.

Noninterference models focus on the notion of programs executing on behalf of (di�erently)
authorized users. Each such program a�ects the system state in various ways as instructions
are executed. Users may view portions of the system state through these programs. What
noninterference means in this context is that if user v is not authorized to view information
generated by user u, then the instructions executed by u's program may not inuence (or
interfere with) the computations performed by v's program. In other words, no information
that v is able to view should have been inuenced by anything computed by u.

Goguen and Meseguer [4, 5] proposed the �rst noninterference model. Paraphrasing their
model, the basic noninterference requirement can be stated as follows:

R(u; v) � O([[w]]; v) = O([[P (w; u)]]; v)

where R(u; v) indicates that v may not view the outputs of u, [[w]] is the system state that
results after executing instruction sequence w, P (w; u) is the sequence w with all of u's instruc-
tions purged from it, and O(s; v) extracts from the system state those outputs viewable by v

5



S’P(w,u):

w: S
u uv v

u uv v

Figure 3.1: Instruction streams in the noninterference model.
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Figure 3.2: ACR devices (internal) vs. avionics devices (external).

(�gure 3.1). What this assertion requires is that v's view of the state is the same regardless of
whether u's instructions are executed. Hence, u cannot \interfere" with v. After Goguen and
Meseguer's original formulation, other researchers introduced variations and extensions of their
model for various purposes. Most important were the intransitive versions of noninterference
formulated by Haigh and Young [6] and Rushby [11].

While the noninterference model is a powerful tool, its central requirement is too strong
to be useful in a formalization of partitioning. The strict separation induced by this model is
desirable in a security context, but is too con�ning in the IMA context. The reason is that
communication between ACR partitions is expressly allowed, albeit under controlled conditions.
Two types of communication can exist in an ACR environment: direct communication between
partitions supported by operating system services, and indirect communication taking place
through sharing or multiple access to avionics devices. For this reason, we make a distinction
between \internal" (ACR) and \external" (avionics) devices (�gure 3.2). The upshot is that it
is permissible, under controlled conditions, for an application u to inuence the computations
of another application v, making a strict prohibition of \interference" too strong a requirement.
It is possible to create a conditional noninterference model with suitable exemptions built in,
but this runs the risk of exempting too much system behavior. Instead, the modeling approach
we have selected draws from the essence of the noninterference concept and embeds it in a
somewhat modi�ed framework.
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3.2 Conceptual Approaches

When considering the problem of formalizing partitioning, two broad approaches suggest them-
selves based on the nature of system modeling. One is a glass-box approach to modeling, where
the outlines of internal system structure are known and explicitly represented. Conversely, a
black-box approach abstracts away from the internal structure of the system and considers
only the externally visible behavior of the system. We will �nd it useful to draw from both
conceptual approaches in our adaptation of the noninterference concept.

3.2.1 Glass-box Approach

In the glass-box approach, we represent some key aspects of the internal structure of the ACR
and the execution of applications. Typically, a state machine model is used to capture this
structure and to formalize behavior within the system. The following steps are likely to be
required:

� Model computer resources and applications.

� Model rules for resource allocation and access attempts by application software.

� Incorporate state machine to model the ACR.

� Specify partitioning as a property of instruction execution and OS service invocation|no
improper accesses are allowed.

Using this approach, we would want to specify that applications access only those resources
allocated to them and that the kernel maintains the separation of allocated resources.

3.2.2 Black-box Approach

In the black-box approach, we avoid representing aspects of the internal structure of the ACR
and focus instead on the externally observable behavior that results from executing applications.
Typically, an execution trace model is used to capture the observable behavior of the candidate
system, where it is compared against the behavior of a reference system. The two alternatives
are then required to be equivalent in some sense. In our case the two alternatives would be
the desired integrated system and a �ctitious federated system of equivalent functionality. A
comparison of behavior between the two alternative systems is the means of capturing key
system requirements. The following steps are likely to be required:

� Model ACR as a process with external port interfaces.

� Map ACR into an equivalent federated system (set of processes).

� Use a trace-based formalism to express process behaviors.

� Specify partitioning as a property that admits only behaviors that can be implemented
on the federated system.

7



Fault tolerance:

Distributed (replicated) system =) Uniprocessor system

Partitioning (noninterference):

Uniprocessor system =) Distributed (federated) system

Figure 3.3: Relationship of RCP and ACR modeling approaches.

In essence, a partitioning property expressed in this manner asserts that no behaviors are
allowed that take advantage of the multiple applications executing on a shared processor to
compute results unobtainable in an equivalent federated system. This approach is somewhat
indirect in that it does not actually prohibit the improper sharing of dedicated resources. What
it does prohibit are computations that depend on such sharing, in e�ect, limiting the sharing
to those cases where they have no impact on the outcome of the overall system computations.

3.3 Modeling Partitioning

The black-box approach is appealing because it allows for a more abstract, independent expres-
sion of partitioning requirements. This enables a broader variety of actual system designs to �t
within the scope of the model. Unfortunately, by itself this modeling approach is inadequate
to capture all that we need. Consequently, we will develop a model that has the avor of the
black-box concept at the higher levels while adopting the more direct glass-box approach to
deal with representation of internal system structure.

Drawing on LaRC's work with the Reliable Computing Platform (RCP) [3], our modeling
approach resembles the similar technique of comparison against a \gold standard" (�gure 3.3).
In RCP, a comparison between a distributed implementation and a single-processor implementa-
tion was used to formalize a notion of fault tolerance. In an analogous way, we use a comparison
between a federated system and an integrated system to formalize a notion of noninterference
for ACRs. Interestingly, the role of gold standard switched from the single processor system
(in RCP) to the distributed system in the present model.

In both types of comparison:

� The application suites are the same.

� We are comparing the e�ects of running applications in two di�erent execution environ-
ments.

� We are trying to rule out undesirable behaviors that might result when moving from the
standard (assumed correct) architecture to the new (desired) architecture.

Before developing the model in full, we begin with a sketch of a formalization process that
could be used to capture the high level concept of partitioning. The goal is to elucidate what
we mean by partitioning and develop some intuition about the domain without yet introducing
the full framework. The following steps summarize the key parts of the idealized method:
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App1: loop App2: loop

read sensor S into x; read sensor T into u;

y := x + 1; v := u + 1;

write y to actuator A; write v to actuator B;

end end

Figure 3.4: Sample system containing two applications.

1. Given an ACR and its applications, map them into an equivalent federated system (each
partitioned application in its own box).

2. Model the externally visible behavior of the ACR with execution trace T0.

3. Assign traces T1; . . . ; Tn to the component behaviors in the federated system.

4. Require that if L(T1; . . . ; Tn) is the set of feasible interleavings of T1; . . . ; Tn,
then T0 2 L(T1; . . . ; Tn) is a valid consequence.

What this scheme aims to do is rule out the presence of any observable behaviors in the
ACR that cannot be duplicated, at least in principle, by an equivalent federated system. In
other words, if the applications were migrated from a federated to an integrated architecture, no
new system behaviors (modulo minor scheduling di�erences) could be introduced. One conse-
quence of this approach is the limitation that certain memory sharing arrangements cannot be
accommodated, e.g., many of those involving multiple readers and writers. Standard practice,
however, in avionics architectures is to strictly avoid such sharing schemes, thus making the
limitation moot in nearly all implementations.

3.4 Example Scenarios

To illustrate this high-level partitioning concept, we introduce a simple example of an ACR
supporting two applications, App1 and App2. Each carries out a cyclic computation of reading
a value from a sensor, incrementing it, then sending the new value to an actuator. Figure 3.4
shows the structure of this sample system.

Let us assume for the sake of illustration that the ACR implementation has a aw causing
the memory space for some variables in the two applications to overlap. In particular, assume
that both y from App1 and v from App2 are allocated the same space in memory. We will
consider the e�ect of this aw and how it might be manifested in the execution traces.

A typical schedule for running the two applications on an ACR would execute one loop
iteration of App1 followed by one iteration from App2. After each application has executed
once, we would have a trace something like the following:

T0 = h (S; 7); (A; 8); (T; 12); (B; 13) i

These trace events record the observable inputs and outputs at the external avionics interface.
Note that the assumed aw has caused no incorrect behavior in this case.
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If we now map these applications onto their federated system equivalent, each application
would run on its own processor in the absence of the other. Rather than two interleaved
instruction sequences, each machine would execute a single instruction stream from a single
application. Assuming the same inputs are presented to the federated system interface, we
would get the following traces for the two processors in the federated system:

T1 = h (S; 7); (A; 8) i

T2 = h (T; 12); (B; 13) i

Obviously, trace T0 is a valid interleaving of the separate traces T1 and T2, reecting our
intuition that nothing improper occurred during this execution scenario.

Now consider a di�erent way to schedule the execution of the two applications on the ACR.
Let App1 run only part way down its �rst iteration so that the assignment statement is executed
but the write operation to the actuator is not. App1 is suspended at this point and App2 executes
one complete iteration. Then App1 is resumed and �nishes its loop iteration. This schedule will
result in the following trace:

T 0

0
= h (S; 7); (T; 12); (B; 13); (A; 13) i

Notice how this schedule has exposed the implementation aw. The value App1 sends to actuator
A is 13, not 8, due to the variable overlap condition. The value of 8 it had computed was
overwritten by App2, and App2's value is the one that was sent to the actuator. Notice further
how it is impossible to obtain T 0

0
as a valid interleaving of T1 and T2. The actuator value of

13 from App1 should not arise from a sensor input of 7. The computation represented by T 0

0

simply could not have occurred in the federated system.
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Chapter 4

A Formal Model of Resource

Partitioning

A formal model of ACR architectures and their partitioning requirements is presented below.
The presentation begins with an informal discussion of the modeled entities and overall ap-
proach. Next, a generic model is introduced using informal mathematics. This is followed by
three instances of the generic model expressed in the formal notation of PVS. The three in-
stances investigate various system designs that include di�erent combinations of features and
their access control mechanisms. Excerpts from the PVS theories are presented below. The full
text of the PVS theories can be found in Appendices A.1, B.1, and C.1.

We draw a distinction between partitioning requirements that apply to resources accessible
to applications, and requirements that apply to private data held by the kernel. The overall
partitioning model is divided into two parts based on this distinction. This chapter introduces
the formalism for showing when application resources are protected from direct interference
by other applications. Interpartition communication implemented by the kernel (or other ACR
entities) presents the possibility of interference occurring within the kernel's domain. Chapter 5
develops the formalism for showing when the kernel can be considered free of aws from this
second type of interference.

4.1 Basic Framework

There are six aspects of modeling we will be concerned with: representation, computation,
separation, requirement, policy, and veri�cation. Each area is described below informally.
Later this framework will be used to present the formalizations that follow.

� Representation. The basic entities of an ACR need to be represented, at least abstractly,
as the �rst step in modeling. The set of applications or partitions is represented as a set
of IDs or indices. Basic information units are assumed, corresponding to bits, bytes or
whatever the smallest accessible unit happens to be. A resource space is assumed, which
includes memory locations, elements of processor state, and memory-like devices. A
resource state is considered to be a mapping from resources to information units. Finally,
the basic computation step is denoted by the term command, which includes processor
instructions, kernel service calls, and possibly other (atomic) operations.
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� Computation. The elaboration of computation in the system is based on the execution
of commands. Each command maps the values of some subset of resources into a set of
results that are written to other resources. A sequence (list) of commands and the sys-
tem's response constitute a computation. A recursive de�nition of system state resulting
from the cumulative application of commands is constructed. Similarly, a computation
trace containing the computed results from each command in a list is another view of
computation.

� Separation. Given a notion of computation as the elaboration of a sequence of com-
mands, the next step is to consider system responses to alternative command sequences.
In particular, the command sequences formed by purging all commands but those belong-
ing to a single partition will be considered. Taking the response traces resulting from
the separate execution of all the purged command streams, we will compare them against
segments of the integrated-system trace.

� Requirement. Having formed these trace pairs, one from the original command stream
and the other from the purged command streams, we stipulate the partitioning require-
ment as equality of the two traces. If this condition is always obtained, then we know
that the same set of computations will always result, whether performed in integrated or
separated fashion.

� Policy. To achieve strong partitioning, it is necessary for the ACR to properly allocate
resources and enforce access to those resources according to a suitable policy. The policy
and system design are chosen to ensure that the partitioning requirement is always met.

� Veri�cation. Finally, having modeled computation for the system features of interest,
and captured the allocation and enforcement policy, it remains to show that the policy is
a su�cient condition for the partitioning requirement. A proof is carried out to establish
this result.

4.2 Mathematical Formulation

In this section we develop the key concepts of the partitioning model in the notation of informal
mathematics. Later sections will present the formalized model cast in the PVS notation. The
presentation below is only a sketch; many of the lower level details are deferred until the PVS
formulation. What we wish to capture �rst is the essence of the model and its partitioning
requirement for denoting the combined e�ect of separate execution.

4.2.1 Representation

Applications execute in an environment where the collective state of all applications running on
an ACR is modi�ed in response to each instruction or kernel service. This state includes main
memory areas allocated to applications, state bits in the processor itself, and certain devices
that have memory-like semantics. Individual elements of the state reside in a set of locations
called resources, denoted R. The value held by a resource is an unspeci�ed information unit
drawn from the set I . The current resource state is given by a mapping S : R! I .
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Applications compute by executing commands, which include ordinary machine instructions
(either native, emulated, or interpreted), kernel service primitives, and possibly other opera-
tions. Each is considered an atomic operation in the model, reading a set of arguments from
the current state and writing a set of results to update the state. A command from the set
K is a tuple (i; t; a; f; r), where i is the ID of the application invoking the command, t is the
command type, a is a list of resources indicating the arguments to be read, f is a function with
the signature f : I� ! I� representing the computations on the arguments, and r is a list of
result resources indicating where the result(s) of the function f should be written. Note that
this representation of commands does not correspond to the way instructions are encoded and
stored in memory, but is an abstract mathematical view of instructions. Lists of commands
form the primary means of describing computations in the model.

As computations evolve, the results produced by each command and various other items
can be imagined to form a computation trace. A trace event, drawn from the set E, contains
the values computed by the command and some identifying information as well.

4.2.2 Computation

Execution of a command to produce a new value of the system state is modeled by the function
X : K � S ! S. We will forgo de�ning X until the PVS formulation. The current state is
de�ned recursively by the cumulative application of X to a command list from K� :

S(h i) = S0
S(C � h k i) = X(k; S(C))

where � denotes the sequence or list append operation.
Construction of computation traces proceeds by applying the function T : K � S ! E,

which yields the computation event corresponding to a command's execution. The complete
trace is de�ned recursively by the cumulative application of T to a command list from K� :

D(h i) = h i

D(C � h k i) = D(C) � hT (k; S(C)) i

Thus, we have for a command list C two key computational products: S(C) is the state after
executing all the commands in C, and D(C) is the trace recording all the computed results.
These values describe computation within the con�nes of a single processor, with instructions
from di�erent partitions interleaved in the list C.

4.2.3 Separation

Now we are ready to consider the mapping of the single processor (IMA) system into its equiva-
lent federated system of multiple processors. Our goal is to take the same command stream and
consider computation under two di�erent architectures, integrated and federated. The method
is to separate an integrated command stream into di�erent threads of commands, one for each
application (partition). Then computation is carried out separately for each individual thread,
the results of which are compared against those generated by the integrated system.

First we provide a purge function to separate the original command stream into the di�erent
threads. P : K� � A ! K� denotes the purge function, mapping a command list C and
application ID a into the appropriate subsequence of C. We overload the purge function by
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Figure 4.1: Trace-based partitioning requirement.

adding a version of it for traces. P : E� � A ! E� extracts those elements of a computation
trace belonging to application a. Again, we defer de�nitional details until the PVS form of the
model.

4.2.4 Requirement

Having established the basic entities of the model, we are now ready to state the basic parti-
tioning requirement. We focus on computation traces as the system response of interest. In the
integrated system, the computation trace produced in response to a command list C is simply
D(C). We wish to compare portions of this trace to its analogs in the federated system.

When C is separated into subsequences based on partition, we have that the computation
trace for case a is given by D(P (C; a)). Construct such a trace for each value a, then compare
it to the subtrace found by purging the integrated trace D(C). Thus the �nal partitioning
requirement we seek has the form:

8a : P (D(C); a) = D(P (C; a))

The right hand side represents the computation applied to each command thread separately.
Each processor in the federated system is assumed to be identical to the original, having the
full complement of resources, although most will not be accessed (we hope) for a given choice
of a.

Figure 4.1 illustrates the relationship of the various lists and traces in the manner of a classic
commuting diagram, showing the familiar algebraic form of a homomorphism. In the �gure we
use C0 to represent the original command list for the integrated system and T0 = D(C0) its
resulting computation trace. Then C1 through Cn are the purged command lists and T1 through
Tn are their resulting traces.

If the access control policy of the system is working properly, then the e�ect of separation
is invisible, yielding the same computation results as the integrated system. If, however, the
policy or its enforcement is awed in some way, one or more of the trace pairs above will di�er,
signaling a failure to achieve partitioning as formalized by this requirement.

4.2.5 Policy

With the help of protection features embedded in processor hardware, the kernel enforces an
access control policy on the use of system resources. We denote by the predicate H(C) the
condition of command list C adhering to such a policy and other well-formedness criteria. The
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policy and type of enforcement are system dependent; it is not possible to be more explicit on
the details without considering the design features themselves. The PVS models consider such
details for three designs.

4.2.6 Veri�cation

Pulling together all the pieces, we can now state the theorem needed to establish that an ACR
design achieves strong partitioning:

H(C) � 8a : P (D(C); a) = D(P (C; a))

A proof of this conjecture for all command lists C shows that the applications will be well
partitioned under ACR control. This type of proof is constructed for all three PVS designs
appearing in this report.

4.2.7 Variations

Variations on the basic outline sketched above are possible. We describe three variants here.
Still others may suggest themselves based on particular needs.

The �rst variant concerns the form of the partitioning requirement. Sections 3.3 and 3.4
suggested the approach of taking the separate traces from the purged command streams and
merging them back into a single trace. This \purge-and-merge" technique would lead to the
following type of requirement:

D(C) =M(�a : D(P (C; a));N(D(C)))

where the function N extracts application IDs so the merge function M can reconstruct the
trace in the correct order.

This approach is indeed workable and forms an intuitive statement of the partitioning con-
dition. Nevertheless, the form we have chosen is simpler to work with and is equivalent to the
\purge-and-merge" variant. We have constructed a proof in PVS to show this correspondence.

The next two variants concern the computational product used to compare the workings of
the integrated and federated systems. We are using a computation trace for this purpose. One
variant would be to use an external event trace instead. By this we mean a trace that records
only events or data ows occurring at the ACR's external interface, what we have termed input
and output ports. This type of trace was used in Section 3.4 and the preceding discussion. The
computation trace we have described contains more information, including all the intermediate
steps that would be omitted from an external event trace.

A requirement based on the external event trace would be a weaker constraint on system
operation, but it would be su�cient to capture the essence of partitioning. It would allow
designs that fail to agree on an instruction by instruction basis, but still matched on the
important events of outputs to the avionics devices. By using the computation trace, we have a
requirement that trivially implies the one based on external event traces. As a practical matter,
it seems likely that the computation trace version will be applicable to nearly all designs.

The other variant concerns the use of system states instead of traces as the objects of
comparison. The main requirement could be recast into an invariant showing that state values
match in the two cases for suitably chosen resource and application ID combinations. These
types of invariants must be proved anyway as part of the task of establishing the trace-based
requirement.

15



The wisdom of this variant is not as clear as the other. Because the domain is aircraft
control, the important matter is ensuring that outputs sent to actuators and other devices are
correct. Traces are good for demonstrating this property. State invariants seem to fall one step
short of what is needed. It is not enough to check that memory values match; what matters is
what the system does with such values.

4.3 Illustration

To illustrate the partitioning model formulation, we return to the simple example of an ACR
supporting two applications introduced in Section 3.4 (recall �gure 3.4). As before, assume
that the ACR implementation has a aw. To be more speci�c, assume that variables y and v

both have been allocated to memory location 1001. Now let us consider the e�ect of this aw
in terms of the formal model.

First, we need the command list to be executed by the IMA system.

C0 = h (A1; 0; 7; 1000); (A1; 1000; incr; 1001); (A1; 1001; id; 200);
(A2; 0; 12; 1002); (A2; 1002; incr; 1001); (A2; 1001; id; 300) i

Here we have assumed that input ports S and T can be read like memory locations, and that
two sampled values are �xed by the constant functions 7 and 12. Similarly, output ports A and
B can be written like memory at locations 200 and 300. The identity function id is used in
these commands to reect data movement without modi�cation.

Executing the command list C0 and collecting the trace events using the model function D
results in the following trace:

T0 = h (A1; 7); (A1; 8); (A1; 8); (A2; 12); (A2; 13); (A2; 13) i

This sequence shows the values computed by each instruction in the command list C0.
Now, applying the purge function to C0 produces the two purged command lists reecting

the separation of the two applications.

C1 = h (A1; 0; 7; 1000); (A1; 1000; incr; 1001); (A1; 1001; id; 200) i

C2 = h (A2; 0; 12; 1002); (A2; 1002; incr; 1001); (A2; 1001; id; 300) i

These, in turn, lead to the two traces below.

T1 = h (A1; 7); (A1; 8); (A1; 8) i

T2 = h (A2; 12); (A2; 13); (A2; 13) i

We �nd that T1 = P (T0; A1) and T2 = P (T0; A2), satisfying the partitioning requirement.
Next, consider the alternate command list below (C0 reordered).

C0

0
= h (A1; 0; 7; 1000); (A1; 1000; incr; 1001); (A2; 0; 12; 1002);

(A2; 1002; incr; 1001); (A2; 1001; id; 300); (A1; 1001; id; 200) i

The purged command lists will be the same as C1 and C2; hence T 0

1
and T 0

2
will be the same as

T1 and T2. The integrated system traces, however, will be awed due to the overlapping use of
memory location 1001:

P (T 0

0
; A1) = h (A1; 7); (A1; 8); (A1; 13) i

P (T 0

0
; A2) = h (A2; 12); (A2; 13); (A2; 13) i

The condition T 0

1
6= P (T 0

0
; A1) exposes the failure to achieve partitioning for command list C0

0
.
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4.4 ACR Design 1: Baseline System

This section introduces a PVS formalization of the basic partitioning model described in Sec-
tion 4.2. The complete PVS theory can be found in Appendix A.1.

We assume a basic IMA architecture having the following characteristics:

� The system has a �xed set of applications.

� Only a single type of command exists: machine instructions.

� No interpartition communication is supported.

� Each resource is accessible by at most one application.

� Resource allocation and access rights are static (permanently assigned).

This con�guration was chosen for the baseline because it represents a set of minimal system
features. The next two designs will extend this baseline in important ways to show how more
realistic designs can be accommodated.

4.4.1 Representation

Two uninterpreted types, resource and info, represent the space of resources (similar to
addresses) and the basic information unit stored in resources. From these, the system state
type is de�ned as follows.

resource_state: TYPE = [resource -> info]

initial_state: system_state

Resource state can be thought of as those portions of main memory allocated to applications
plus a few other items depending on hardware design.

Commands are machine instructions, each having associated with it a list of argument
resources (to be read), a function to be applied to the arguments, and a list of result resources
(to be written).

cmd_fn: TYPE = [info_list -> info_list]

cmd_type: TYPE+

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

results: resource_list #]

cmd_list: TYPE = list[command]

Note that in applying the model to a real architecture, these commands may not correspond ex-
actly to real instructions. Some features of actual processors, such as interruptible instructions
and e�ective address calculations, may require the model to apply to imaginary microinstruc-
tions that would be composed to form the actual machine instructions. This is an interpretation
detail, however, and does not a�ect the theoretical results obtained below.

Computation traces are constructed as lists of the comp event type. Each event record
contains the results computed by a single command.
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comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

results: info_list #]

comp_trace: TYPE = list[comp_event]

Note that all traces are represented by lists using the prede�ned PVS list type. This works
well but has one minor drawback. The normal method of list construction is to \cons" a new
element on to the front (left) of an existing list. When used as traces, lists will appear in reverse
chronological order when read from left to right. Nevertheless, this has no impact on our results
because lists are used consistently throughout; it remains only a curiosity.

4.4.2 Computation

To represent the e�ects of command execution, we �rst need a function to update a list of
resources within system memory with a list of values.

next_state(rlist: resource_list, values: info_list,

s: system_state): RECURSIVE system_state =

CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next_state(rest, null, s)

WITH [(r) := null_info]

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

Using the previous utility function, we can model command execution as follows, where the
state is mapped over the argument resource list to retrieve values.

execute(c: command, s: system_state): system_state =

next_state(results(c), fn(c)(map(s)(args(c))), s)

state(cmds: cmd_list): RECURSIVE system_state =

CASES cmds OF

null: initial_state,

cons(c, rest): execute(c, state(rest))

ENDCASES

MEASURE length(cmds)

The current state is just the cumulative e�ect of applying execute recursively to the command
list.

Turning to computation traces, we have two analogous functions for describing the result
values after invoking a command, and then collecting all the events to form a trace.

do_step(c: command, s: system_state): info_list =

fn(c)(map(s)(args(c)))
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do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): cons((# appl_id := appl_id(c),

cmd_type := cmd_type(c),

results := do_step(c, state(rest)) #),

do_all(rest))

ENDCASES

MEASURE length(cmds)

4.4.3 Separation

The function purge is used to discard all commands from a list except those belonging to a
single application.

purge(cmds: cmd_list, a: appl_id): RECURSIVE cmd_list =

CASES cmds OF

null: null,

cons(c, rest): IF a = appl_id(c)

THEN cons(c, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(cmds)

This function could have been de�ned using the PVS primitive filter, but the explicit recursive
de�nition simpli�ed certain proofs. A second, overloaded version of purge is included to operate
on computation traces.

4.4.4 Requirement

Now the basic partitioning requirement is easily expressed in PVS:

FORALL a: purge(do_all(cmds), a) = do_all(purge(cmds, a))

The quanti�er FORALL will normally be omitted from this expression because PVS treats free
variables in formulas as if they were universally quanti�ed. For the special case of a single
application, we have purge(cmds,a) = cmds, and the requirement reduces to do all(cmds) =

do all(cmds).

4.4.5 Policy

The access control policy for this design is straightforward. Read and write modes are inde-
pendently supported. Each resource has an access control list (ACL) naming the applications
that have access to it and in what mode(s). As before, this degree of granularity is di�erent
from what a kernel implementation would maintain, where a range of resources would likely be
assigned to one ACL.
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access_mode: TYPE = {READ, WRITE}

access_right: TYPE = [# appl_id: appl_id, mode: access_mode #]

access_set: TYPE = set[access_right]

This scheme works to describe uses of memory and some devices. Input devices could have
read-only access while output devices would be write-only.

A predicate alloc declares the access control in e�ect for a given system. The following
asserts key requirements about resource allocation, namely, that it be static (independent of
state) and exclusive (only one application has access rights to a resource).

allocation: TYPE = [resource -> access_set]

static_exclusive(alloc_fn: allocation): bool =

FORALL (r: resource):

EXISTS (a: appl_id):

FORALL (ar: access_right):

member(ar, alloc_fn(r)) IMPLIES a = appl_id(ar)

alloc: {p: allocation | static_exclusive(p)}

Command lists adhering to this policy must satisfy the proper access predicate below,
which requires that for every command, the application has read access to all argument resources
and write access to all result resources.

mode_access(m: access_mode, rlist: resource_list, a: appl_id): bool =

FORALL (r: resource):

member(r, rlist) IMPLIES

member((# appl_id := a, mode := m #), alloc(r))

proper_access(cmds: cmd_list): RECURSIVE bool =

CASES cmds OF

null: true,

cons(c, rest): mode_access(READ, args(c), appl_id(c))

AND mode_access(WRITE, results(c), appl_id(c))

AND proper_access(rest)

ENDCASES

MEASURE length(cmds)

4.4.6 Veri�cation

Finally, we arrive at the point where we must prove that enforcement of the policy is a su�cient
condition for the partitioning requirement.

well_partitioned: THEOREM

proper_access(cmds) IMPLIES

purge(do_all(cmds), a) = do_all(purge(cmds, a))

A completely mechanical proof of the theorem well partitioned has been constructed using
the PVS theorem prover. It relies on roughly ten supporting lemmas. A few typical lemmas
are described below.
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The lemma map args asserts that if two resource states agree on all elements of a resource
list, the e�ect of doing a lookup using map is the same.

map_args: LEMMA

(FORALL r: member(r, rlist) IMPLIES s1(r) = s2(r))

IMPLIES

map(s1)(rlist) = map(s2)(rlist)

execute_in: LEMMA

(FORALL r: member(r, args(c)) IMPLIES s1(r) = s2(r))

IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

execute(c, s1)(r) = execute(c, s2)(r))

The lemma execute in is central to the overall proof. It asserts that if two di�erent system
states agree on all resources used as arguments for a command, then the new states after
executing the command will agree on all result resources. This lemma together with the access
control constraints combine to imply that the following state invariant always holds.

state_invariant: LEMMA

proper_access(cmds) AND

member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES

state(cmds)(r) = state(purge(cmds, a))(r)

purge_step: LEMMA

proper_access(cons(c, cmds)) AND a = appl_id(c) IMPLIES

do_step(c, state(cmds)) = do_step(c, state(purge(cmds, a)))

This invariant plus the induction step lemma purge step combine to prove the main theorem.

4.4.7 Alternatives

As described in Section 4.2.7, the partitioning requirement can also be expressed using a \purge-
and-merge" style of formulation. The following de�nitions show how this can be accomplished.

Merging traces from a trace vector requires a list of application IDs to indicate the original
command ordering. These IDs are used to index a vector of separate traces that will be merged
into a single trace.

trace_vector: TYPE = [appl_id -> comp_trace]

merge(T: trace_vector, ids: id_list): RECURSIVE comp_trace =

CASES ids OF

null: null,

cons(a, rest): IF T(a) = null

THEN cons(null_comp_event,

merge(T WITH [(a) := null], cdr(ids)))

ELSE cons(car(T(a)),

merge(T WITH [(a) := cdr(T(a))],
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cdr(ids)))

ENDIF

ENDCASES

MEASURE length(ids)

A little utility function to extract application IDs is needed as well.

appl_ids(trace: comp_trace): RECURSIVE id_list =

CASES trace OF

null: null,

cons(e, rest): cons(appl_id(e), appl_ids(rest))

ENDCASES

MEASURE length(trace)

As before, this could have been de�ned nonrecursively using the PVS primitive map, but proof
considerations often favor a recursive de�nition.

Using these de�nitions, the alternative form of the veri�cation result is as follows.

well_partitioned: THEOREM

proper_access(cmds) IMPLIES

do_all(cmds) = merge(LAMBDA a: do_all(purge(cmds, a)),

appl_ids(do_all(cmds)))

This theorem has been shown to be a consequence of the well partitioned result from Sec-
tion 4.4.6.

4.5 ACR Design 2: Multiplexed Shared Resources

This section describes an extension to the PVS formalization of the baseline design in the
previous section. The complete PVS theory can be found in Appendix B.1.

We assume a basic IMA architecture having the following characteristics:

� The system has a �xed set of applications.

� Several types of commands exist: machine instructions plus save and restore operations
occurring at partition context switches.

� No interpartition communication is supported.

� Each resource is accessible by at most one application at a time, but some resources are
shared and their values are swapped in and out during context switches.

� Resource allocation and access rights are dynamic for the shared resources and static for
all others.

This con�guration extends the baseline design in an important way. Although main memory
may be statically allocated by the kernel, nearly every processor contains bits of state informa-
tion such as register values that cannot be statically allocated, that are instead reallocated to
the currently running partition on every context switch. This design handles such a feature by
modeling a save area used to store the shared resources for all applications, presumably in the
private memory of the kernel.
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Command execution is required to follow the pattern of a sequence of instructions from the
same application bracketed by matching restore and save operations. This discipline ensures
that the instructions currently executing are allowed to access the shared resources. Save and
restore operations themselves are not likely to be issued by the applications, but rather be
introduced by the kernel as part of the context switch process. We include them to model the
actions performed regardless of which entity initiates the actions.

4.5.1 Representation

Three main di�erences exist over the baseline design case: a set of shared resources is assumed,
the system state has additional content, and there are new command types. The state now
has three components: a \memory" area analogous to the previous concept of resource state, a
save area to hold the values of shared resources, and the allocation state to record the dynamic
assignment of access rights for resources.

shared_resources: resource_list

memory: TYPE = [resource -> info]

save_area: TYPE = [appl_id -> memory]

allocation: TYPE = [resource -> access_set]

system_state: TYPE = [# active: memory, save: save_area,

alloc: allocation #]

cmd_type: TYPE = {INSTR, SAVE, RESTORE}

4.5.2 Computation

Command execution now has three types of commands to handle. The save and restore op-
erations have two e�ects: moving shared resource values between active memory and the save
area, and updating the allocation state of shared resources.

exec_save(m: memory, s: memory): memory =

next_state(shared_resources, map(m)(shared_resources), s)

exec_restore(s: memory, m: memory): memory =

next_state(shared_resources, map(s)(shared_resources), m)

execute(c: command, s: system_state): system_state =

IF cmd_type(c) = INSTR

THEN s WITH [(active) := exec_instr(c, active(s))]

ELSIF cmd_type(c) = SAVE

THEN s WITH [(save)(appl_id(c)) :=

exec_save(active(s), save(s)(appl_id(c))),

(alloc) := deallocate(alloc(s), appl_id(c))]

ELSE s WITH [(active) :=

exec_restore(save(s)(appl_id(c)), active(s)),

(alloc) := allocate(alloc(s), appl_id(c))]

ENDIF
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Computation traces are constructed as before with the exception that not all commands are
represented; save and restore commands are �ltered out and do not become part of the trace.
The rationale for this is that they are an artifact of the multiplexing of processor resources;
they have no inherent meaning to the avionics functions of the applications.

do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest):

IF cmd_type(c) = INSTR

THEN cons((# appl_id := appl_id(c),

cmd_type := cmd_type(c),

results := do_step(c, state(rest)) #),

do_all(rest))

ELSE do_all(rest)

ENDIF

ENDCASES

MEASURE length(cmds)

4.5.3 Separation

No new types or functions are needed to describe the separation of command stream execution.

4.5.4 Requirement

The partitioning requirement is expressed exactly as before.

4.5.5 Policy

The policy area has several new items. The alloc predicate is no longer a constant but
has become part of the state. The initial state is a constant that must satisfy the allocation
exclusivity condition.

exclusive(alloc: allocation): bool =

FORALL (r: resource):

EXISTS (a: appl_id):

FORALL (ar: access_right):

member(ar, alloc(r)) IMPLIES a = appl_id(ar)

initial_state: {s: system_state | exclusive(alloc(s))}

Functions are needed to de�ne updates to the allocation state for save and restore commands.
On a restore, the application is granted both read and write access to all shared resources. On
a save, all access rights to the shared resources are rescinded.

shared_set(a: appl_id): access_set =

add((# appl_id := a, mode := READ #),

add((# appl_id := a, mode := WRITE #),

emptyset[access_right]))
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allocate(alloc: allocation, a: appl_id): allocation =

LAMBDA (r: resource): IF member(r, shared_resources)

THEN shared_set(a)

ELSE alloc(r)

ENDIF

deallocate(alloc: allocation, a: appl_id): allocation =

LAMBDA (r: resource): IF member(r, shared_resources)

THEN emptyset

ELSE alloc(r)

ENDIF

The basic conditions of the proper access predicate remain the same except that the
system state must now be consulted to obtain the allocation state.

proper_access(cmds: cmd_list): RECURSIVE bool =

CASES cmds OF

null: true,

cons(c, rest):

IF cmd_type(c) = INSTR

THEN mode_access(READ, args(c), appl_id(c), state(rest))

AND mode_access(WRITE, results(c), appl_id(c), state(rest))

AND proper_access(rest)

ELSE proper_access(rest)

ENDIF

ENDCASES

MEASURE length(cmds)

A signi�cant addition to the baseline system is a well-formedness protocol on command se-
quencing. This is needed to enforce the requirement that instructions be bracketed by matching
pairs of restore and save commands:

h . . . RESTORE, INSTR, . . . , INSTR, SAVE . . . i

A proper swap predicate is added for this purpose. It recursively checks the sequencing re-
quirement for a given command list.

proper_swap_rec(cmds: cmd_list, active: bool,

a: appl_id): RECURSIVE bool =

CASES cmds OF

null: NOT active,

cons(c, rest): IF active AND a = appl_id(c)

THEN IF cmd_type(c) = RESTORE

THEN proper_swap_rec(rest, false,

default_appl)

ELSIF cmd_type(c) = INSTR

THEN proper_swap_rec(rest, true, a)

ELSE false
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ENDIF

ELSIF NOT active AND cmd_type(c) = SAVE

THEN proper_swap_rec(rest, true, appl_id(c))

ELSE false

ENDIF

ENDCASES

MEASURE length(cmds)

proper_swap(cmds: cmd_list): bool =

proper_swap_rec(cmds, false, default_appl)

OR (EXISTS (a: appl_id): proper_swap_rec(cmds, true, a))

Closely related to this predicate is a support function called active for, which states when
the tail of a command list leaves the system active for a given application. It follows a recursive
trajectory similar to that of proper swap.

active_for(a: appl_id, cmds: cmd_list): RECURSIVE bool =

CASES cmds OF

null: false,

cons(c, rest): IF cmd_type(c) = SAVE OR appl_id(c) /= a

THEN false

ELSIF cmd_type(c) = RESTORE

THEN true

ELSE active_for(a, rest)

ENDIF

ENDCASES

MEASURE length(cmds)

The complete validity condition on command lists now includes both the proper swap and
proper access predicates.

proper_commands(cmds: cmd_list): bool =

proper_swap(cmds) AND proper_access(cmds)

4.5.6 Veri�cation

The main partitioning theorem takes the same form as in the baseline system with the substi-
tution of the proper commands predicate for proper access:

well_partitioned: THEOREM

proper_commands(cmds) IMPLIES

purge(do_all(cmds), a) = do_all(purge(cmds, a))

This theorem has been proved using the PVS prover along with some 30 or so supporting
lemmas. The proof involved some signi�cantly more di�cult twists due to the added complexity
of the save and restore operations and the more complicated policy condition.

Several lemmas were needed to reason about the active for concept, such as the following
two:
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active_unique: LEMMA

active_for(a1, cmds) AND active_for(a2, cmds)

IMPLIES a1 = a2

active_command: LEMMA

proper_swap(cons(c, cmds)) IMPLIES

IF cmd_type(c) = RESTORE

THEN NOT active_for(appl_id(c), cmds)

ELSE active_for(appl_id(c), cmds)

ENDIF

The exclusivity condition now must be reestablished on every save and restore command.
Moreover, relationships between save area values and active memory values must be expressed.

exclusive_allocate: LEMMA

exclusive(alloc) IMPLIES exclusive(allocate(alloc, a))

execute_in_restore: LEMMA

proper_commands(cmds) AND cmd_type(c) = RESTORE AND

member(r, shared_resources)

IMPLIES active(execute(c, state(cmds)))(r)

= save(state(cmds))(appl_id(c))(r)

To aid the proof, an auxiliary concept was introduced called the appl state. This function
gives the value of a resource for a given application based on whether it should be found in
active memory or in the save area. Using this notion, a modi�ed state invariant was expressed
and proved relating application states in the integrated and purged command cases.

appl_state(cmds, a)(r): info =

IF active_for(a, cmds) OR NOT member(r, shared_resources)

THEN active(state(cmds))(r)

ELSE save(state(cmds))(a)(r)

ENDIF

state_invariant: LEMMA

proper_commands(cmds) AND

(member(r, shared_resources) OR

member((# appl_id := a, mode := READ #), alloc(state(cmds))(r)))

IMPLIES

appl_state(cmds, a)(r) = appl_state(purge(cmds, a), a)(r)

Establishing this invariant involves analyzing more cases than its counterpart in the baseline
design, making the interactive PVS proof more cumbersome. This proof complexity is the cost
of introducing resource sharing.

4.6 ACR Design 3: Interpartition Communication

This section describes a di�erent extension to the PVS formalization of the baseline design,
independent of the one in the previous section. The complete PVS theory can be found in
Appendix C.1.
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We assume a basic IMA architecture having the following characteristics:

� The system has a �xed set of applications.

� Two types of commands exist: machine instructions plus generic, interpartition commu-
nication (IPC) kernel services.

� Each resource is accessible by at most one application.

� Resource allocation and access rights are fully static.

This con�guration extends the baseline design by adding the important feature of inter-
partition communication. The exact types of communication and speci�c kernel services for
achieving them are not modeled. It su�ces merely to allow for IPC commands that operate on
a global IPC state while adhering to the same access control policy on resources that ordinary
instructions observe. In fact, the kernel services are not limited to those used for IPC|most
other types �t the model as well. Unlike design 2, command execution is not required to follow
any patterns; the two types of commands can be interleaved as desired.

When IPC capability is added, the central problem that arises is that partitions are no
longer noninterfering in the strict sense. Communicating applications do indeed \interfere"
with one another. But this interdependence is intentional, of course, and we must accept the
explicitly allowed interactions while prohibiting the unintended ones.

The primary means of achieving this goal is architectural. IPC is only allowed to occur
through kernel services; no shared-memory communication is permitted. IPC services may
cause updates to application-owned resources. Our model incorporates constraints su�cient to
keep such updates con�ned to one partition at a time. The net result is that we can assure that
third-party partitions are protected from unintended e�ects during IPC activity.

Modeling this arrangement requires additional mechanisms based on the introduction of
global and local portions of the system state. Local states are replicated as before to capture
the separate computation histories. A global state is added to capture the kernel's internal
implementation of IPC. Each partition sees a common view of this IPC state.

Finally, note that even with the model presented in this section, the protection o�ered
is limited to absence of harmful e�ects within application resources. It is still possible for
mishandling to occur within the kernel before data has been delivered to its intended recipient.
Chapter 5 will take up this problem, introducing a modeling technique to show that internal
kernel behavior is also free from interfering e�ects.

4.6.1 Representation

The system state consists of two parts: the resource state holding application data, analogous
to the state in design 1, and the IPC state, left uninterpreted in the model. IPC commands
must access both parts of the system state while ordinary instructions access only the resource
state.

res_state: TYPE = [resource -> info]

IPC_state: TYPE+

system_state: TYPE = [# res: res_state, IPC: IPC_state #]

initial_res_state: res_state
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initial_IPC_state: IPC_state

initial_state: system_state = (# res := initial_res_state,

IPC := initial_IPC_state #)

cmd_type: TYPE = {INSTR, IPC}

4.6.2 Computation

Computation concepts for instructions are the same as before. For IPC commands, several new
functions are introduced to model the e�ects of IPC kernel services. IPC command execution
draws inputs from both the resource state and the IPC state, and likewise produces outputs
for both. We are not concerned with the details of IPC state updates because we only wish to
compare the results produced by all the applications. As long as the same e�ects occur in both
system architectures, the exact nature of interpartition communication is immaterial.

exec_IPC(c: command, res: res_state, IPC: IPC_state): system_state =

(# res := next_state(results(c),

res_update_IPC(c, map(res)(args(c)), IPC),

res),

IPC := IPC_update_IPC(c, map(res)(args(c)), IPC) #)

Derivation of the current state from a command stream proceeds by accounting for the type
of command executed at each step. This is a straightforward extension of the baseline model.

state(cmds: cmd_list): RECURSIVE system_state =

CASES cmds OF

null: initial_state,

cons(c, rest): IF cmd_type(c) = INSTR

THEN (# res := execute(c, res(state(rest))),

IPC := IPC(state(rest)) #)

ELSE exec_IPC(c, res(state(rest)),

IPC(state(rest)))

ENDIF

ENDCASES

MEASURE length(cmds)

An additional function represents the results computed during IPC command execution.
The do all function uses this function to construct the computation trace, which includes
events for IPC commands.

do_IPC(c: command, res: res_state, IPC: IPC_state): info_list =

res_update_IPC(c, map(res)(args(c)), IPC)

do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): cons(IF cmd_type(c) = INSTR

THEN INSTR_event(c, res(state(rest)))
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ELSE IPC_event(c, res(state(rest)),

IPC(state(rest)))

ENDIF,

do_all(rest))

ENDCASES

MEASURE length(cmds)

4.6.3 Separation

The concepts needed to describe processor separation are more complicated for this design.
Federated system behavior cannot be modeled using n completely separate command streams,
each operating independently of the others. Because of the IPC commands, computations
among processors are interdependent. Results from one partition become inputs to another
when IPC services are invoked. To handle this situation, we apply separation in a more selective
manner.

First, we introduce a system state split into global and local parts. The kernel's internal
state needed to implement IPC is modeled as a single, global state, common to all processors
in the �ctitious federated system. The separate resource states, one for each partition in the
federated system model, are collected into a structure and referred to as local states. IPC
commands operate on the global state and one of the local states. Conversely, instruction
commands operate only on one of the local resource states.

This scheme requires a di�erent approach to model the elaboration of computations. We
begin with the types representing the foregoing state concepts. Local portions of the system
state are accessed by indexing with application IDs. In addition to resource states, computation
traces are kept within this structure. Traces are not part of the system state; it is simply
convenient to keep a partition's trace together with its corresponding resource state.

trace_state_appl: TYPE = [# trace: comp_trace, res: res_state #]

init_trace_state_appl: trace_state_appl =

(# trace := null, res := initial_res_state #)

trace_state_vector: TYPE = [appl_id -> trace_state_appl]

trace_state_full: TYPE = [# local: trace_state_vector,

global: IPC_state #]

It is also helpful to collect the local state and trace update expressions into a single update
function.

comp_step(c: command, local: trace_state_appl,

global: IPC_state): trace_state_appl =

IF cmd_type(c) = IPC

THEN (# trace := cons(IPC_event(c, res(local), global),

trace(local)),

res := res(exec_IPC(c, res(local), global)) #)

ELSE (# trace := cons(INSTR_event(c, res(local)), trace(local)),

res := execute(c, res(local)) #)

ENDIF
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A command list is executed by the ensemble of separate processors and the common \kernel"
that serves them. Each command updates the local state for one partition and the global IPC
state in the case of IPC commands.

do_all_purge(cmds: cmd_list): RECURSIVE trace_state_full =

CASES cmds OF

null: (# local := LAMBDA (a: appl_id): init_trace_state_appl,

global := initial_IPC_state #),

cons(c, rest):

LET prev = do_all_purge(rest) IN

(# local :=

LAMBDA (a: appl_id):

IF a = appl_id(c)

THEN comp_step(c, local(prev)(a), global(prev))

ELSE local(prev)(a)

ENDIF,

global :=

IF cmd_type(c) = IPC

THEN IPC(exec_IPC(c, res(local(prev)(appl_id(c))),

global(prev)))

ELSE global(prev)

ENDIF

#)

ENDCASES

MEASURE length(cmds)

The function do all purge combines the roles previously served by the two functions do all

and purge. Two components are produced by this function: a vector of resource states and
traces, one for each application, and a single, common IPC state. Execution of commands within
do all purge keeps the partitions separate while allowing a common IPC state to evolve, thus
ensuring that partitions receive meaningful values from their IPC operations, just as they do
in the fully integrated system.

4.6.4 Requirement

The partitioning requirement is the same in spirit as that of the baseline model, but its expres-
sion is di�erent owing to the way computation is modeled using the function do all purge.

purge(do_all(cmds), a) = trace(local(do_all_purge(cmds))(a))

The intent is to arrive at the separate computation traces as was done for the previous cases,
while making allowances for the special circumstances surrounding IPC command execution.
While the form of this requirement is not as elegant as that of Section 4.4.4, it serves the same
purpose within the more challenging IPC context.

4.6.5 Policy

Access control policy in this design is identical to the baseline case. Each IPC command must
adhere to the same access constraints as instruction commands. What this means is that an
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IPC command may access only those resources assigned to the partition requesting the IPC
service. This is a reasonable restriction, and the proof presented in the next section shows that
it is su�cient to ensure strong partitioning.

4.6.6 Veri�cation

Taking the partitioning requirement as expressed above, the main partitioning theorem for
design 3 can be expressed as follows:

well_partitioned: THEOREM

proper_access(cmds) IMPLIES

purge(do_all(cmds), a) = trace(local(do_all_purge(cmds))(a))

This theorem has been proved in PVS with the help of some 20 supporting lemmas. The proof
was more involved than the baseline case, but not overly so.

New lemmas introduced in this design were needed to deal with the e�ects of IPC command
execution, such as the following lemma, which shows that if resource values match for a pair of
states, then they still will match after executing an IPC command.

state_match(a, s1, s2): bool =

FORALL r:

member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES s1(r) = s2(r)

exec_IPC_match_appl: LEMMA

mode_access(READ, args(c), a) AND

state_match(a, s1, s2) AND a = appl_id(c)

IMPLIES

state_match(a, res(exec_IPC(c, s1, comm)),

res(exec_IPC(c, s2, comm)))

Several other lemmas needed to make deductions about IPC commands are shown below.

exec_IPC_IPC_appl: LEMMA

mode_access(READ, args(c), a) AND

state_match(a, s1, s2) AND a = appl_id(c)

IMPLIES

IPC(exec_IPC(c, s1, comm)) = IPC(exec_IPC(c, s2, comm))

exec_IPC_match_not_appl: LEMMA

mode_access(WRITE, results(c), appl_id(c)) AND a /= appl_id(c)

IMPLIES

state_match(a, res(exec_IPC(c, s, comm)), s)

IPC_event_match_appl: LEMMA

mode_access(READ, args(c), appl_id(c)) AND

state_match(appl_id(c), s1, s2)

IMPLIES

IPC_event(c, s1, comm) = IPC_event(c, s2, comm)
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Finally, the overall state invariant that applies after each command is shown below. The
invariant asserts state matching conditions for both local and global state components.

state_invariant: THEOREM

proper_access(cmds) IMPLIES

(FORALL a: state_match(a, res(state(cmds)),

res(local(do_all_purge(cmds))(a)))) AND

IPC(state(cmds)) = global(do_all_purge(cmds))

4.6.7 Shared Avionics Devices

In addition to IPC services, there is another area where applications may a�ect each other,
namely, where external avionics devices are shared among multiple partitions. Allocation of
such devices is typically dedicated rather than shared, but multiplexed access is a de�nite
possibility in some architectures. For this reason, a partitioning model should accommodate
this type of sharing if the need arises. We have not extended the core model of this report to
cover this case, but we now sketch how the existing framework can support it.

Shared avionics devices can be handled in manner similar to IPC services. The model
would need to recognize such I/O operations, whether carried out using kernel services or
through direct access by machine instructions, as a special class and handle them accordingly.
A treatment analogous to that of IPC services is the prescribed method. By making the special
I/O operations adhere to the same constraints as IPC services, the same modeling and proof
scheme can be used to show that the I/O has no e�ects outside of the designated resources. The
global-plus-local state technique would work to perform the desired veri�cation. Alternatively,
a more general form of the model could be used in which IPC services and shared device I/O are
both particular instances of the general class of shared operations requiring special treatment.
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Chapter 5

Extending the Model to Kernel

Partitioning

As discussed in the previous chapter, the resource partitioning models o�er assurance against
resource interference caused by other applications within a system. As long as a computation
proceeds entirely within one partition, this property is su�cient to achieve independent op-
eration. If, however, communication with other applications takes place, there are additional
points of vulnerability. In particular, when data is in transit from one partition to another,
temporarily being held within private ACR data structures rather than partition resources,
there is a possibility of mishandling that is not covered by the previously developed models.
We now turn our attention to this additional problem.

5.1 Kernel Noninterference

The basic approach we will follow is to apply the foregoing modeling framework and adapt it
to the kernel interference problem. What this involves is taking the traditional noninterference
concept and turning it upside down. Rather than separating the applications, we choose instead
to separate the IPC mechanisms within the kernel. We assume the kernel implements IPC using
conventional techniques such as ports or channels. Imagine that we can separate and replicate
the kernel's processing, assigning each port or channel to its own kernel \machine." Then we
apply the techniques of Section 4.6, inverting the roles of partitions and kernel. The partitions
become the entity we hold constant while the kernel's IPC channels become the objects of
separation as if implemented by a federated system.

Given this background sketch, the application of the kernel noninterference technique re-
quires the following steps.

� Identify the virtual IPC structures implemented within the kernel, such as ports, channels,
pipes, etc.

� Create a vector of local states for the kernel based on these IPC structures.

� Create a global state containing the partition resources.

� Model computation of regular machine instructions with respect to the common global
state.
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� Model computation of IPC services with respect to the particular local state corresponding
to the designated port, channel, etc.

� Assert that the computation results of the integrated system are the same as those of the
IPC-based federated system.

From the modeling standpoint, this scheme produces a valuable dual of the traditional
noninterference structure, although it lacks some of its intuitive appeal. Moreover, the approach
requires modeling more of the system design than is the case with resource partitioning. And it
is important to note that no guarantee of correctness is inherent; the method only demonstrates
that the IPC structures are independent. Nevertheless, the method does o�er a tractable means
of addressing the question of low-level interference within an ACR's operating system. We now
give an illustration of the approach by inverting the model of Section 4.6.

5.2 Minimal Kernel Design for IPC

This model supplements the resource partitioning models by showing that interpartition com-
munication through a kernel is not subject to unintended interference. A port-based IPC
mechanism is included, and a simple set of IPC services (SEND and RECEIVE) is assumed.
The complete PVS theory can be found in Appendix D.1.

We assume the basic IMA architecture of Section 4.6. The IPC commands are the two
services SEND and RECEIVE. No restrictions are placed on connectivity; ports may connect
two or more partitions. Ordinary queueing behavior within the virtual channels is observed.
No bounds on the number of messages within a queue are speci�ed. In practice such bounds
may be necessary and will require a more elaborate model.

5.2.1 Representation

A port type is used to distinguish individual communication ports or channels implemented by
the kernel.

port: TYPE+

port: [command -> port]

queue: TYPE = list[info_list]

The system state consists of two parts: the resource state holding application data, and the
IPC state, which assigns one queue to each port. IPC commands must access both parts of the
system state while ordinary instructions access only the resource state.

res_state: TYPE = [resource -> info]

IPC_state: TYPE = [port -> queue]

system_state: TYPE = [# res: res_state, IPC: IPC_state #]

cmd_type: TYPE = {INSTR, SEND, RCV}
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5.2.2 Computation

Computation concepts for instructions are the same as before. For IPC commands, several new
functions are introduced to model the e�ects of the IPC services SEND and RCV.

do_SEND(c: command, res: res_state, IPC: IPC_state): info_list =

map(res)(args(c))

do_RCV(c: command, res: res_state, IPC: IPC_state): info_list =

IF IPC(port(c)) = null

THEN null

ELSE car(IPC(port(c)))

ENDIF

exec_SEND(c: command, res: res_state, IPC: IPC_state): system_state =

(# res := res,

IPC := IPC WITH [(port(c)) :=

append(IPC(port(c)),

(: do_SEND(c, res, IPC) :) )] #)

exec_RCV(c: command, res: res_state, IPC: IPC_state): system_state =

(# res := next_state(results(c), do_RCV(c, res, IPC), res),

IPC := IF IPC(port(c)) = null

THEN IPC

ELSE IPC WITH [(port(c)) := cdr(IPC(port(c)))]

ENDIF #)

exec_IPC(c: command, res: res_state, IPC: IPC_state): system_state =

IF cmd_type(c) = SEND

THEN exec_SEND(c, res, IPC)

ELSE exec_RCV(c, res, IPC)

ENDIF

Derivation of the current state from a command stream proceeds by accounting for the type
of command executed at each step. This uses basically the same functions as the previous
model.

5.2.3 Separation

As before, the system state for the federated architecture is split into global and local parts. The
partitions' resource state is modeled as a single, global state, common to all \processors" in the
�ctitious federated system. The kernel's internal state needed to implement IPC is separated
into multiple copies, one for each port in the federated system model, and the set is collected
into a structure and referred to as local states. IPC commands operate on the global state and
one of the local states. Conversely, instruction commands operate only on the global state.

The elaboration of computation is inverted from the previous model, but otherwise works in
the same manner. A composite structure containing the local and global states together with
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the computation trace is maintained. Only one computation trace, corresponding to the global
resource state, is necessary.

IPC_state_vector: TYPE = [port -> IPC_state]

trace_state_full: TYPE = [# local: IPC_state_vector,

global: res_state,

trace: comp_trace #]

A command list is executed by the ensemble of partitions on one common processor and
separate kernels for each port/channel. Each IPC command updates the kernel state for its
port and the global resource state.

do_all_ports(cmds: cmd_list): RECURSIVE trace_state_full =

CASES cmds OF

null: (# local := LAMBDA (p: port): initial_IPC_state,

global := initial_res_state,

trace := null #),

cons(c, rest):

LET prev = do_all_ports(rest) IN

IF cmd_type(c) = INSTR

THEN (# local := local(prev),

global := execute(c, global(prev)),

trace := cons(INSTR_event(c, global(prev)),

trace(prev)) #)

ELSE (# local :=

LAMBDA (p: port):

IF p = port(c)

THEN IPC(exec_IPC(c, global(prev),

local(prev)(p)))

ELSE local(prev)(p)

ENDIF,

global := res(exec_IPC(c, global(prev),

local(prev)(port(c)))),

trace := cons(IPC_event(c, global(prev),

local(prev)(port(c))),

trace(prev)) #)

ENDIF

ENDCASES

MEASURE length(cmds)

The function do all ports plays the same role as do all purge in the previous model.
Three components are produced by this function: a vector of IPC states, one for each port, a
single, common resource state, and a single computation trace. Execution of commands within
do all ports keeps the IPC port structures separate while allowing a common resource state
to evolve.
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5.2.4 Requirement

The partitioning requirement is slightly di�erent from that of the previous model, but its
expression is simple due to the results produced by the function do all ports.

do_all(cmds) = trace(do_all_ports(cmds))

The intent is to assert that the computation results from the full set of applications is the same
whether a single integrated kernel is used or an ensemble of port-separated kernels is used.

5.2.5 Policy

An access control policy is not necessary in this design because there is only a single thread of
applications. In a sense the role of the policy is taken over by the design details introduced to
model the IPC services.

5.2.6 Veri�cation

Taking the partitioning requirement as expressed above, the main partitioning theorem for this
design can be expressed as follows:

well_partitioned: THEOREM

do_all(cmds) = trace(do_all_ports(cmds))

This theorem has been proved in PVS with the help of �ve supporting lemmas. The proof was
simpler than that of the previous models, owing to the simple nature of the IPC mechanism
employed.

The lemmas needed to make deductions about IPC commands are shown below.

IPC_event_match: LEMMA

t1(port(c)) = t2(port(c)) IMPLIES

IPC_event(c, s, t1) = IPC_event(c, s, t2)

res_exec_IPC_match: LEMMA

t1(port(c)) = t2(port(c)) IMPLIES

res(exec_IPC(c, s, t1)) = res(exec_IPC(c, s, t2))

IPC_exec_IPC_match: LEMMA

p = port(c) AND t1(p) = t2(p) IMPLIES

IPC(exec_IPC(c, s, t1))(p) = IPC(exec_IPC(c, s, t2))(p)

IPC_exec_IPC_other: LEMMA

p /= port(c) IMPLIES IPC(exec_IPC(c, s, t))(p) = t(p)

The overall state invariant that applies after each command is shown below. This invariant
asserts state matching conditions for both local and global state components.

state_invariant: THEOREM

res(state(cmds)) = global(do_all_ports(cmds)) AND

FORALL p: IPC(state(cmds))(p) =

local(do_all_ports(cmds))(p)(p)
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Chapter 6

Conclusion

This report has presented a formal model of partitioning suitable for supporting an ACR archi-
tecture. Based in part on concepts drawn from the noninterference model used by researchers in
information security, the model considers the way computations evolve in two di�erent systems
and requires that the results be equal. By de�ning what the system response should be in the
case of a system of separate processors, the potentially interfering e�ects of integration can be
assessed and identi�ed.

The approach was demonstrated on three candidate designs, each an abstraction of features
found in real systems. By continuing the development begun here, more realistic model instances
can be constructed and used to represent more complex systems with a variety of architectural
features and speci�c kernel services. The PVS notation was found to be e�ective in expressing
the model, the key requirements, and the supporting lemmas. The PVS prover was found to
be useful in carrying out the interactive proofs, all of which were completed for the designs
undertaken.
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Appendix A

Baseline Partitioning Model

The �rst model represents a baseline system having minimal features with fully static resource
allocation and no interpartition communication.

A.1 PVS Theory

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Formal model of partitioning for an IMA architecture

%%

%% Base partitioning model:

%% - Basic system with fixed applications

%% - Each resource is accessible by at most one application

%% - Resource allocation and access rights are static

%% - No interpartition communication

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

base_part_model: THEORY

BEGIN

% The system supports a fixed number of partitions (applications).

num_appl: posint

appl_id: TYPE = below[num_appl]

% Basic information units are small (e.g., bytes)

info: TYPE+

info_list: TYPE = list[info]

cmd_fn: TYPE = [info_list -> info_list]

% Resources include memory locations, processor state, and some

% devices external to the ACR.

resource: TYPE+
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resource_list: TYPE = list[resource]

% Commands include processor instructions and kernel services. Input

% resources are listed in "args", output resources in "results". The

% function models the operation performed on the arguments.

cmd_type: TYPE+

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

results: resource_list #]

cmd_list: TYPE = list[command]

% Resource state models the memory available to applications

resource_state: TYPE = [resource -> info]

initial_state: resource_state

% Computation traces record the history of computed results

comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

results: info_list #]

comp_trace: TYPE = list[comp_event]

null_info: info

default_appl: appl_id

default_cmd: cmd_type

null_comp_event: comp_event =

(# appl_id := default_appl, cmd_type := default_cmd, results := null #)

%%%%%%%%%%%%%%%%

% Access control on resources is modeled below. Access control lists

% associated with each resource is the conceptual model of control.

access_mode: TYPE = {READ, WRITE}

access_right: TYPE = [# appl_id: appl_id, mode: access_mode #]

access_set: TYPE = set[access_right]

% The following asserts key requirements about resource allocation,

% namely, that it be static (independent of state) and exclusive (only

% one application has access rights to a resource).

allocation: TYPE = [resource -> access_set]

static_exclusive(alloc_fn: allocation): bool =

FORALL (r: resource):

EXISTS (a: appl_id):

FORALL (ar: access_right):

member(ar, alloc_fn(r)) IMPLIES a = appl_id(ar)
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% Resource allocation is specified by the constant "alloc".

alloc: {p: allocation | static_exclusive(p)}

%%%%%%%%%%%%%%%%

% In the following, traces are represented in reverse chronological order,

% if read from left to right, owing to their use of the "list" data type.

% Update a list of resources within system memory with a list of values.

next_state(rlist: resource_list, values: info_list,

s: resource_state): RECURSIVE resource_state =

CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next_state(rest, null, s) WITH [(r) := null_info]

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

% The new state that results from executing a single instruction.

execute(c: command, s: resource_state): resource_state =

next_state(results(c), fn(c)(map(s)(args(c))), s)

% The state results from the cumulative application of the entire

% command list.

state(cmds: cmd_list): RECURSIVE resource_state =

CASES cmds OF

null: initial_state,

cons(c, rest): execute(c, state(rest))

ENDCASES

MEASURE length(cmds)

% do_step gives the values computed by a single command.

do_step(c: command, s: resource_state): info_list =

fn(c)(map(s)(args(c)))

% Generate the full computation trace from the command sequence.

do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): cons((# appl_id := appl_id(c),

cmd_type := cmd_type(c),
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results := do_step(c, state(rest)) #),

do_all(rest))

ENDCASES

MEASURE length(cmds)

%%%%%%%%%%%%%%%%

% Purge removes all commands/events not due to application a.

purge(cmds: cmd_list, a: appl_id): RECURSIVE cmd_list =

CASES cmds OF

null: null,

cons(c, rest): IF a = appl_id(c)

THEN cons(c, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(cmds)

purge(trace: comp_trace, a: appl_id): RECURSIVE comp_trace =

CASES trace OF

null: null,

cons(e, rest): IF a = appl_id(e)

THEN cons(e, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(trace)

%%%%%%%%%%%%%%%%

mode_access(m: access_mode, rlist: resource_list, a: appl_id): bool =

FORALL (r: resource):

member(r, rlist) IMPLIES

member((# appl_id := a, mode := m #), alloc(r))

% This predicate formalizes the access rights needed to perform a command.

% A valid command list adheres to this condition, which corresponds to

% enforcing access control through runtime checks by the ACR.

proper_access(cmds: cmd_list): RECURSIVE bool =

CASES cmds OF

null: true,

cons(c, rest): mode_access(READ, args(c), appl_id(c))

AND mode_access(WRITE, results(c), appl_id(c))

AND proper_access(rest)

ENDCASES

MEASURE length(cmds)
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%%%%%%%%%%%%%%%%

a,b: VAR appl_id

ar: VAR access_right

c: VAR command

cmds: VAR cmd_list

ct: VAR comp_trace

m: VAR access_mode

r: VAR resource

rlist: VAR resource_list

s,s1,s2: VAR resource_state

vlist: VAR info_list

% Utility lemmas

member_results: LEMMA

member(r, results(c)) AND member(ar, alloc(r)) AND

mode_access(WRITE, results(c), appl_id(c))

IMPLIES appl_id(ar) = appl_id(c)

map_args: LEMMA

(FORALL r: member(r, rlist) IMPLIES s1(r) = s2(r))

IMPLIES

map(s1)(rlist) = map(s2)(rlist)

next_state_not_in: LEMMA

NOT member(r, rlist) IMPLIES next_state(rlist, vlist, s)(r) = s(r)

next_state_in: LEMMA

member(r, rlist) IMPLIES

next_state(rlist, vlist, s1)(r) = next_state(rlist, vlist, s2)(r)

% Lemmas on the effects of executing a single instruction.

execute_not_in: LEMMA

NOT member(r, results(c)) IMPLIES execute(c, s)(r) = s(r)

execute_in: LEMMA

(FORALL r: member(r, args(c)) IMPLIES s1(r) = s2(r))

IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

execute(c, s1)(r) = execute(c, s2)(r))

execute_in_read: LEMMA

member(r, results(c)) AND mode_access(READ, args(c), a) AND

(FORALL r: member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES s1(r) = s2(r))

IMPLIES

execute(c, s1)(r) = execute(c, s2)(r)

46



% Following is the key lemma relating ACR state values to those

% computed from the purged command streams.

state_invariant: LEMMA

proper_access(cmds) AND

member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES

state(cmds)(r) = state(purge(cmds, a))(r)

purge_step: LEMMA

proper_access(cons(c, cmds)) AND a = appl_id(c) IMPLIES

do_step(c, state(cmds)) = do_step(c, state(purge(cmds, a)))

% This is the main result that asserts valid partitioning by showing

% that the purged operations produce the same

% outputs as the original integrated system.

well_partitioned: THEOREM

proper_access(cmds) IMPLIES

purge(do_all(cmds), a) = do_all(purge(cmds, a))

END base_part_model

A.2 Proof Summary

Proof summary for theory base_part_model

default_appl_TCC1......................................proved - complete

alloc_TCC1.............................................proved - complete

next_state_TCC1........................................proved - complete

next_state_TCC2........................................proved - complete

next_state_TCC3........................................proved - complete

state_TCC1.............................................proved - complete

purge_TCC1.............................................proved - complete

purge_TCC2.............................................proved - complete

member_results.........................................proved - complete

map_args...............................................proved - complete

next_state_not_in......................................proved - complete

next_state_in..........................................proved - complete

execute_not_in.........................................proved - complete

execute_in.............................................proved - complete

execute_in_read........................................proved - complete

state_invariant........................................proved - complete

purge_step.............................................proved - complete

well_partitioned.......................................proved - complete

Theory totals: 18 formulas, 18 attempted, 18 succeeded.

A.3 Proof Chain Analysis

base_part_model.well_partitioned has been PROVED.

The proof chain for well_partitioned is COMPLETE.
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well_partitioned depends on the following proved theorems:

base_part_model.state_TCC1

base_part_model.execute_not_in

base_part_model.execute_in

base_part_model.next_state_not_in

integers.posint_TCC1

integers.nonneg_int_TCC1

base_part_model.purge_TCC2

if_def.IF_TCC1

base_part_model.next_state_TCC2

list_props.length_TCC1

base_part_model.purge_TCC1

base_part_model.state_invariant

base_part_model.next_state_TCC3

list_props.member_TCC1

integers.posint_TCC2

base_part_model.purge_step

base_part_model.map_args

base_part_model.execute_in_read

base_part_model.next_state_in

base_part_model.member_results

base_part_model.alloc_TCC1

base_part_model.next_state_TCC1

well_partitioned depends on the following axioms:

list_adt.list_induction

well_partitioned depends on the following definitions:

base_part_model.purge

base_part_model.proper_access

sets.member

base_part_model.execute

list_adt.reduce_nat

base_part_model.do_all

list_props.length

reals.>

list_props.member

list_adt_map.map

reals.<=

base_part_model.state

sets.emptyset

base_part_model.next_state

reals.>=

base_part_model.purge

base_part_model.do_step

base_part_model.mode_access

base_part_model.static_exclusive
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Appendix B

Shared Resource Model

The second design extends the baseline system in the �rst design by adding limited dynamic
resource allocation. Shared resources are multiplexed by swapping their values in and out of
memory.

B.1 PVS Theory

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Formal model of partitioning for an IMA architecture

%%

%% Base model plus restricted resource sharing:

%% - Basic system with fixed applications

%% - Each resource is accessible by at most one application

%% - Resource allocation and access rights are partly dynamic:

%% some resources may be saved and restored during partition

%% context switches

%% - No interpartition communication

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

shared_part_model: THEORY

BEGIN

% The system supports a fixed number of partitions (applications).

num_appl: posint

appl_id: TYPE = below[num_appl]

% Basic information units are small (e.g., bytes)

info: TYPE+

info_list: TYPE = list[info]

cmd_fn: TYPE = [info_list -> info_list]

% Resources include memory locations, processor state, devices external
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% to the ACR.

resource: TYPE+

resource_list: TYPE = list[resource]

% Commands include processor instructions and kernel services. Input

% resources are listed in "args", output resources in "results". The

% function models the operation performed on the arguments.

cmd_type: TYPE = {INSTR, SAVE, RESTORE}

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

results: resource_list #]

cmd_list: TYPE = list[command]

% Access control on resources is modeled below. An access control list

% associated with each resource is the conceptual model of control.

access_mode: TYPE = {READ, WRITE}

access_right: TYPE = [# appl_id: appl_id, mode: access_mode #]

access_set: TYPE = set[access_right]

% System state models the memory available to applications and the save

% areas set aside for dynamically reallocated resources.

memory: TYPE = [resource -> info]

save_area: TYPE = [appl_id -> memory]

allocation: TYPE = [resource -> access_set]

system_state: TYPE = [# active: memory, save: save_area, alloc: allocation #]

% Computation traces record the history of computed results

comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

results: info_list #]

comp_trace: TYPE = list[comp_event]

null_info: info

default_appl: appl_id

default_cmd: cmd_type

null_comp_event: comp_event =

(# appl_id := default_appl, cmd_type := default_cmd, results := null #)

%%%%%%%%%%%%%%%%

% The following asserts what is required of resource allocation,

% namely, that it be exclusive (only one application has access

% rights to a resource).

exclusive(alloc: allocation): bool =

FORALL (r: resource):

EXISTS (a: appl_id):
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FORALL (ar: access_right):

member(ar, alloc(r)) IMPLIES a = appl_id(ar)

initial_state: {s: system_state | exclusive(alloc(s))}

% Those resources that are shared (values saved and restored on swap)

% are indicated by this constant.

shared_resources: resource_list

% The dynamic resource allocation lists are updated using these functions.

shared_set(a: appl_id): access_set =

add((# appl_id := a, mode := READ #),

add((# appl_id := a, mode := WRITE #),

emptyset[access_right]))

allocate(alloc: allocation, a: appl_id): allocation =

LAMBDA (r: resource): IF member(r, shared_resources)

THEN shared_set(a)

ELSE alloc(r)

ENDIF

deallocate(alloc: allocation, a: appl_id): allocation =

LAMBDA (r: resource): IF member(r, shared_resources)

THEN emptyset

ELSE alloc(r)

ENDIF

%%%%%%%%%%%%%%%%

% In the following, traces are represented in reverse chronological order,

% if read from left to right, owing to their use of the "list" data type.

% Update a list of resources within system memory with a list of values.

next_state(rlist: resource_list,

values: info_list, s: memory): RECURSIVE memory =

CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next_state(rest, null, s) WITH [(r) := null_info]

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

% The new state that results from executing a single instruction is

% computed below.
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exec_instr(c: command, m: memory): memory =

next_state(results(c), fn(c)(map(m)(args(c))), m)

exec_save(m: memory, s: memory): memory =

next_state(shared_resources, map(m)(shared_resources), s)

exec_restore(s: memory, m: memory): memory =

next_state(shared_resources, map(s)(shared_resources), m)

execute(c: command, s: system_state): system_state =

IF cmd_type(c) = INSTR

THEN s WITH [(active) := exec_instr(c, active(s))]

ELSIF cmd_type(c) = SAVE

THEN s WITH [(save)(appl_id(c)) :=

exec_save(active(s), save(s)(appl_id(c))),

(alloc) := deallocate(alloc(s), appl_id(c))]

ELSE s WITH [(active) :=

exec_restore(save(s)(appl_id(c)), active(s)),

(alloc) := allocate(alloc(s), appl_id(c))]

ENDIF

% The state results from the cumulative application of the entire

% command list.

state(cmds: cmd_list): RECURSIVE system_state =

CASES cmds OF

null: initial_state,

cons(c, rest): execute(c, state(rest))

ENDCASES

MEASURE length(cmds)

% do_step gives the values computed by a single command.

do_step(c: command, s: system_state): info_list =

fn(c)(map(active(s))(args(c)))

% Generate the full computation trace from the command sequence.

do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): IF cmd_type(c) = INSTR

THEN cons((# appl_id := appl_id(c),

cmd_type := cmd_type(c),

results := do_step(c, state(rest)) #),

do_all(rest))

ELSE do_all(rest)

ENDIF

ENDCASES

MEASURE length(cmds)

%%%%%%%%%%%%%%%%
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% Purge removes all commands/events not issued by application a.

purge(cmds: cmd_list, a: appl_id): RECURSIVE cmd_list =

CASES cmds OF

null: null,

cons(c, rest): IF a = appl_id(c)

THEN cons(c, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(cmds)

purge(trace: comp_trace, a: appl_id): RECURSIVE comp_trace =

CASES trace OF

null: null,

cons(e, rest): IF a = appl_id(e)

THEN cons(e, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(trace)

%%%%%%%%%%%%%%%%

% The following predicate indicates whether an application is active

% after a command list is executed. The condition holds when the last

% restore and all intervening instructions have the same application ID,

% and the matching save command has not yet occurred.

active_for(a: appl_id, cmds: cmd_list): RECURSIVE bool =

CASES cmds OF

null: false,

cons(c, rest): IF cmd_type(c) = SAVE OR appl_id(c) /= a

THEN false

ELSIF cmd_type(c) = RESTORE

THEN true

ELSE active_for(a, rest)

ENDIF

ENDCASES

MEASURE length(cmds)

% Commands need to observe certain constraints for partition swapping

% to make sense. The command list needs to be divisible into segments of

% the form <RESTORE,INSTR,...,INSTR,SAVE>, all with matching IDs.

proper_swap_rec(cmds: cmd_list, active: bool, a: appl_id): RECURSIVE bool =

CASES cmds OF

null: NOT active,

cons(c, rest): IF active AND a = appl_id(c)

THEN IF cmd_type(c) = RESTORE

THEN proper_swap_rec(rest, false, default_appl)
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ELSIF cmd_type(c) = INSTR

THEN proper_swap_rec(rest, true, a)

ELSE false

ENDIF

ELSIF NOT active AND cmd_type(c) = SAVE

THEN proper_swap_rec(rest, true, appl_id(c))

ELSE false

ENDIF

ENDCASES

MEASURE length(cmds)

proper_swap(cmds: cmd_list): bool =

proper_swap_rec(cmds, false, default_appl)

OR (EXISTS (a: appl_id): proper_swap_rec(cmds, true, a))

% "proper_access" formalizes the access rights needed to perform a command.

mode_access(m: access_mode, rlist: resource_list,

a: appl_id, s: system_state): bool =

FORALL (r: resource):

member(r, rlist) IMPLIES

member((# appl_id := a, mode := m #), alloc(s)(r))

proper_access(cmds: cmd_list): RECURSIVE bool =

CASES cmds OF

null: true,

cons(c, rest):

IF cmd_type(c) = INSTR

THEN mode_access(READ, args(c), appl_id(c), state(rest))

AND mode_access(WRITE, results(c), appl_id(c), state(rest))

AND proper_access(rest)

ELSE proper_access(rest)

ENDIF

ENDCASES

MEASURE length(cmds)

% "proper_commands" collects all the constraints on valid command lists.

proper_commands(cmds: cmd_list): bool =

proper_swap(cmds) AND proper_access(cmds)

%%%%%%%%%%%%%%%%

a,a1,a2: VAR appl_id

alloc: VAR allocation

ar: VAR access_right

c: VAR command

cmds,c1,c2: VAR cmd_list

ct: VAR comp_trace

m: VAR access_mode

m1,m2: VAR memory
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p,q: VAR bool

r: VAR resource

rlist: VAR resource_list

s,s1,s2: VAR system_state

vlist: VAR info_list

% Utility lemmas

static_alloc_initial: LEMMA

NOT member(r, shared_resources)

IMPLIES alloc(state(cmds))(r) = alloc(initial_state)(r)

static_alloc: LEMMA

NOT member(r, shared_resources)

IMPLIES alloc(state(c1))(r) = alloc(state(c2))(r)

access_state: LEMMA

(FORALL r: member(r, rlist) IMPLIES NOT member(r, shared_resources))

IMPLIES

mode_access(m, rlist, a, state(c1)) = mode_access(m, rlist, a, state(c2))

alloc_state_static: LEMMA

member(ar, alloc(state(c1))(r)) AND NOT member(r, shared_resources)

IMPLIES member(ar, alloc(state(c2))(r))

alloc_state_cons: LEMMA

member(ar, alloc(state(cons(c, cmds)))(r)) AND cmd_type(c) = INSTR

IMPLIES member(ar, alloc(state(cmds))(r))

member_allocate: LEMMA

member(r, shared_resources)

IMPLIES member((# appl_id := a, mode := READ #), allocate(alloc, a)(r))

AND member((# appl_id := a, mode := WRITE #), allocate(alloc, a)(r))

member_appl_id: LEMMA

member(r, rlist) AND member(ar, alloc(s)(r)) AND

mode_access(m, rlist, a, s) AND exclusive(alloc(s))

IMPLIES a = appl_id(ar)

map_args: LEMMA

(FORALL r: member(r, rlist) IMPLIES m1(r) = m2(r))

IMPLIES

map(m1)(rlist) = map(m2)(rlist)

next_state_not_in: LEMMA

NOT member(r, rlist) IMPLIES next_state(rlist, vlist, m1)(r) = m1(r)

next_state_in: LEMMA

member(r, rlist) IMPLIES

next_state(rlist, vlist, m1)(r) = next_state(rlist, vlist, m2)(r)

55



next_state_map: LEMMA

member(r, rlist)

IMPLIES next_state(rlist, map(m1)(rlist), m2)(r) = m1(r)

next_state_from: LEMMA

member(r, rlist) AND length(rlist) = length(vlist) AND

(FORALL (n: below[length(rlist)]): nth(vlist, n) = m1(nth(rlist, n)))

IMPLIES next_state(rlist, vlist, m1)(r) = m1(r)

% Lemmas concerning the well formedness of command streams

active_unique: LEMMA

active_for(a1, cmds) AND active_for(a2, cmds)

IMPLIES a1 = a2

active_swap: LEMMA

proper_swap_rec(cmds, true, a) IMPLIES active_for(a, cmds)

not_active_swap: LEMMA

proper_swap_rec(cmds, false, a1)

IMPLIES FORALL a2: NOT active_for(a2, cmds)

active_instr: LEMMA

proper_swap(cons(c, cmds)) AND cmd_type(c) = INSTR

IMPLIES active_for(appl_id(c), cmds)

active_save: LEMMA

proper_swap(cons(c, cmds)) AND cmd_type(c) = SAVE

IMPLIES active_for(appl_id(c), cmds)

active_restore: LEMMA

proper_swap(cons(c, cmds)) AND cmd_type(c) = RESTORE

IMPLIES NOT active_for(appl_id(c), cmds)

active_command: LEMMA

proper_swap(cons(c, cmds)) IMPLIES

IF cmd_type(c) = RESTORE

THEN NOT active_for(appl_id(c), cmds)

ELSE active_for(appl_id(c), cmds)

ENDIF

other_not_active: LEMMA

proper_swap(cons(c, cmds)) AND appl_id(c) /= a

IMPLIES NOT active_for(a, cmds)

active_access: LEMMA

active_for(a, cmds)

IMPLIES mode_access(READ, shared_resources, a, state(cmds)) AND

mode_access(WRITE, shared_resources, a, state(cmds))

exclusive_allocate: LEMMA

exclusive(alloc) IMPLIES exclusive(allocate(alloc, a))
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exclusive_deallocate: LEMMA

exclusive(alloc) IMPLIES exclusive(deallocate(alloc, a))

exclusive_alloc: LEMMA

exclusive(alloc(state(cmds)))

proper_swap_cons: LEMMA

proper_swap(cons(c, cmds)) IMPLIES proper_swap(cmds)

proper_cons: LEMMA

proper_commands(cons(c, cmds)) IMPLIES proper_commands(cmds)

active_purge: LEMMA

proper_swap(cmds)

IMPLIES active_for(a, cmds) = active_for(a, purge(cmds, a))

active_purge_equal: LEMMA

proper_swap(cmds) AND active_for(a1, purge(cmds, a2))

IMPLIES a1 = a2

proper_purge: LEMMA

proper_commands(cmds) IMPLIES proper_commands(purge(cmds, a))

% Lemmas on the effects of executing a single instruction.

execute_not_in: LEMMA

cmd_type(c) = INSTR AND NOT member(r, results(c))

IMPLIES active(execute(c, s))(r) = active(s)(r)

execute_not_in_save: LEMMA

cmd_type(c) = SAVE

IMPLIES active(execute(c, s))(r) = active(s)(r)

execute_not_in_restore: LEMMA

cmd_type(c) = RESTORE AND NOT member(r, shared_resources)

IMPLIES active(execute(c, s))(r) = active(s)(r)

execute_save: LEMMA

appl_id(c) /= a

IMPLIES save(execute(c, state(cmds)))(a) = save(state(cmds))(a)

execute_in: LEMMA

cmd_type(c) = INSTR AND

(FORALL r: member(r, args(c)) IMPLIES active(s1)(r) = active(s2)(r))

IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

active(execute(c, s1))(r) = active(execute(c, s2))(r))

execute_in_read: LEMMA

cmd_type(c) = INSTR AND

member(r, results(c)) AND mode_access(READ, args(c), a, s1) AND
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(FORALL r: member((# appl_id := a, mode := READ #), alloc(s1)(r))

IMPLIES active(s1)(r) = active(s2)(r))

IMPLIES

active(execute(c, s1))(r) = active(execute(c, s2))(r)

execute_in_save: LEMMA

proper_commands(cmds) AND cmd_type(c) = SAVE AND

member(r, shared_resources)

IMPLIES save(execute(c, state(cmds)))(appl_id(c))(r)

= active(state(cmds))(r)

execute_in_restore: LEMMA

proper_commands(cmds) AND cmd_type(c) = RESTORE AND

member(r, shared_resources)

IMPLIES active(execute(c, state(cmds)))(r)

= save(state(cmds))(appl_id(c))(r)

% Following is the key lemma relating ACR state values to those

% computed from the purged command streams.

appl_state(cmds, a)(r): info =

IF active_for(a, cmds) OR NOT member(r, shared_resources)

THEN active(state(cmds))(r)

ELSE save(state(cmds))(a)(r)

ENDIF

state_invariant: LEMMA

proper_commands(cmds) AND

(member(r, shared_resources) OR

member((# appl_id := a, mode := READ #), alloc(state(cmds))(r)))

IMPLIES

appl_state(cmds, a)(r) = appl_state(purge(cmds, a), a)(r)

purge_step: LEMMA

proper_commands(cons(c, cmds)) AND

a = appl_id(c) AND cmd_type(c) = INSTR

IMPLIES do_step(c, state(cmds)) = do_step(c, state(purge(cmds, a)))

% This is the main result that asserts valid partitioning by showing

% that the purged operations generate traces having the same outputs

% as the original integrated system.

well_partitioned: THEOREM

proper_commands(cmds) IMPLIES

purge(do_all(cmds), a) = do_all(purge(cmds, a))

END shared_part_model

B.2 Proof Summary

Proof summary for theory shared_part_model

default_appl_TCC1......................................proved - complete
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initial_state_TCC1.....................................proved - complete

next_state_TCC1........................................proved - complete

next_state_TCC2........................................proved - complete

next_state_TCC3........................................proved - complete

state_TCC1.............................................proved - complete

purge_TCC1.............................................proved - complete

purge_TCC2.............................................proved - complete

static_alloc_initial...................................proved - complete

static_alloc...........................................proved - complete

access_state...........................................proved - complete

alloc_state_static.....................................proved - complete

alloc_state_cons.......................................proved - complete

member_allocate........................................proved - complete

member_appl_id.........................................proved - complete

map_args...............................................proved - complete

next_state_not_in......................................proved - complete

next_state_in..........................................proved - complete

next_state_map.........................................proved - complete

next_state_from_TCC1...................................proved - complete

next_state_from........................................proved - complete

active_unique..........................................proved - complete

active_swap............................................proved - complete

not_active_swap........................................proved - complete

active_instr...........................................proved - complete

active_save............................................proved - complete

active_restore.........................................proved - complete

active_command.........................................proved - complete

other_not_active.......................................proved - complete

active_access..........................................proved - complete

exclusive_allocate.....................................proved - complete

exclusive_deallocate...................................proved - complete

exclusive_alloc........................................proved - complete

proper_swap_cons.......................................proved - complete

proper_cons............................................proved - complete

active_purge...........................................proved - complete

active_purge_equal.....................................proved - complete

proper_purge...........................................proved - complete

execute_not_in.........................................proved - complete

execute_not_in_save....................................proved - complete

execute_not_in_restore.................................proved - complete

execute_save...........................................proved - complete

execute_in.............................................proved - complete

execute_in_read........................................proved - complete

execute_in_save........................................proved - complete

execute_in_restore.....................................proved - complete

state_invariant........................................proved - complete

purge_step.............................................proved - complete

well_partitioned.......................................proved - complete

Theory totals: 49 formulas, 49 attempted, 49 succeeded.
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B.3 Proof Chain Analysis

shared_part_model.well_partitioned has been PROVED.

The proof chain for well_partitioned is COMPLETE.

well_partitioned depends on the following proved theorems:

shared_part_model.active_purge

if_def.IF_TCC1

shared_part_model.active_swap

shared_part_model.next_state_not_in

shared_part_model.exclusive_alloc

integers.posint_TCC1

shared_part_model.static_alloc_initial

shared_part_model.next_state_TCC3

shared_part_model.purge_step

shared_part_model.active_restore

shared_part_model.execute_in_restore

shared_part_model.purge_TCC2

shared_part_model.proper_swap_cons

shared_part_model.execute_not_in

shared_part_model.static_alloc

shared_part_model.next_state_TCC2

list_props.length_TCC1

shared_part_model.execute_in_read

shared_part_model.map_args

shared_part_model.proper_cons

shared_part_model.execute_not_in_save

shared_part_model.member_allocate

integers.posint_TCC2

shared_part_model.active_purge_equal

shared_part_model.active_access

shared_part_model.next_state_in

shared_part_model.default_appl_TCC1

shared_part_model.state_invariant

shared_part_model.purge_TCC1

shared_part_model.proper_purge

shared_part_model.execute_save

shared_part_model.active_unique

shared_part_model.exclusive_allocate

shared_part_model.other_not_active

shared_part_model.next_state_TCC1

shared_part_model.active_command

list_props.member_TCC1

shared_part_model.next_state_map

shared_part_model.not_active_swap

shared_part_model.execute_in_save

shared_part_model.exclusive_deallocate

shared_part_model.execute_not_in_restore

shared_part_model.active_instr

shared_part_model.active_save

integers.nonneg_int_TCC1

shared_part_model.execute_in
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shared_part_model.initial_state_TCC1

shared_part_model.state_TCC1

well_partitioned depends on the following axioms:

list_adt.list_induction

well_partitioned depends on the following definitions:

shared_part_model.exec_restore

shared_part_model.mode_access

list_adt.reduce_nat

shared_part_model.exec_save

notequal./=

shared_part_model.proper_access

shared_part_model.proper_swap

shared_part_model.exec_instr

reals.<=

shared_part_model.active_for

shared_part_model.proper_commands

shared_part_model.purge

shared_part_model.allocate

sets.emptyset

reals.>

shared_part_model.do_all

shared_part_model.exclusive

shared_part_model.do_step

sets.member

shared_part_model.appl_state

shared_part_model.state

list_props.length

shared_part_model.next_state

shared_part_model.execute

list_props.member

shared_part_model.purge

shared_part_model.deallocate

list_adt_map.map

shared_part_model.shared_set

shared_part_model.proper_swap_rec

reals.>=

sets.add
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Appendix C

IPC Partitioning Model

The third design extends the baseline system in a di�erent way by allowing generic interpartition
communication (IPC) services.

C.1 PVS Theory

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Formal model of partitioning for an IMA architecture

%%

%% Base model plus interpartition communication:

%% - Basic system with fixed applications

%% - Each writable resource is accessible by at most

%% one application

%% - Read-only resources accessible by any application

%% - Resource allocation and access rights are static

%% - Generic interpartition communication is allowed

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

IPC_part_model: THEORY

BEGIN

% The system supports a fixed number of partitions (applications).

num_appl: posint

appl_id: TYPE = below[num_appl]

% Basic information units are small (e.g., bytes)

info: TYPE+

info_list: TYPE = list[info]

cmd_fn: TYPE = [info_list -> info_list]

% Resources include memory locations, processor state, and some

% devices external to the ACR.
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resource: TYPE+

resource_list: TYPE = list[resource]

% Commands include processor instructions and kernel services. Input

% resources are listed in "args", output resources in "results". The

% function models the operation performed on the arguments.

cmd_type: TYPE = {INSTR, IPC}

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

results: resource_list #]

cmd_list: TYPE = list[command]

% The type res_state models the memory-like resources available to

% applications, IPC_state models the interpartition communication

% state, and system_state contains them both.

res_state: TYPE = [resource -> info]

IPC_state: TYPE+

system_state: TYPE = [# res: res_state, IPC: IPC_state #]

initial_res_state: res_state

initial_IPC_state: IPC_state

initial_state: system_state = (# res := initial_res_state,

IPC := initial_IPC_state #)

% Computation traces record the history of computed results

comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

res_res: resource_list,

results: info_list #]

comp_trace: TYPE = list[comp_event]

% Misc. constants

null_info: info

default_appl: appl_id

default_cmd: cmd_type

id_fn: cmd_fn = (LAMBDA (L: info_list): L)

null_comp_event: comp_event =

(# appl_id := default_appl, cmd_type := default_cmd,

args := null, fn := id_fn, res_res := null,

results := null #)

%%%%%%%%%%%%%%%%

% Access control on resources is modeled below. Access control lists
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% associated with each resource is the conceptual model of control.

access_mode: TYPE = {READ, WRITE}

access_right: TYPE = [# appl_id: appl_id, mode: access_mode #]

access_set: TYPE = set[access_right]

read_only: [resource -> bool]

% The following asserts key requirements about static resource allocation,

% namely, that it be exclusive (only one application has access rights

% to a resource).

allocation: TYPE = [resource -> access_set]

static_exclusive(alloc_fn: allocation): bool =

FORALL (r: resource):

NOT read_only(r) IMPLIES

EXISTS (a: appl_id):

FORALL (ar: access_right):

member(ar, alloc_fn(r)) IMPLIES a = appl_id(ar)

write_limited(alloc_fn: allocation): bool =

FORALL (r: resource), (ar: access_right):

read_only(r) AND member(ar, alloc_fn(r)) IMPLIES mode(ar) = READ

% Resource allocation is specified by the constant "alloc".

alloc: {p: allocation | static_exclusive(p) AND write_limited(p)}

%%%%%%%%%%%%%%%%

% In the following, traces are represented in reverse chronological order,

% if read from left to right, owing to their use of the "list" data type.

% Update a list of resources within system memory with a list of values.

next_state(rlist: resource_list, values: info_list,

s: res_state): RECURSIVE res_state =

CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next_state(rest, null, s) WITH [(r) := null_info]

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

% The new state that results from executing a single instruction.
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execute(c: command, s: res_state): res_state =

next_state(results(c), fn(c)(map(s)(args(c))), s)

% do_step gives the values computed by a single instruction.

do_step(c: command, s: res_state): info_list =

fn(c)(map(s)(args(c)))

% Execution of IPC commands is modeled by the following.

res_update_IPC(c: command, args: info_list, IPC: IPC_state): info_list

IPC_update_IPC(c: command, args: info_list, IPC: IPC_state): IPC_state

exec_IPC(c: command, res: res_state, IPC: IPC_state): system_state =

(# res := next_state(results(c),

res_update_IPC(c, map(res)(args(c)), IPC),

res),

IPC := IPC_update_IPC(c, map(res)(args(c)), IPC) #)

% do_IPC gives the values computed by a single IPC command.

do_IPC(c: command, res: res_state, IPC: IPC_state): info_list =

res_update_IPC(c, map(res)(args(c)), IPC)

% A system state results from the cumulative application of an entire

% command list, or from a command list segment continuing from a

% previously obtained state.

state(cmds: cmd_list): RECURSIVE system_state =

CASES cmds OF

null: initial_state,

cons(c, rest): IF cmd_type(c) = INSTR

THEN (# res := execute(c, res(state(rest))),

IPC := IPC(state(rest)) #)

ELSE exec_IPC(c, res(state(rest)),

IPC(state(rest)))

ENDIF

ENDCASES

MEASURE length(cmds)

% Construction functions for trace events

INSTR_event(c: command, res: res_state): comp_event =

(# appl_id := appl_id(c),

cmd_type := cmd_type(c),

args := args(c),

fn := fn(c),
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res_res := results(c),

results := do_step(c, res) #)

IPC_event(c: command, res: res_state, IPC: IPC_state): comp_event =

(# appl_id := appl_id(c),

cmd_type := cmd_type(c),

args := args(c),

fn := fn(c),

res_res := results(c),

results := do_IPC(c, res, IPC) #)

% Generate the full computation trace from the command sequence.

do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): cons(IF cmd_type(c) = INSTR

THEN INSTR_event(c, res(state(rest)))

ELSE IPC_event(c, res(state(rest)),

IPC(state(rest)))

ENDIF,

do_all(rest))

ENDCASES

MEASURE length(cmds)

%%%%%%%%%%%%%%%%

% Purge removes all events not due to application a.

purge(trace: comp_trace, a: appl_id): RECURSIVE comp_trace =

CASES trace OF

null: null,

cons(e, rest): IF a = appl_id(e)

THEN cons(e, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(trace)

%%%%%%%%%%%%%%%%

% Computation using separated command streams involves computing both

% local and global state values. The IPC state is assumed to be

% global (single-thread).

trace_state_appl: TYPE = [# trace: comp_trace, res: res_state #]

init_trace_state_appl: trace_state_appl =

(# trace := null, res := initial_res_state #)

trace_state_vector: TYPE = [appl_id -> trace_state_appl]

trace_state_full: TYPE = [# local: trace_state_vector,
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global: IPC_state #]

% A single command updates the relevant state and adds to the cumulative

% computation trace.

comp_step(c: command, local: trace_state_appl,

global: IPC_state): trace_state_appl =

IF cmd_type(c) = IPC

THEN (# trace := cons(IPC_event(c, res(local), global), trace(local)),

res := res(exec_IPC(c, res(local), global)) #)

ELSE (# trace := cons(INSTR_event(c, res(local)), trace(local)),

res := execute(c, res(local)) #)

ENDIF

% A command list is executed by the ensemble of separate processors.

% Each command updates the local state for one partition and the

% global IPC state for IPC commands.

do_all_purge(cmds: cmd_list): RECURSIVE trace_state_full =

CASES cmds OF

null: (# local := LAMBDA (a: appl_id): init_trace_state_appl,

global := initial_IPC_state #),

cons(c, rest):

LET prev = do_all_purge(rest) IN

(# local :=

LAMBDA (a: appl_id):

IF a = appl_id(c)

THEN comp_step(c, local(prev)(a), global(prev))

ELSE local(prev)(a)

ENDIF,

global := IF cmd_type(c) = IPC

THEN IPC(exec_IPC(c, res(local(prev)(appl_id(c))),

global(prev)))

ELSE global(prev)

ENDIF

#)

ENDCASES

MEASURE length(cmds)

%%%%%%%%%%%%%%%%

mode_access(m: access_mode, rlist: resource_list, a: appl_id): bool =

FORALL (r: resource):

member(r, rlist) IMPLIES

member((# appl_id := a, mode := m #), alloc(r))

% This predicate formalizes the access rights needed to perform a command.

% A valid command list adheres to this condition, which corresponds to

% enforcing access control through runtime checks by the ACR.

proper_access(cmds: cmd_list): RECURSIVE bool =
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CASES cmds OF

null: true,

cons(c, rest): mode_access(READ, args(c), appl_id(c))

AND mode_access(WRITE, results(c), appl_id(c))

AND proper_access(rest)

ENDCASES

MEASURE length(cmds)

%%%%%%%%%%%%%%%%

a,b: VAR appl_id

ar: VAR access_right

c,d: VAR command

cmds,c1,c2: VAR cmd_list

comm: VAR IPC_state

ct: VAR comp_trace

init: VAR system_state

m: VAR access_mode

r: VAR resource

rlist: VAR resource_list

s,s1,s2: VAR res_state

vlist: VAR info_list

% It is useful to consider when two states match on all resources that

% a partition has read access to.

state_match(a, s1, s2): bool =

FORALL r:

member((# appl_id := a, mode := READ #), alloc(r)) IMPLIES s1(r) = s2(r)

% Utility lemmas

state_match_trans: LEMMA

state_match(a, s1, s) AND state_match(a, s, s2)

IMPLIES state_match(a, s1, s2)

member_results: LEMMA

member(r, results(c)) AND member(ar, alloc(r)) AND

mode_access(WRITE, results(c), appl_id(c))

IMPLIES appl_id(ar) = appl_id(c)

map_args: LEMMA

(FORALL r: member(r, rlist) IMPLIES s1(r) = s2(r))

IMPLIES

map(s1)(rlist) = map(s2)(rlist)

next_state_not_in: LEMMA

NOT member(r, rlist) IMPLIES next_state(rlist, vlist, s)(r) = s(r)
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next_state_in: LEMMA

member(r, rlist) IMPLIES

next_state(rlist, vlist, s1)(r) = next_state(rlist, vlist, s2)(r)

% Lemmas on the effects of executing a single instruction.

execute_not_in: LEMMA

NOT member(r, results(c)) IMPLIES execute(c, s)(r) = s(r)

execute_in: LEMMA

(FORALL r: member(r, args(c)) IMPLIES s1(r) = s2(r))

IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

execute(c, s1)(r) = execute(c, s2)(r))

execute_in_read: LEMMA

member(r, results(c)) AND mode_access(READ, args(c), a) AND

(FORALL r: member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES s1(r) = s2(r))

IMPLIES

execute(c, s1)(r) = execute(c, s2)(r)

execute_match_appl: LEMMA

mode_access(READ, args(c), appl_id(c)) AND

state_match(appl_id(c), s1, s2)

IMPLIES

state_match(appl_id(c), execute(c, s1), execute(c, s2))

execute_match_not_appl: LEMMA

mode_access(WRITE, results(c), appl_id(c)) AND a /= appl_id(c)

IMPLIES

state_match(a, execute(c, s), s)

INSTR_event_match_appl: LEMMA

mode_access(READ, args(c), appl_id(c)) AND

state_match(appl_id(c), s1, s2)

IMPLIES

INSTR_event(c, s1) = INSTR_event(c, s2)

% Lemmas on the effects of executing a single IPC kernel service.

exec_IPC_not_in: LEMMA

NOT member(r, results(c)) IMPLIES res(exec_IPC(c, s, comm))(r) = s(r)

exec_IPC_in: LEMMA

(FORALL r: member(r, args(c)) IMPLIES s1(r) = s2(r))

IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

res(exec_IPC(c, s1, comm))(r) = res(exec_IPC(c, s2, comm))(r))

AND IPC(exec_IPC(c, s1, comm)) = IPC(exec_IPC(c, s2, comm))
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exec_IPC_in_read: LEMMA

member(r, results(c)) AND mode_access(READ, args(c), a) AND

(FORALL r: member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES s1(r) = s2(r))

IMPLIES

res(exec_IPC(c, s1, comm))(r) = res(exec_IPC(c, s2, comm))(r)

AND IPC(exec_IPC(c, s1, comm)) = IPC(exec_IPC(c, s2, comm))

exec_IPC_in_IPC: LEMMA

(FORALL r: member(r, args(c)) IMPLIES s1(r) = s2(r))

IMPLIES

IPC(exec_IPC(c, s1, comm)) = IPC(exec_IPC(c, s2, comm))

exec_IPC_match_appl: LEMMA

mode_access(READ, args(c), a) AND

state_match(a, s1, s2) AND a = appl_id(c)

IMPLIES

state_match(a, res(exec_IPC(c, s1, comm)), res(exec_IPC(c, s2, comm)))

exec_IPC_IPC_appl: LEMMA

mode_access(READ, args(c), a) AND

state_match(a, s1, s2) AND a = appl_id(c)

IMPLIES

IPC(exec_IPC(c, s1, comm)) = IPC(exec_IPC(c, s2, comm))

exec_IPC_match_not_appl: LEMMA

mode_access(WRITE, results(c), appl_id(c)) AND a /= appl_id(c)

IMPLIES

state_match(a, res(exec_IPC(c, s, comm)), s)

IPC_event_match_appl: LEMMA

mode_access(READ, args(c), appl_id(c)) AND

state_match(appl_id(c), s1, s2)

IMPLIES

IPC_event(c, s1, comm) = IPC_event(c, s2, comm)

%%%%%%%%%%%%%%%%

% Following are the key lemmas relating ACR state values to those

% computed from the purged command streams.

state_invariant: THEOREM

proper_access(cmds) IMPLIES

(FORALL a: state_match(a, res(state(cmds)),

res(local(do_all_purge(cmds))(a)))) AND

IPC(state(cmds)) = global(do_all_purge(cmds))

well_partitioned: THEOREM

proper_access(cmds) IMPLIES

purge(do_all(cmds), a) = trace(local(do_all_purge(cmds))(a))
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END IPC_part_model

C.2 Proof Summary

Proof summary for theory IPC_part_model

default_appl_TCC1......................................proved - complete

alloc_TCC1.............................................proved - complete

next_state_TCC1........................................proved - complete

next_state_TCC2........................................proved - complete

next_state_TCC3........................................proved - complete

state_TCC1.............................................proved - complete

state_TCC2.............................................proved - complete

do_all_TCC1............................................proved - complete

purge_TCC1.............................................proved - complete

purge_TCC2.............................................proved - complete

state_match_trans......................................proved - complete

member_results.........................................proved - complete

map_args...............................................proved - complete

next_state_not_in......................................proved - complete

next_state_in..........................................proved - complete

execute_not_in.........................................proved - complete

execute_in.............................................proved - complete

execute_in_read........................................proved - complete

execute_match_appl.....................................proved - complete

execute_match_not_appl.................................proved - complete

INSTR_event_match_appl.................................proved - complete

exec_IPC_not_in........................................proved - complete

exec_IPC_in............................................proved - complete

exec_IPC_in_read.......................................proved - complete

exec_IPC_in_IPC........................................proved - complete

exec_IPC_match_appl....................................proved - complete

exec_IPC_IPC_appl......................................proved - complete

exec_IPC_match_not_appl................................proved - complete

IPC_event_match_appl...................................proved - complete

state_invariant........................................proved - complete

well_partitioned.......................................proved - complete

Theory totals: 31 formulas, 31 attempted, 31 succeeded.

C.3 Proof Chain Analysis

IPC_part_model.well_partitioned has been PROVED.

The proof chain for well_partitioned is COMPLETE.

well_partitioned depends on the following proved theorems:

IPC_part_model.next_state_in

if_def.IF_TCC1

IPC_part_model.do_all_TCC1

IPC_part_model.state_invariant
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integers.posint_TCC1

IPC_part_model.exec_IPC_in

IPC_part_model.next_state_TCC3

IPC_part_model.exec_IPC_match_not_appl

list_props.length_TCC1

IPC_part_model.next_state_TCC2

IPC_part_model.state_match_trans

IPC_part_model.execute_match_appl

IPC_part_model.exec_IPC_IPC_appl

integers.posint_TCC2

IPC_part_model.execute_in

IPC_part_model.alloc_TCC1

IPC_part_model.purge_TCC2

IPC_part_model.next_state_not_in

IPC_part_model.INSTR_event_match_appl

IPC_part_model.state_TCC1

IPC_part_model.exec_IPC_in_IPC

IPC_part_model.execute_match_not_appl

IPC_part_model.IPC_event_match_appl

list_props.member_TCC1

IPC_part_model.member_results

IPC_part_model.exec_IPC_match_appl

IPC_part_model.execute_in_read

IPC_part_model.next_state_TCC1

IPC_part_model.execute_not_in

IPC_part_model.purge_TCC1

IPC_part_model.map_args

integers.nonneg_int_TCC1

IPC_part_model.state_TCC2

IPC_part_model.exec_IPC_not_in

IPC_part_model.exec_IPC_in_read

well_partitioned depends on the following axioms:

list_adt.list_induction

well_partitioned depends on the following definitions:

IPC_part_model.do_all_purge

IPC_part_model.do_IPC

IPC_part_model.state

list_adt.reduce_nat

IPC_part_model.initial_state

IPC_part_model.comp_step

IPC_part_model.do_all

notequal./=

IPC_part_model.proper_access

reals.<=

IPC_part_model.purge

IPC_part_model.write_limited

sets.emptyset

IPC_part_model.do_step

IPC_part_model.static_exclusive

IPC_part_model.execute
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IPC_part_model.init_trace_state_appl

IPC_part_model.mode_access

IPC_part_model.exec_IPC

reals.>

IPC_part_model.INSTR_event

sets.member

list_props.length

IPC_part_model.IPC_event

list_props.member

IPC_part_model.state_match

list_adt_map.map

reals.>=

IPC_part_model.next_state
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Appendix D

Kernel Partitioning Model

This model supplements the resource partitioning models by showing that interpartition communication

through a kernel is not subject to unintended interference. A simple set of IPC services (SEND and

RECEIVE) is assumed.

D.1 PVS Theory

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Formal model of partitioning for an IMA architecture

%%

%% Kernel (IPC) partitioning model:

%% - Basic system with fixed applications

%% - Limited interpartition communication (IPC) is allowed

%% - Partitioning requirements apply to kernel state and IPC

%% mechanism rather than resource state

%% - Simple IPC services based on send, receive commands

%% - Common resource state, multiple IPC states

%% - Resource allocation and access rights irrelevant

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

kernel_part_model: THEORY

BEGIN

% The system supports a fixed number of partitions (applications).

num_appl: posint

appl_id: TYPE = below[num_appl]

% Basic information units are small (e.g., bytes)

info: TYPE+

info_list: TYPE = list[info]

cmd_fn: TYPE = [info_list -> info_list]
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% Resources include memory locations, processor state, and some

% devices external to the ACR.

resource: TYPE+

resource_list: TYPE = list[resource]

% Commands include processor instructions and kernel services. Input

% resources are listed in "args", output resources in "results". The

% function models the operation performed on the arguments.

cmd_type: TYPE = {INSTR, SEND, RCV}

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

results: resource_list #]

cmd_list: TYPE = list[command]

% A port_id type is used to distinguish individual communication ports

% or channels implemented by the kernel.

port: TYPE+

port: [command -> port]

queue: TYPE = list[info_list]

% The type res_state models the memory-like resources available to

% applications, IPC_state models the interpartition communication

% state, and system_state contains them both.

res_state: TYPE = [resource -> info]

IPC_state: TYPE = [port -> queue]

system_state: TYPE = [# res: res_state, IPC: IPC_state #]

initial_res_state: res_state

initial_IPC_state: IPC_state

initial_state: system_state = (# res := initial_res_state,

IPC := initial_IPC_state #)

% Computation traces record the history of computed results

comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

res_res: resource_list,

results: info_list #]

comp_trace: TYPE = list[comp_event]

% Misc. constants

null_info: info

default_appl: appl_id

default_cmd: cmd_type

id_fn: cmd_fn = (LAMBDA (L: info_list): L)
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null_comp_event: comp_event =

(# appl_id := default_appl, cmd_type := default_cmd,

args := null, fn := id_fn, res_res := null,

results := null #)

%%%%%%%%%%%%%%%%

% Access control on resources omitted.

%%%%%%%%%%%%%%%%

% In the following, traces are represented in reverse chronological order,

% if read from left to right, owing to their use of the "list" data type.

% Update a list of resources within system memory with a list of values.

next_state(rlist: resource_list, values: info_list,

s: res_state): RECURSIVE res_state =

CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next_state(rest, null, s) WITH [(r) := null_info]

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

% do_step gives the values computed by a single instruction.

do_step(c: command, s: res_state): info_list =

fn(c)(map(s)(args(c)))

% The new state that results from executing a single instruction:

execute(c: command, s: res_state): res_state =

next_state(results(c), do_step(c, s), s)

% do_SEND, do_RCV give the values computed by a single IPC command.

do_SEND(c: command, res: res_state, IPC: IPC_state): info_list =

map(res)(args(c))

do_RCV(c: command, res: res_state, IPC: IPC_state): info_list =

IF IPC(port(c)) = null

THEN null

ELSE car(IPC(port(c)))
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ENDIF

% Execution of IPC commands is modeled by the following.

exec_SEND(c: command, res: res_state, IPC: IPC_state): system_state =

(# res := res,

IPC := IPC WITH [(port(c)) :=

append(IPC(port(c)),

(: do_SEND(c, res, IPC) :) )] #)

exec_RCV(c: command, res: res_state, IPC: IPC_state): system_state =

(# res := next_state(results(c), do_RCV(c, res, IPC), res),

IPC := IF IPC(port(c)) = null

THEN IPC

ELSE IPC WITH [(port(c)) := cdr(IPC(port(c)))]

ENDIF #)

exec_IPC(c: command, res: res_state, IPC: IPC_state): system_state =

IF cmd_type(c) = SEND

THEN exec_SEND(c, res, IPC)

ELSE exec_RCV(c, res, IPC)

ENDIF

% A system state results from the cumulative application of an entire

% command list, or from a command list segment continuing from a

% previously obtained state.

state(cmds: cmd_list): RECURSIVE system_state =

CASES cmds OF

null: initial_state,

cons(c, rest): IF cmd_type(c) = INSTR

THEN (# res := execute(c, res(state(rest))),

IPC := IPC(state(rest)) #)

ELSE exec_IPC(c, res(state(rest)),

IPC(state(rest)))

ENDIF

ENDCASES

MEASURE length(cmds)

% Construction functions for trace events

INSTR_event(c: command, res: res_state): comp_event =

(# appl_id := appl_id(c),

cmd_type := cmd_type(c),

args := args(c),

fn := fn(c),

res_res := results(c),

results := do_step(c, res) #)

IPC_event(c: command, res: res_state, IPC: IPC_state): comp_event =
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(# appl_id := appl_id(c),

cmd_type := cmd_type(c),

args := args(c),

fn := fn(c),

res_res := results(c),

results := IF cmd_type(c) = SEND

THEN do_SEND(c, res, IPC)

ELSE do_RCV(c, res, IPC)

ENDIF #)

% Generate the full computation trace from the command sequence.

do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): cons(IF cmd_type(c) = INSTR

THEN INSTR_event(c, res(state(rest)))

ELSE IPC_event(c, res(state(rest)),

IPC(state(rest)))

ENDIF,

do_all(rest))

ENDCASES

MEASURE length(cmds)

%%%%%%%%%%%%%%%%

% Explicit purge operations are not used. Implicit separation of

% command streams based on IPC port is captured below.

% Computation using separated command streams involves computing both

% local and global state values. The resource state is made global.

IPC_state_vector: TYPE = [port -> IPC_state]

trace_state_full: TYPE = [# local: IPC_state_vector,

global: res_state,

trace: comp_trace #]

% A command list is executed by the ensemble of partitions on one common

% processor and separate kernels for each port/communication channel.

% Each IPC command updates the kernel state for its port and the

% global resource state.

do_all_ports(cmds: cmd_list): RECURSIVE trace_state_full =

CASES cmds OF

null: (# local := LAMBDA (p: port): initial_IPC_state,

global := initial_res_state,

trace := null #),

cons(c, rest):

LET prev = do_all_ports(rest) IN

IF cmd_type(c) = INSTR
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THEN (# local := local(prev),

global := execute(c, global(prev)),

trace := cons(INSTR_event(c, global(prev)),

trace(prev)) #)

ELSE (# local := LAMBDA (p: port):

IF p = port(c)

THEN IPC(exec_IPC(c, global(prev),

local(prev)(p)))

ELSE local(prev)(p)

ENDIF,

global := res(exec_IPC(c, global(prev),

local(prev)(port(c)))),

trace := cons(IPC_event(c, global(prev),

local(prev)(port(c))),

trace(prev)) #)

ENDIF

ENDCASES

MEASURE length(cmds)

%%%%%%%%%%%%%%%%

% The proper_access predicate omitted.

%%%%%%%%%%%%%%%%

a,b: VAR appl_id

c,d: VAR command

cmds,c1,c2: VAR cmd_list

ct: VAR comp_trace

init: VAR system_state

p,q: VAR port

r: VAR resource

rlist: VAR resource_list

s,s1,s2: VAR res_state

t,t1,t2: VAR IPC_state

vlist: VAR info_list

% Lemmas expressing equality of state components under various conditions.

IPC_event_match: LEMMA

t1(port(c)) = t2(port(c)) IMPLIES

IPC_event(c, s, t1) = IPC_event(c, s, t2)

res_exec_IPC_match: LEMMA

t1(port(c)) = t2(port(c)) IMPLIES

res(exec_IPC(c, s, t1)) = res(exec_IPC(c, s, t2))

IPC_exec_IPC_match: LEMMA

p = port(c) AND t1(p) = t2(p) IMPLIES
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IPC(exec_IPC(c, s, t1))(p) = IPC(exec_IPC(c, s, t2))(p)

IPC_exec_IPC_other: LEMMA

p /= port(c) IMPLIES IPC(exec_IPC(c, s, t))(p) = t(p)

%%%%%%%%%%%%%%%%

% Following are the key lemmas relating ACR state values to those

% computed from the purged command streams.

state_invariant: THEOREM

res(state(cmds)) = global(do_all_ports(cmds)) AND

FORALL p: IPC(state(cmds))(p) =

local(do_all_ports(cmds))(p)(p)

well_partitioned: THEOREM

do_all(cmds) = trace(do_all_ports(cmds))

END kernel_part_model

D.2 Proof Summary

Proof summary for theory kernel_part_model

default_appl_TCC1......................................proved - complete

next_state_TCC1........................................proved - complete

next_state_TCC2........................................proved - complete

next_state_TCC3........................................proved - complete

do_RCV_TCC1............................................proved - complete

state_TCC1.............................................proved - complete

state_TCC2.............................................proved - complete

do_all_TCC1............................................proved - complete

IPC_event_match........................................proved - complete

res_exec_IPC_match.....................................proved - complete

IPC_exec_IPC_match.....................................proved - complete

IPC_exec_IPC_other.....................................proved - complete

state_invariant........................................proved - complete

well_partitioned.......................................proved - complete

Theory totals: 14 formulas, 14 attempted, 14 succeeded.

D.3 Proof Chain Analysis

kernel_part_model.well_partitioned has been PROVED.

The proof chain for well_partitioned is COMPLETE.

well_partitioned depends on the following proved theorems:

kernel_part_model.next_state_TCC2

kernel_part_model.state_TCC2

integers.posint_TCC1
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integers.nonneg_int_TCC1

if_def.IF_TCC1

kernel_part_model.state_invariant

kernel_part_model.IPC_exec_IPC_other

list_props.length_TCC1

kernel_part_model.state_TCC1

kernel_part_model.next_state_TCC3

list_props.append_TCC1

kernel_part_model.res_exec_IPC_match

kernel_part_model.do_all_TCC1

kernel_part_model.next_state_TCC1

integers.posint_TCC2

kernel_part_model.do_RCV_TCC1

kernel_part_model.IPC_event_match

kernel_part_model.IPC_exec_IPC_match

well_partitioned depends on the following axioms:

list_adt.list_induction

well_partitioned depends on the following definitions:

kernel_part_model.do_RCV

kernel_part_model.state

kernel_part_model.next_state

list_adt.reduce_nat

kernel_part_model.exec_RCV

kernel_part_model.do_all_ports

kernel_part_model.execute

kernel_part_model.do_all

list_props.length

reals.>

kernel_part_model.exec_IPC

kernel_part_model.do_step

list_props.append

list_adt_map.map

kernel_part_model.do_SEND

reals.<=

kernel_part_model.INSTR_event

kernel_part_model.initial_state

reals.>=

kernel_part_model.exec_SEND

notequal./=

kernel_part_model.IPC_event
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The aviation industry is gradually moving toward the use of integrated modular avionics (IMA) for civilian 
transport aircraft.  An important concern for IMA is ensuring that applications are safely partitioned
so they cannot interfere with one another.  We have investigated the problem of ensuring safe partitioning and 
logical noninterference among separate applications running on a shared Avionics Computer Resource (ACR).  
This research was performed in the context of ongoing standardization efforts, in particular, the work of RTCA 
committee SC-182, and the recently completed ARINC 653 application executive (APEX) interface standard.

We have developed a formal model of partitioning suitable for evaluating the design of an ACR.  The model 
draws from the mathematical modeling techniques developed by the computer security community.  This report 
presents a formulation of partitioningrequirements expressed first using conventional mathematical notation, 
then formalized using the language of SRI's Prototype Verification System (PVS).  The approach is 
demonstrated on three candidate designs, each an abstraction of features found in real systems.
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