
USING MODEL CHECKING FOR VERIFICATION OF PARTITIONING
PROPERTIES IN INTEGRATED MODULAR AVIONICS

Darren Cofer, Eric Engstrom, and Nicholas Weininger

Honeywell Technology Center, Minneapolis, MN

John Penix and Willem Visser, NASA Ames Research Center, Moffet Field, CA

Abstract
Time partitioning is a crucial property for

integrated moduIar avionics architectures,
particularly those in which applications of different
criticalities run on the same processor. In a time-
partitioned operating system, the scheduler is
responsible for ensuring that the actions of one
thread cannot affect other threads' guaranteed
access to CPU execution time. However, the large
number of variables affecting application execution
interleavings makes it difficult and costly to verify
time partitioning by traditional means.

We believe that automated model checking is a
promising technique for verifying the correct design
of partitioning algorithms. Our experience with
modeling the DEOS scheduler shows that
expressive models can be produced at a reasonable
cost. Using automated model checking can increase
design assurance by allowing coverage of a larger
range of execution interleavings than can feasibly
be covered by traditional testing. Furthermore,
model checking can decrease development and
testing costs by finding design errors early in the
development cycle.

Introduction
Increasing aviation safety and reducing delay

are two of the greatest challenges facing the
aviation industry for the next 10 years. These
objectives, however, are in tension with each other.
Increased system congestion means that more
aircraft are departing and arriving at busy airports
during peak traffic times. This increases the chance
that human error or component breakdown could
lead to an incident or an accident. Increased
congestion also increases pilot and controller
workload, which can reduce the operational safety
margin.

There are several initiatives, either recently
deployed or in development, that affect both delay
and safety. Delaykapacity initiatives include
Reduced Vertical Separation Minimum (RVSM -
decreasing the vertical separation requirements for
trans-oceanic corridors), Airborne Information for
Lateral Spacing (AILS - increasing the capacity of
airports with closely spaced parallel runways under
instrument landing conditions), Collaborative
Decision Making (CDM - optimizing utilization of
airports during poor weather conditions), and the
emerging Free Flight initiative. Safety initiatives
include the Enhanced Ground Proximity Warning
System (EGPWS - a predictive ground avoidance
system), ControllerPilot Data Link Communication
(CPDLC), Cockpit Display of Traffic Information
(CDTI) and Airborne Weather Information
(AWIN).

of new systems into the on-board avionics of both
existing and newly developed aircraft. New radio
standards, critical databases, display systems and
information management and decision systems will
be added to support the required on-board
functionality. These avionics changes may be met
by the addition of totally new equipment, or more
likely, through the modification of existing
equipment. Given the simultaneous push for
capacity and safety improvements, it is critical to
ensure that these system changes do not have
unintended consequences.

In addition, over the past decade Integrated
Modular Avionics (M A) has gained popularity as a
more cost-effective method (reducing size, weight,
power and recurring cost) of fielding advanced
avionics systems. IMA systems use a shared
resource environment to simultaneously host
functions of differing criticality. This makes such
platforms a natural location to place new
functionality. It also places a special burden on the

These developments will result in the addition

0-7803-6395-7/00/$10.00 02000 IEEE 1.D.2-1

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

M A operating system to keep functions of different
criticality levels from interfering with each other.

Sharing resources, including both processing
and YO, involves a large amount of concurrency.
Software threads interact with each other in
complex patterns. Correct interaction between
these threads is ensured by the protection
mechanisms and scheduling functionality of the real
time operating system. Under a cooperative
research agreement between Honeywell and
NASA's Langley Research Center we will develop
techniques to verify time and space partitioning
properties in IMA operating systems to better
ensure the integration of new functionality in a safe
manner. We will then extend those techniques to
enable the verification of IMA applications. We
believe that the use of formal techniques to increase
M A software design assurance will be crucial to
aviation safety over the next decade.

The remainder of this paper provides an
overview of our work to date in formal verification
of IMA partitioning properties and describes our
plans to continue this effort.

Initial Work on Time Partitioning
The Digital Engine Operation System (DEOS)

was developed by Honeywell for use in our Primus
Epic avionics product line. DEOS supports flexible
IMA applications by providing both space
partitioning at the process level and time
partitioning at the thread level. Space partitioning
ensures that no process can modify the memory of
another process without authorization, while time
partitioning ensures that a thread's access to its
CPU time budget cannot be impaired by the actions
of any other thread.

Due to the inherent complexity and safety
critical nature of the system, the developers
understood from the beginning of the DEOS
development that testing was going to be
inadequate for ensuring the correctness of the
scheduler. Currently the primary means for
obtaining FAA certification is to develop and test
the software in accordance with the guidelines in
RTCA document DO-178B [l] which uses
structural coverage as a measure of testing
adequacy. These structural coverage requirements
are not only expensive to achieve, but they are

ineffective in identifying certain classes of errors,
especially those involving timing or race
conditions.

The DEOS development team employed a
collection of techniques including the specification
of semi-formal pre-conditions, post-conditions, and
invariants on C++ functions, data structures, and
abstract system states. The design review process
included checking manually that the pre-conditions,
post-conditions, and invariants were satisfied by the
implementation. Several very subtle errors were
detected that the developers believed would have
been impossible to detect without these techniques.
As a result, they became interested in increasing the
formality, reliability, and efficiency of the review
process by using automation.

Honeywell and NASA Ames began a
collaboration to investigate techniques that will
enable automated tools to be employed as part of
the ongoing software development process. The
specific technique investigated was model checking,
a formal verification technique for finite-state
concurrent systems [9], [4], [3]. Unlike testing,
model checking examines all possible behaviors of
a system in search of errors. Model checking is
specifically designed to find errors in concurrent
software that are difficult to find using traditional
testing, such as race conditions and deadlocks.

Ames collaborated to produce a model for use with
the Spin model checking tool developed by
Holzmann at Bell Labs [9]. The model was
translated from a core "slice" of the DEOS
scheduler. This model was then checked for
violations of a global time partitioning invariant,
using Spin's automated state space exploration
techniques. We successfully verified the time
partitioning invariant over a restricted range of
thread types. We also introduced into the model a
subtle scheduling error, originally discovered and
fixed during the standard DEOS review process; the
model checker quickly detected that the error
produced a violation of the time partitioning
invariant.

Honeywell engineers and researchers at NASA

DEOS Overview
DEOS is a microkemel-based real-time

operating system designed for IMA architectures.

1.D.2-2

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

L

0 . -

E
'0

E
P

user 1 (20160)

main (5120) - -
/

0 20 40 60

Figure 1. Thread scheduling timeline

The combination of space and time partitioning
makes it possible for application of different
criticalities to run on the same platform at the same
time, while ensuring that low-criticality applications
do not interfere with the operation of high-
criticality applications. This noninterference
guarantee reduces system verification and
maintenance costs by enabling an application to be
changed and re-verified without re-verifying all of
the other applications in the system. DEOS itself is
certified to DO-178B Level A, the highest level of
safety-critical certification.

The DEOS scheduler enforces time
partitioning using a Rate Monotonic Analysis
(M A) scheduling policy [lo]. Using this policy,
threads run periodically at specified periods, and
they are given per-period CPU time budgets, which
are constrained so that the system cannot be
overutilized [2].

timeline. The example shows a main thread, two
user threads, and the idle thread which runs when
no other threads are schedulable. The main thread
runs in the fastest period, and therefore also at the
highest priority, with a budget of 5 out of 20 time
units. The user threads run in a period 3 times as
long as the main thread, each with budget of 20 out
of 60 time units. All of the threads have been
scheduled and allocated their requested budgets
within their respective periods. Threads are
interrupted when they use all of the budget (timer
interrupt) or when a thread of higher priority
becomes schedulable (preemption). The idle thread
runs during the remaining time not requested by any
thread.

Figure 1 shows an example DEOS scheduling

DEOS supports a degree of dynamicism and
flexibility not typically found in production real-
time operating systems. Features that impact space
and time partitioning in DEOS include:

0 runtime creation and deletion of threads
and processes

0 thread synchronization and blocking
mechanisms such as mutexes and
semaphores
periodic and aperiodic (interrupt service)
threads

process ownership of memory- and port-
mapped I/O resources
partial orderings in the scheduling of
threads at a given period

inter-process shared memory areas

As a result of this complexity, the number of
possible interleavings of program execution in
DEOS is enormous, and calculations such as
schedulability analyses must often be made at
runtime. This makes systematic verification of time
partitioning a particularly difficult task. Similarly,
space partitioning is hard to verify because of the
large number of ways in which processes can share
data with each other, and because processes can
own I/O hardware resources.

While manual review has worked well so far,
we recognize that as DEOS becomes even more
complex in response to changing user needs,
reviewing all of the necessary design and
implementation requirements will be increasingly
costly and time-consuming.

1.D.2-3

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

Time Partitioning Property
As a first step toward formal verification of

DEOS, researchers from Honeywell and NASA
Ames researchers constructed a formal model from
a manually extracted “slice” of the DEOS scheduler
using the Spin model-checking tool. We have used
this model to verify that the time partitioning
property of DEOS holds for this “slice,” albeit
under a restricted set of conditions. We also
introduced into the model a very subtle error that
had previously been detected and fixed through
manual analysis; the model correctly detected the
error as a violation of time partitioning. The results
of this work are detailed in [111 and [121.

The Spin model of the DEOS scheduler
includes the basic thread scheduling algorithm used
in DEOS. The model allows for the dynamic
creation of new periodic threads and the dynamic
deletion of existing threads. When threads are
created within a process, they receive their time
budget from the main thread for that process. When
they are deleted, the budget is retumed to the main
thread. The model also allows a thread, in each
period, to complete early and suspend itself until
the next period, or to use all of the time allotted to it
and be forcibly suspended by DEOS.

contains concurrent processes representing the idle
thread, the main thread, n user threads, and the
hardware environment combining a system tick
generator and the timer process. Communication
between the processes is achieved using
synchronous message passing.

necessary and sufficient condition for the guarantee
of time partitioning:

At any given time, and for any given future
deadline, the total budget the scheduler is
obliged to provide to currently running
periodic threads before that deadline does not
exceed the actual amount of time remaining
before that deadline.

It is reasonably easy to see that if this assertion

In addition to the scheduler itself, the model

Within this context, we may express a

is violated, then a scenario can exist in which a
thread is denied access to its allotted CPU budget.
Verifying time partitioning for this subset of the
DEOS kemel is then simply a matter of doing an
exhaustive verification of the above assertion using

the model-checker. In order to make sure that the
state space of the model includes all possible
sequences of thread execution, we incorporate into
the model a nondeterministic choice of periodic
thread behavior in each period (creating a thread,
deleting a thread, or suspending itself until its next
period).

Verification in Spin involves systematic
execution of all possible process interleavings in a
program. It supports assertion violation detection,
deadlock detection, and model checking of linear
temporal logic (LTL) formulas.

partitioning properties in the DEOS kemel. The
first was to place assertions in the code to identify
potential errors. If the model checker finds an
assertion violation, the reported error trace can be
simulated and it can be determined whether or not
the trace is really an error. The second approach
relied on verification of liveness properties. A
liveness property states that some event (or
sequence of events) will eventually occur in the
system.

In the first verification experiment, we
conjectured that any value assigned to a thread’s
remaining budget should be smaller than the total
budget for the thread; otherwise the thread would
have access to use too much CPU time. To check
this we placed an assertion into the code where this
value is assigned. With dynamic thread creation
enabled, Spin quickly found a violation of the
assertion. In the error trace, the main thread and the
user thread attempt to execute in the period where
the user thread is created, resulting in a CPU
allocation greater than 100%.

system because of a design constraint that the main
thread must have the shortest period of all threads.
When the user thread is created and becomes ready,
it sits waiting for the start of its next period. The
main thread, having an equal or shorter period, will
have reached the end of its period by this time and
its remaining budget will get reduced by the amount
of time allocated to the user thread, thereby
avoiding the time partitioning violation.

In the second experiment, we attempted to
verify the following liveness property, which is
necessary (but not sufficient) for time partitioning

We used two approaches to analyzing the time

However, this situation cannot occur in the real

1.D.2-4

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

to hold: If the main thread does not have 100%
CPU utilization, then the idle thread should run
during every longest period. This condition is
captured by the LTL property:

[I (beginperiod - >

(!endperiod U idle)

That is, it is always the case that when the
longest period begins, it will not end until the idle
thread runs.

threads and dynamic thread creation and deletion
enabled, Spin reported a violation. The error
scenario results when one of the user threads deletes
itself and its unused budget is immediately returned
to the main thread (instead of waiting until the next
period). This bug was, in fact, one which had been
previously discovered by Honeywell during code
inspections (but intentionally not disclosed to the
NASA researchers performing the verification).
Therefore, it would seem that model checking can
provide a systematic and automated method for
discovering subtle design errors.

When verification was attempted with two user

Future Work

Time partitioning
Our current time partitioning model does not

incorporate several important time-related features
of DEOS. These include:

The existence of multiple processes,
which serve as (among other things)
budget pools for dynamically creating
and deleting threads. Time partitioning
must be verified at a process level as well
as a thread level.
Several types of thread synchronization
primitives provided by DEOS, including
counting semaphores, events, and
mutexes. These allow threads to suspend
themselves or be suspended in ways not
accounted for by the current model.
The existence of aperiodically running
threads, used to service aperiodic
hardware interrupts. These are budgeted
like normal periodic threads, but may run
in very different ways.

We propose to integrate these features into the
model and verify that time partitioning still holds
with these features present. The principal challenge
here will be keeping the state space size
manageable while increasing the complexity of the
model by incorporating these new features. As was
documented in [111, the current model has already
approached the bounds of exhaustive verifiability
on currently available computer systems, although
subsequent optimizations have reduced the size of
the model somewhat. Furthermore, the current
model has only been tested on a small range of
possible thread budgets and periods.

We anticipate that the model-checking
approach will, by itself, be insufficient to produce a
truly comprehensive proof of the correctness of
time partitioning in DEOS. It is unlikely that we
will be able to produce a DEOS model with all the
complexity of the operating system itself, and then
conduct an exhaustive verification of time
partitioning for that model that covers all possible
combinations of thread periods, budgets, and
behaviors. If we want to get a comprehensive
proof, then, we must break the problem down into
smaller pieces.

We will identify a set of “subproperties” such
that verification of all subproperties in the set will
imply the correctness of time partitioning in DEOS.
These might include properties such as:

time partitioning holds for a particular
“representative” set of thread budgets
and periods;
time partitioning holds under the
assumption that kernel functions take
zero time to execute;
time partitioning holds if no thread can
change its priority.

We can then use appropriate tools to dispatch

0

each of the subproperties. Some might be
susceptible to verification by various versions of the
existing Spin model; others might be best verified
by a very different tool, e.g. a proof verified by a
proof-checking system such as PVS. We will then
need to construct a “meta-proof,” a demonstration
that if all of the subproperties hold, then time
partitioning holds for the full DEOS system.

1.D.2-5

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

Space partitioning

partitioning properties and verifying the key
property with a theorem prover has been
demonstrated in [5] . There DiVito presents a
generic model of space partitioning for a
multithreaded operating system and proves its
correctness using PVS. This model includes an
inter-partition communication mechanism, and
considers kernel handling of data as well as
application handling. The approach used is one of
noninterference from a security standpoint:
applications from distinct partitions must not
influence each other’s operation or their view of
data.

We plan to build on the approach in [5] to
construct and verify a model of space partitioning in
DEOS. Such a model would be built around
processes, which are the units of DEOS space
partitioning; each process can have multiple
threads, which are not space-partitioned from each
other. Each process has a certain range of memory,
and a certain number of discrete I/O devices, to
which it has access. The key property to verify is
that one process cannot influence the operation of
another process by writing to devices or memory to
which it does not have access.

DEOS contains several important features that
will require the extension of its space partitioning
model well beyond the scope of that presented in
[5] . For example, DEOS includes shared memory
blocks to which multiple processes may have read
andor write access. Shared memory may,
obviously, cause space partitioning to be violated if
it is used carelessly; the important and difficult
thing is to verify that ifit is used correctly, shared
memory will not violate space partitioning. Also,
DEOS processes contain numerous kinds of objects;
a process that owns one of these objects may grant
access to the object to another process. These
objects must be protected against unauthorized
access, and in particular, deletion of a process must
not be blocked due to persistent attempts at
unauthorized access to an object it owns.

We will need, then, to develop a partitioning
property which states that the execution trace of a
process is equivalent to that which it would be in a
federated architecture, except for that portion of the
process’ state to which access has been granted to

The feasibility of modeling OS space
other processes. This is somewhat similar to the
IPC state developed in [5] , but is likely to have
more extensive impact on the model definition and
the resulting proof structure. Once this partitioning
property is identified, we can use it to construct a
system-wide proof of correctness in the same
manner as for time partitioning.

case that one model or theory alone is not sufficient
to verify a system-wide space partitioning property.
We anticipate, then, that we will break down the
space partitioning property into numerous
subproperties that may be dispatched by different
kinds of tools. Once again, the best approach is
likely to involve integration of theorem proving and
model checking techniques.

As with time partitioning, it may well be the

Implementation verification

previous two approaches seek to verify a far-
reaching property over all possible executions of
the DEOS system, automated verification of pre-
and post-conditions involves checking a multitude
of relatively small and self-contained properties.
This calls for a quite different approach, as we can
see by examining the manual method currently used
to check these conditions. A reviewer verifying
that, for example, a function f oo () is always
called within a critical section, does not need to
construct a mental model of the whole DEOS
system; the vast majority of the system is irrelevant
to the satisfaction of the condition. He or she needs
only to look at the places where f oo () is called,
and verify that either

While the models we propose to develop in the

e the caller enters a critical section before
calling f oo () , or
the calling function itself is always called
within a critical section, and that critical
section remains in force until the call to
foo0.

This example illustrates not only that the
portion of the operating system relevant to checking
one condition is small, but also that determining the
extent of that portion is nontrivial. In order to check
that a call to f oo () occurs within a critical section,
we must keep track of whether each line of code,
from the beginning of the calling function to the
invocation of f oo () , is in a critical section. This

1.D.2-6

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

may become a substantial task if the calling
function invokes other functions before it invokes
f oo () . It also requires that we identify which
code statements have an effect on critical sections,
and consider only those, abstracting away from
everything else. For more complicated conditions-
e.g. that a function is called only when the value of
a certain variable is greater than 100-the
abstraction process becomes trickier.

of “slicing” code so as to extract only those parts
relevant to the definition of a given variable or the
truth of a given condition. Dwyer et al. [7] have
identified a slicing criterion usable for a simple
flowchart-based language which is nevertheless
expressive enough to encode most structured
programming constructs. Their slicing method is
based on analyzing the dependency paths leading
into and out of a set of nodes of interest (n l...nk},
and using those dependencies to construct a
minimal “residual program” which behaves the
same as the full program with respect to (n]... nk}.
We propose to apply these slicing techniques to
develop an automated mechanism for abstracting
out the parts of DEOS code which are applicable to
any given precondition or post-condition. We then
propose to translate the sliced code into the
modeling language of a model-checker such as
Spin. Once this is done, we can state the desired
condition as an assertion, and run the model-
checker to verify that the assertion holds. This
process will then constitute an automatic verifier for
pre- and post-conditions in DEOS.

The translation piece of the process, like the
slicing, will build, on existing work. One possible
solution would bethe translation of DEOS code
into Java. DEOS uses a well-behaved subset of C++
that may be amenable to straightforward translation
into Java. There already exist tools that can
translate Java code into Spin models automatically,
or even perform model-checking directly on Java
code; one example is Java Pathfinder, a tool
developed at NASA Ames and described in [8]. If
Java translation proves infeasible, there are other
methods we can explore, such as extending existing
tools to work on C++ code, or translating into
another modeling language.

We are aware of the difficulty involved in
solving the slicing problem in the general case, and

Significant work has been done on the problem

will therefore build up the DEOS slicing and
translation effort gradually, starting with easier
special cases. We plan to begin by developing
automated slicing and translation for preconditions
stating that a function must or must not be called
within a critical section, such as that given in the
example above. These types of preconditions are
among the most common in DEOS. Failure to
satisfy these preconditions has been the source of
several subtle errors discovered during the
development and manual review processes, and the
ability to automatically check them would be of
immediate benefit.

The verification of more complex
preconditions, like the “must only be called when x
> 100” example, will rest largely on the ability to
specialize code in the slicing process-that is, to
partially evaluate much of the data in order to split
up code into useful cases. Dwyer et al. [6] describe
this specialization. The method used is much like
that for slicing, but in reverse: take a certain set of
“variables of interest,” pre-evaluate them, and
generate one or more residual programs containing
only that code which depends on parameters still
unknown, i.e. not in the pre-evaluated set.

Application verification
DEOS application developers, like developers

of any safety-critical real-time software, face
problems that are in many ways analogous to those
facing the developers of DEOS itself. They must
verify that their multithreaded applications operate
correctly, without deadlocks or other timing
violations, over the wide range of thread
interleavings possible in the dynamic DEOS
system. They must, in particular, verify that the
varying use of thread budgets-i.e. the fact that a
thread may take a shorter or longer time to
complete its tasks in one period than it does in the
next-does not affect the timing properties of their
application. Furthermore, DEOS does not
guarantee that applications will enjoy the benefits
of space and time partitioning, but only enables
them to do so; DEOS cannot guarantee that
applications will correctly use the primitives it
provides for maintaining partitioning. Thus
application developers must ensure that they do not
inadvertently grant access to objects to
unauthorized processes; share memory in a way that

1.D.2-7

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

enables “rogue” processes to corrupt their data; or
otherwise violate the rules required to take
advantage of DEOS’s partitioning capabilities. This
verification, again, often cannot be achieved by
traditional testing alone, since a test cannot cover
all of the situations that might conceivably occur in-
flight.

To address this problem, we will leverage our
previous work to construct a model of DEOS that
can be used as an environment to verify application
code. This model would include:

A representation of (at least part of) the
DEOS API, including thread creation and
deletion, process creation and deletion,
and the thread synchronization
primitives.
A nondeterministic scheduler, based on
our current DEOS scheduler model but
considerably simpler, designed to model
all those and only those thread execution
interleavings possible within a running
system, and also to model thread access
to sharable resources and objects.
A model of a “ghost thread” or “ghost
process” representing applications other
than the ones of interest for verification.
Such a model is crucial because one of
the facts that must be taken into account
in testing an application is that one or
more unrelated processes might be
running concurrently with the application
in the system, and they might do
anything that DEOS allows them to do.

The representation of the API would then form
an interface to application code. Slicing and
translation techniques would be used to abstract out
only those parts of the application code related to
the DEOS API calls, and to translate that code into
a format which could be “plugged in” to the DEOS
model.

In addition, we would have to develop a means
of representing in the model upper bounds on the
amount of time taken to execute application code. A
typical periodic application depends for its
correctness on the knowledge, verified by empirical
testing, that certain sequences of code will execute
within a certain bounded amount of time. Without
this knowledge, verifying timing properties within a
DEOS model is impossible, because undesirable

thread execution interleavings will exist in the
model that cannot exist in the real system due to
these time bounds.

Impact on Certification
In [131 Rushby reviews the requirements for

software aspects of certification contained in DO-
178B [11 and describes various ways in which
formal methods could be employed to meet its
requirements. The formal verification of IMA OS
partitioning properties that we have begun is an
example of using formal methods to improve
quality control by attempting to identify and
eliminate faults in the design. In this case, a formal
proof will be one of the “other means” allowed in
Section 6.2 of [11 to satisfy the verification process
objectives in the case of complex behaviors that are
not amenable to testing. Use of formal techniques
to identify implementation and application faults is
an example of using formal methods to improve
quality assurance. In this case it is necessary to
identify requirements that state what components
and functions should and should not do, as well as
what assumptions may be made about their
environment. The reviews and analyses of Section
6.3.2 (now done manually) will be performed using
formal techniques and tools.

candidate for integration into the certification
process. Certification documents such as DO-178B
emphasize independent verification of software
correctness and the use of comprehensive testing
and review to check for the satisfaction of both
high- and low-level requirements. A multilevel
formal verification approach addresses these
certification objectives directly. Just as traditional
testing is geared to achieve structural coverage of
code, so verification of partitioning properties can
be designed to achieve coverage of DEOS features.
Just as human reviewers are tasked with checking
that pre-conditions and post-conditions to functions
are satisfied in code, so automated abstraction tools
can be used to check those same conditions.

To begin integration of our formal verification

We believe that formal methods are a natural

work into the certification process we plan to:

0 add formal verification tasks to the
DEOS software verification plan;

1.D.2-8

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

conduct formal verification runs of our
space and time partitioning models as
part of the regression testing process;
include the analysis results in the
package of DEOS certification artifacts
presented to the FAA;
make our results generally available
within the aviation community to support
the use and acceptance of formal
methods in software certification.

The intent of this effort is not to supplant any
existing tasks required for certification at this time.
Rather, we aim to augment our own confidence that
DEOS is correct, and to demonstrate the feasibility
of using formal methods in developing and
verifying safety-critical software. Our inclusion of
formal verification results in certification artifacts
will provide the FAA and other certification
authorities with evidence that commercial vendors
are willing and able to use formal methods in the
certification process. In the long term, we
anticipate that the techniques we develop may
provide the foundation for future certification
standards and more aggressive use of formal
methods.

Since DEOS runs principally on hardware
platforms designed for business, regional, and
helicopter aircraft, the frequency of certifications
will be greater than is typical for the transport class
of aircraft. We will have multiple opportunities to
demonstrate the use of formal techniques in
certification.

References
[11 “Software Considerations in Airborne Systems
and Equipment Certification.’’ RTCA document no.
DO 178-B, December 1, 1992.

[2] Binns, Pam, “Design Document for Slack
Scheduling in DEOS,” Honeywell Technology
Center Technical Report SST-R98-009, September
1998.

[3] Clarke, E. M., E. A. Emerson, and A. P.
Sistla. “Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic
Specifications.’’ ACM Transactions on
Programming Languages and Systems, vol8, num
2, pp. 244-263, April 1986.

[4] Clarke, E., 0 Grumberg, and D. Long.
“Verification Tools for Finite-State Concurrent
Systems.” A Decade of Concurrency: Reflections
and Perspectives, Lecture Notes in Computer
Science 803, 1993.

[5] DiVito, B. “A Formal Model of Partitioning
for Integrated Modular Avionics.” NASA Technical
Report CR-1998-209703, August 1998.

[6] Dwyer, M., J. Hatcliff, S. Laubach, and N.
Muhammad. “Specializing Configurable Systems
for Finite-State Verification.” KSU CIS TR 98-4.
Available from
http://www.cis.ksu.edu/santos/bandera/

[7] Dwyer, M., J. Hatcliff, and H. Zheng. “Slicing
Software for Model Construction.” Journal of
Higher-order ana! Symbolic Computation, to
appear. Available from
htttx//www .cis.ksu.edu/santos/bandera/

[SI Havelund, K. and T. Pressburger. “Model
Checking Java Programs Using Java PathFinder.”
International Journal of Sofrware Tools for
Technology Transfer, to appear. Available from
http://ase.arc.nasa.gov/havelund/ipf.html

[9] Holzmann, G.. “The model checker Spin.”
IEEE Transactions on Software Engineering, vol
23, num 5 , pp. 279-295,1997.

[lo] Liu, C. L. and J.W.Leyland. “Scheduling
Algorithms for Multiprogramming in a Hard Real
Time Environment.” Joumal of the ACM 20(1),

[l l] Penix, J., W. Visser, E. Engstrom, A. Larson,
and N. Weininger. “Translation and Verification of
the DEOS Scheduling Kernel.” Technical report,
NASA Ames Research Center/Honeywell
Technology Center, October 1999.

[12] Penix, J., W. Visser, E. Engstrom, A. Larson,
and N. Weininger. “Verification of Time
Partitioning in the DEOS Scheduler Kernel.” ICSE
2000.

[131 Rushby, J. “Formal methods and their role in
the certification of critical systems.” Technical
Report SRI-CSL-95-1, Computer Science
Laboratory, SRI Intemational, Menlo Park, CA,
March 1995. Also available as NASA Contractor
Report 4673, August 1995, and issued as part of the

J ~ I J U X ~ J 1973, pp. 46-61.

1.D.2-9

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

http://www.cis.ksu.edu/santos/bandera
http://ase.arc.nasa.gov/havelund/ipf.html

FAA Digital Systems Validation Handbook (the
guide for aircraft certification).

[141 Rushby, J. “Partitioning for safety and
security: Requirements, mechanisms, and
assurance.” NASA Contractor Report CR-1999-
209347, NASA Langley Research Center, June
1999.

1.D.2-10

Authorized licensed use limited to: NASA Langley Research Center. Downloaded on April 14, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

