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Abstract 
Time partitioning is a crucial property for 

integrated moduIar avionics architectures, 
particularly those in which applications of different 
criticalities run on the same processor. In a time- 
partitioned operating system, the scheduler is 
responsible for ensuring that the actions of one 
thread cannot affect other threads' guaranteed 
access to CPU execution time. However, the large 
number of variables affecting application execution 
interleavings makes it difficult and costly to verify 
time partitioning by traditional means. 

We believe that automated model checking is a 
promising technique for verifying the correct design 
of partitioning algorithms. Our experience with 
modeling the DEOS scheduler shows that 
expressive models can be produced at a reasonable 
cost. Using automated model checking can increase 
design assurance by allowing coverage of a larger 
range of execution interleavings than can feasibly 
be covered by traditional testing. Furthermore, 
model checking can decrease development and 
testing costs by finding design errors early in the 
development cycle. 

Introduction 
Increasing aviation safety and reducing delay 

are two of the greatest challenges facing the 
aviation industry for the next 10 years. These 
objectives, however, are in tension with each other. 
Increased system congestion means that more 
aircraft are departing and arriving at busy airports 
during peak traffic times. This increases the chance 
that human error or component breakdown could 
lead to an incident or an accident. Increased 
congestion also increases pilot and controller 
workload, which can reduce the operational safety 
margin. 

There are several initiatives, either recently 
deployed or in development, that affect both delay 
and safety. Delaykapacity initiatives include 
Reduced Vertical Separation Minimum (RVSM - 
decreasing the vertical separation requirements for 
trans-oceanic corridors), Airborne Information for 
Lateral Spacing (AILS - increasing the capacity of 
airports with closely spaced parallel runways under 
instrument landing conditions), Collaborative 
Decision Making (CDM - optimizing utilization of 
airports during poor weather conditions), and the 
emerging Free Flight initiative. Safety initiatives 
include the Enhanced Ground Proximity Warning 
System (EGPWS - a predictive ground avoidance 
system), ControllerPilot Data Link Communication 
(CPDLC), Cockpit Display of Traffic Information 
(CDTI) and Airborne Weather Information 
(AWIN). 

of new systems into the on-board avionics of both 
existing and newly developed aircraft. New radio 
standards, critical databases, display systems and 
information management and decision systems will 
be added to support the required on-board 
functionality. These avionics changes may be met 
by the addition of totally new equipment, or more 
likely, through the modification of existing 
equipment. Given the simultaneous push for 
capacity and safety improvements, it is critical to 
ensure that these system changes do not have 
unintended consequences. 

In addition, over the past decade Integrated 
Modular Avionics ( M A )  has gained popularity as a 
more cost-effective method (reducing size, weight, 
power and recurring cost) of fielding advanced 
avionics systems. IMA systems use a shared 
resource environment to simultaneously host 
functions of differing criticality. This makes such 
platforms a natural location to place new 
functionality. It also places a special burden on the 

These developments will result in the addition 
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M A  operating system to keep functions of different 
criticality levels from interfering with each other. 

Sharing resources, including both processing 
and YO, involves a large amount of concurrency. 
Software threads interact with each other in 
complex patterns. Correct interaction between 
these threads is ensured by the protection 
mechanisms and scheduling functionality of the real 
time operating system. Under a cooperative 
research agreement between Honeywell and 
NASA's Langley Research Center we will develop 
techniques to verify time and space partitioning 
properties in IMA operating systems to better 
ensure the integration of new functionality in a safe 
manner. We will then extend those techniques to 
enable the verification of IMA applications. We 
believe that the use of formal techniques to increase 
M A  software design assurance will be crucial to 
aviation safety over the next decade. 

The remainder of this paper provides an 
overview of our work to date in formal verification 
of IMA partitioning properties and describes our 
plans to continue this effort. 

Initial Work on Time Partitioning 
The Digital Engine Operation System (DEOS) 

was developed by Honeywell for use in our Primus 
Epic avionics product line. DEOS supports flexible 
IMA applications by providing both space 
partitioning at the process level and time 
partitioning at the thread level. Space partitioning 
ensures that no process can modify the memory of 
another process without authorization, while time 
partitioning ensures that a thread's access to its 
CPU time budget cannot be impaired by the actions 
of any other thread. 

Due to the inherent complexity and safety 
critical nature of the system, the developers 
understood from the beginning of the DEOS 
development that testing was going to be 
inadequate for ensuring the correctness of the 
scheduler. Currently the primary means for 
obtaining FAA certification is to develop and test 
the software in accordance with the guidelines in 
RTCA document DO-178B [l] which uses 
structural coverage as a measure of testing 
adequacy. These structural coverage requirements 
are not only expensive to achieve, but they are 

ineffective in identifying certain classes of errors, 
especially those involving timing or race 
conditions. 

The DEOS development team employed a 
collection of techniques including the specification 
of semi-formal pre-conditions, post-conditions, and 
invariants on C++ functions, data structures, and 
abstract system states. The design review process 
included checking manually that the pre-conditions, 
post-conditions, and invariants were satisfied by the 
implementation. Several very subtle errors were 
detected that the developers believed would have 
been impossible to detect without these techniques. 
As a result, they became interested in increasing the 
formality, reliability, and efficiency of the review 
process by using automation. 

Honeywell and NASA Ames began a 
collaboration to investigate techniques that will 
enable automated tools to be employed as part of 
the ongoing software development process. The 
specific technique investigated was model checking, 
a formal verification technique for finite-state 
concurrent systems [9],  [4], [3]. Unlike testing, 
model checking examines all possible behaviors of 
a system in search of errors. Model checking is 
specifically designed to find errors in concurrent 
software that are difficult to find using traditional 
testing, such as race conditions and deadlocks. 

Ames collaborated to produce a model for use with 
the Spin model checking tool developed by 
Holzmann at Bell Labs [9]. The model was 
translated from a core "slice" of the DEOS 
scheduler. This model was then checked for 
violations of a global time partitioning invariant, 
using Spin's automated state space exploration 
techniques. We successfully verified the time 
partitioning invariant over a restricted range of 
thread types. We also introduced into the model a 
subtle scheduling error, originally discovered and 
fixed during the standard DEOS review process; the 
model checker quickly detected that the error 
produced a violation of the time partitioning 
invariant. 

Honeywell engineers and researchers at NASA 

DEOS Overview 
DEOS is a microkemel-based real-time 

operating system designed for IMA architectures. 
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Figure 1. Thread scheduling timeline 

The combination of space and time partitioning 
makes it possible for application of different 
criticalities to run on the same platform at the same 
time, while ensuring that low-criticality applications 
do not interfere with the operation of high- 
criticality applications. This noninterference 
guarantee reduces system verification and 
maintenance costs by enabling an application to be 
changed and re-verified without re-verifying all of 
the other applications in the system. DEOS itself is 
certified to DO-178B Level A, the highest level of 
safety-critical certification. 

The DEOS scheduler enforces time 
partitioning using a Rate Monotonic Analysis 
( M A )  scheduling policy [lo]. Using this policy, 
threads run periodically at specified periods, and 
they are given per-period CPU time budgets, which 
are constrained so that the system cannot be 
overutilized [2]. 

timeline. The example shows a main thread, two 
user threads, and the idle thread which runs when 
no other threads are schedulable. The main thread 
runs in the fastest period, and therefore also at the 
highest priority, with a budget of 5 out of 20 time 
units. The user threads run in a period 3 times as 
long as the main thread, each with budget of 20 out 
of 60 time units. All of the threads have been 
scheduled and allocated their requested budgets 
within their respective periods. Threads are 
interrupted when they use all of the budget (timer 
interrupt) or when a thread of higher priority 
becomes schedulable (preemption). The idle thread 
runs during the remaining time not requested by any 
thread. 

Figure 1 shows an example DEOS scheduling 

DEOS supports a degree of dynamicism and 
flexibility not typically found in production real- 
time operating systems. Features that impact space 
and time partitioning in DEOS include: 

0 runtime creation and deletion of threads 
and processes 

0 thread synchronization and blocking 
mechanisms such as mutexes and 
semaphores 
periodic and aperiodic (interrupt service) 
threads 

process ownership of memory- and port- 
mapped I/O resources 
partial orderings in the scheduling of 
threads at a given period 

inter-process shared memory areas 

As a result of this complexity, the number of 
possible interleavings of program execution in 
DEOS is enormous, and calculations such as 
schedulability analyses must often be made at 
runtime. This makes systematic verification of time 
partitioning a particularly difficult task. Similarly, 
space partitioning is hard to verify because of the 
large number of ways in which processes can share 
data with each other, and because processes can 
own I/O hardware resources. 

While manual review has worked well so far, 
we recognize that as DEOS becomes even more 
complex in response to changing user needs, 
reviewing all of the necessary design and 
implementation requirements will be increasingly 
costly and time-consuming. 
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Time Partitioning Property 
As a first step toward formal verification of 

DEOS, researchers from Honeywell and NASA 
Ames researchers constructed a formal model from 
a manually extracted “slice” of the DEOS scheduler 
using the Spin model-checking tool. We have used 
this model to verify that the time partitioning 
property of DEOS holds for this “slice,” albeit 
under a restricted set of conditions. We also 
introduced into the model a very subtle error that 
had previously been detected and fixed through 
manual analysis; the model correctly detected the 
error as a violation of time partitioning. The results 
of this work are detailed in [ 111 and [ 121. 

The Spin model of the DEOS scheduler 
includes the basic thread scheduling algorithm used 
in DEOS. The model allows for the dynamic 
creation of new periodic threads and the dynamic 
deletion of existing threads. When threads are 
created within a process, they receive their time 
budget from the main thread for that process. When 
they are deleted, the budget is retumed to the main 
thread. The model also allows a thread, in each 
period, to complete early and suspend itself until 
the next period, or to use all of the time allotted to it 
and be forcibly suspended by DEOS. 

contains concurrent processes representing the idle 
thread, the main thread, n user threads, and the 
hardware environment combining a system tick 
generator and the timer process. Communication 
between the processes is achieved using 
synchronous message passing. 

necessary and sufficient condition for the guarantee 
of time partitioning: 

At any given time, and for any given future 
deadline, the total budget the scheduler is 
obliged to provide to currently running 
periodic threads before that deadline does not 
exceed the actual amount of time remaining 
before that deadline. 

It is reasonably easy to see that if this assertion 

In addition to the scheduler itself, the model 

Within this context, we may express a 

is violated, then a scenario can exist in which a 
thread is denied access to its allotted CPU budget. 
Verifying time partitioning for this subset of the 
DEOS kemel is then simply a matter of doing an 
exhaustive verification of the above assertion using 

the model-checker. In order to make sure that the 
state space of the model includes all possible 
sequences of thread execution, we incorporate into 
the model a nondeterministic choice of periodic 
thread behavior in each period (creating a thread, 
deleting a thread, or suspending itself until its next 
period). 

Verification in Spin involves systematic 
execution of all possible process interleavings in a 
program. It supports assertion violation detection, 
deadlock detection, and model checking of linear 
temporal logic (LTL) formulas. 

partitioning properties in the DEOS kemel. The 
first was to place assertions in the code to identify 
potential errors. If the model checker finds an 
assertion violation, the reported error trace can be 
simulated and it can be determined whether or not 
the trace is really an error. The second approach 
relied on verification of liveness properties. A 
liveness property states that some event (or 
sequence of events) will eventually occur in the 
system. 

In the first verification experiment, we 
conjectured that any value assigned to a thread’s 
remaining budget should be smaller than the total 
budget for the thread; otherwise the thread would 
have access to use too much CPU time. To check 
this we placed an assertion into the code where this 
value is assigned. With dynamic thread creation 
enabled, Spin quickly found a violation of the 
assertion. In the error trace, the main thread and the 
user thread attempt to execute in the period where 
the user thread is created, resulting in a CPU 
allocation greater than 100%. 

system because of a design constraint that the main 
thread must have the shortest period of all threads. 
When the user thread is created and becomes ready, 
it sits waiting for the start of its next period. The 
main thread, having an equal or shorter period, will 
have reached the end of its period by this time and 
its remaining budget will get reduced by the amount 
of time allocated to the user thread, thereby 
avoiding the time partitioning violation. 

In the second experiment, we attempted to 
verify the following liveness property, which is 
necessary (but not sufficient) for time partitioning 

We used two approaches to analyzing the time 

However, this situation cannot occur in the real 
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to hold: If the main thread does not have 100% 
CPU utilization, then the idle thread should run 
during every longest period. This condition is 
captured by the LTL property: 

[ I  (beginperiod - >  

( !endperiod U idle) 

That is, it is always the case that when the 
longest period begins, it will not end until the idle 
thread runs. 

threads and dynamic thread creation and deletion 
enabled, Spin reported a violation. The error 
scenario results when one of the user threads deletes 
itself and its unused budget is immediately returned 
to the main thread (instead of waiting until the next 
period). This bug was, in fact, one which had been 
previously discovered by Honeywell during code 
inspections (but intentionally not disclosed to the 
NASA researchers performing the verification). 
Therefore, it would seem that model checking can 
provide a systematic and automated method for 
discovering subtle design errors. 

When verification was attempted with two user 

Future Work 

Time partitioning 
Our current time partitioning model does not 

incorporate several important time-related features 
of DEOS. These include: 

The existence of multiple processes, 
which serve as (among other things) 
budget pools for dynamically creating 
and deleting threads. Time partitioning 
must be verified at a process level as well 
as a thread level. 
Several types of thread synchronization 
primitives provided by DEOS, including 
counting semaphores, events, and 
mutexes. These allow threads to suspend 
themselves or be suspended in ways not 
accounted for by the current model. 
The existence of aperiodically running 
threads, used to service aperiodic 
hardware interrupts. These are budgeted 
like normal periodic threads, but may run 
in very different ways. 

We propose to integrate these features into the 
model and verify that time partitioning still holds 
with these features present. The principal challenge 
here will be keeping the state space size 
manageable while increasing the complexity of the 
model by incorporating these new features. As was 
documented in [ 111, the current model has already 
approached the bounds of exhaustive verifiability 
on currently available computer systems, although 
subsequent optimizations have reduced the size of 
the model somewhat. Furthermore, the current 
model has only been tested on a small range of 
possible thread budgets and periods. 

We anticipate that the model-checking 
approach will, by itself, be insufficient to produce a 
truly comprehensive proof of the correctness of 
time partitioning in DEOS. It is unlikely that we 
will be able to produce a DEOS model with all the 
complexity of the operating system itself, and then 
conduct an exhaustive verification of time 
partitioning for that model that covers all possible 
combinations of thread periods, budgets, and 
behaviors. If we want to get a comprehensive 
proof, then, we must break the problem down into 
smaller pieces. 

We will identify a set of “subproperties” such 
that verification of all subproperties in the set will 
imply the correctness of time partitioning in DEOS. 
These might include properties such as: 

time partitioning holds for a particular 
“representative” set of thread budgets 
and periods; 
time partitioning holds under the 
assumption that kernel functions take 
zero time to execute; 
time partitioning holds if no thread can 
change its priority. 

We can then use appropriate tools to dispatch 

0 

each of the subproperties. Some might be 
susceptible to verification by various versions of the 
existing Spin model; others might be best verified 
by a very different tool, e.g. a proof verified by a 
proof-checking system such as PVS. We will then 
need to construct a “meta-proof,” a demonstration 
that if all of the subproperties hold, then time 
partitioning holds for the full DEOS system. 
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Space partitioning 

partitioning properties and verifying the key 
property with a theorem prover has been 
demonstrated in [ 5 ] .  There DiVito presents a 
generic model of space partitioning for a 
multithreaded operating system and proves its 
correctness using PVS. This model includes an 
inter-partition communication mechanism, and 
considers kernel handling of data as well as 
application handling. The approach used is one of 
noninterference from a security standpoint: 
applications from distinct partitions must not 
influence each other’s operation or their view of 
data. 

We plan to build on the approach in [5] to 
construct and verify a model of space partitioning in 
DEOS. Such a model would be built around 
processes, which are the units of DEOS space 
partitioning; each process can have multiple 
threads, which are not space-partitioned from each 
other. Each process has a certain range of memory, 
and a certain number of discrete I/O devices, to 
which it has access. The key property to verify is 
that one process cannot influence the operation of 
another process by writing to devices or memory to 
which it does not have access. 

DEOS contains several important features that 
will require the extension of its space partitioning 
model well beyond the scope of that presented in 
[ 5 ] .  For example, DEOS includes shared memory 
blocks to which multiple processes may have read 
andor write access. Shared memory may, 
obviously, cause space partitioning to be violated if 
it is used carelessly; the important and difficult 
thing is to verify that ifit is used correctly, shared 
memory will not violate space partitioning. Also, 
DEOS processes contain numerous kinds of objects; 
a process that owns one of these objects may grant 
access to the object to another process. These 
objects must be protected against unauthorized 
access, and in particular, deletion of a process must 
not be blocked due to persistent attempts at 
unauthorized access to an object it owns. 

We will need, then, to develop a partitioning 
property which states that the execution trace of a 
process is equivalent to that which it would be in a 
federated architecture, except for that portion of the 
process’ state to which access has been granted to 

The feasibility of modeling OS space 
other processes. This is somewhat similar to the 
IPC state developed in [5 ] ,  but is likely to have 
more extensive impact on the model definition and 
the resulting proof structure. Once this partitioning 
property is identified, we can use it to construct a 
system-wide proof of correctness in the same 
manner as for time partitioning. 

case that one model or theory alone is not sufficient 
to verify a system-wide space partitioning property. 
We anticipate, then, that we will break down the 
space partitioning property into numerous 
subproperties that may be dispatched by different 
kinds of tools. Once again, the best approach is 
likely to involve integration of theorem proving and 
model checking techniques. 

As with time partitioning, it may well be the 

Implementation verification 

previous two approaches seek to verify a far- 
reaching property over all possible executions of 
the DEOS system, automated verification of pre- 
and post-conditions involves checking a multitude 
of relatively small and self-contained properties. 
This calls for a quite different approach, as we can 
see by examining the manual method currently used 
to check these conditions. A reviewer verifying 
that, for example, a function f oo ( ) is always 
called within a critical section, does not need to 
construct a mental model of the whole DEOS 
system; the vast majority of the system is irrelevant 
to the satisfaction of the condition. He or she needs 
only to look at the places where f oo ( ) is called, 
and verify that either 

While the models we propose to develop in the 

e the caller enters a critical section before 
calling f oo ( ) , or 
the calling function itself is always called 
within a critical section, and that critical 
section remains in force until the call to 
foo0. 

This example illustrates not only that the 
portion of the operating system relevant to checking 
one condition is small, but also that determining the 
extent of that portion is nontrivial. In order to check 
that a call to f oo ( ) occurs within a critical section, 
we must keep track of whether each line of code, 
from the beginning of the calling function to the 
invocation of f oo ( ) , is in a critical section. This 
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may become a substantial task if the calling 
function invokes other functions before it invokes 
f oo ( ) . It also requires that we identify which 
code statements have an effect on critical sections, 
and consider only those, abstracting away from 
everything else. For more complicated conditions- 
e.g. that a function is called only when the value of 
a certain variable is greater than 100-the 
abstraction process becomes trickier. 

of “slicing” code so as to extract only those parts 
relevant to the definition of a given variable or the 
truth of a given condition. Dwyer et al. [7] have 
identified a slicing criterion usable for a simple 
flowchart-based language which is nevertheless 
expressive enough to encode most structured 
programming constructs. Their slicing method is 
based on analyzing the dependency paths leading 
into and out of a set of nodes of interest (n l...nk}, 
and using those dependencies to construct a 
minimal “residual program” which behaves the 
same as the full program with respect to (n ]... nk}. 
We propose to apply these slicing techniques to 
develop an automated mechanism for abstracting 
out the parts of DEOS code which are applicable to 
any given precondition or post-condition. We then 
propose to translate the sliced code into the 
modeling language of a model-checker such as 
Spin. Once this is done, we can state the desired 
condition as an assertion, and run the model- 
checker to verify that the assertion holds. This 
process will then constitute an automatic verifier for 
pre- and post-conditions in DEOS. 

The translation piece of the process, like the 
slicing, will build, on existing work. One possible 
solution would bethe translation of DEOS code 
into Java. DEOS uses a well-behaved subset of C++ 
that may be amenable to straightforward translation 
into Java. There already exist tools that can 
translate Java code into Spin models automatically, 
or even perform model-checking directly on Java 
code; one example is Java Pathfinder, a tool 
developed at NASA Ames and described in [8]. If 
Java translation proves infeasible, there are other 
methods we can explore, such as extending existing 
tools to work on C++ code, or translating into 
another modeling language. 

We are aware of the difficulty involved in 
solving the slicing problem in the general case, and 

Significant work has been done on the problem 

will therefore build up the DEOS slicing and 
translation effort gradually, starting with easier 
special cases. We plan to begin by developing 
automated slicing and translation for preconditions 
stating that a function must or must not be called 
within a critical section, such as that given in the 
example above. These types of preconditions are 
among the most common in DEOS. Failure to 
satisfy these preconditions has been the source of 
several subtle errors discovered during the 
development and manual review processes, and the 
ability to automatically check them would be of 
immediate benefit. 

The verification of more complex 
preconditions, like the “must only be called when x 
> 100” example, will rest largely on the ability to 
specialize code in the slicing process-that is, to 
partially evaluate much of the data in order to split 
up code into useful cases. Dwyer et al. [6] describe 
this specialization. The method used is much like 
that for slicing, but in reverse: take a certain set of 
“variables of interest,” pre-evaluate them, and 
generate one or more residual programs containing 
only that code which depends on parameters still 
unknown, i.e. not in the pre-evaluated set. 

Application verification 
DEOS application developers, like developers 

of any safety-critical real-time software, face 
problems that are in many ways analogous to those 
facing the developers of DEOS itself. They must 
verify that their multithreaded applications operate 
correctly, without deadlocks or other timing 
violations, over the wide range of thread 
interleavings possible in the dynamic DEOS 
system. They must, in particular, verify that the 
varying use of thread budgets-i.e. the fact that a 
thread may take a shorter or longer time to 
complete its tasks in one period than it does in the 
next-does not affect the timing properties of their 
application. Furthermore, DEOS does not 
guarantee that applications will enjoy the benefits 
of space and time partitioning, but only enables 
them to do so; DEOS cannot guarantee that 
applications will correctly use the primitives it 
provides for maintaining partitioning. Thus 
application developers must ensure that they do not 
inadvertently grant access to objects to 
unauthorized processes; share memory in a way that 
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enables “rogue” processes to corrupt their data; or 
otherwise violate the rules required to take 
advantage of DEOS’s partitioning capabilities. This 
verification, again, often cannot be achieved by 
traditional testing alone, since a test cannot cover 
all of the situations that might conceivably occur in- 
flight. 

To address this problem, we will leverage our 
previous work to construct a model of DEOS that 
can be used as an environment to verify application 
code. This model would include: 

A representation of (at least part of) the 
DEOS API, including thread creation and 
deletion, process creation and deletion, 
and the thread synchronization 
primitives. 
A nondeterministic scheduler, based on 
our current DEOS scheduler model but 
considerably simpler, designed to model 
all those and only those thread execution 
interleavings possible within a running 
system, and also to model thread access 
to sharable resources and objects. 
A model of a “ghost thread” or “ghost 
process” representing applications other 
than the ones of interest for verification. 
Such a model is crucial because one of 
the facts that must be taken into account 
in testing an application is that one or 
more unrelated processes might be 
running concurrently with the application 
in the system, and they might do 
anything that DEOS allows them to do. 

The representation of the API would then form 
an interface to application code. Slicing and 
translation techniques would be used to abstract out 
only those parts of the application code related to 
the DEOS API calls, and to translate that code into 
a format which could be “plugged in” to the DEOS 
model. 

In addition, we would have to develop a means 
of representing in the model upper bounds on the 
amount of time taken to execute application code. A 
typical periodic application depends for its 
correctness on the knowledge, verified by empirical 
testing, that certain sequences of code will execute 
within a certain bounded amount of time. Without 
this knowledge, verifying timing properties within a 
DEOS model is impossible, because undesirable 

thread execution interleavings will exist in the 
model that cannot exist in the real system due to 
these time bounds. 

Impact on Certification 
In [ 131 Rushby reviews the requirements for 

software aspects of certification contained in DO- 
178B [ 11 and describes various ways in which 
formal methods could be employed to meet its 
requirements. The formal verification of IMA OS 
partitioning properties that we have begun is an 
example of using formal methods to improve 
quality control by attempting to identify and 
eliminate faults in the design. In this case, a formal 
proof will be one of the “other means” allowed in 
Section 6.2 of [ 11 to satisfy the verification process 
objectives in the case of complex behaviors that are 
not amenable to testing. Use of formal techniques 
to identify implementation and application faults is 
an example of using formal methods to improve 
quality assurance. In this case it is necessary to 
identify requirements that state what components 
and functions should and should not do, as well as 
what assumptions may be made about their 
environment. The reviews and analyses of Section 
6.3.2 (now done manually) will be performed using 
formal techniques and tools. 

candidate for integration into the certification 
process. Certification documents such as DO-178B 
emphasize independent verification of software 
correctness and the use of comprehensive testing 
and review to check for the satisfaction of both 
high- and low-level requirements. A multilevel 
formal verification approach addresses these 
certification objectives directly. Just as traditional 
testing is geared to achieve structural coverage of 
code, so verification of partitioning properties can 
be designed to achieve coverage of DEOS features. 
Just as human reviewers are tasked with checking 
that pre-conditions and post-conditions to functions 
are satisfied in code, so automated abstraction tools 
can be used to check those same conditions. 

To begin integration of our formal verification 

We believe that formal methods are a natural 

work into the certification process we plan to: 

0 add formal verification tasks to the 
DEOS software verification plan; 
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conduct formal verification runs of our 
space and time partitioning models as 
part of the regression testing process; 
include the analysis results in the 
package of DEOS certification artifacts 
presented to the FAA; 
make our results generally available 
within the aviation community to support 
the use and acceptance of formal 
methods in software certification. 

The intent of this effort is not to supplant any 
existing tasks required for certification at this time. 
Rather, we aim to augment our own confidence that 
DEOS is correct, and to demonstrate the feasibility 
of using formal methods in developing and 
verifying safety-critical software. Our inclusion of 
formal verification results in certification artifacts 
will provide the FAA and other certification 
authorities with evidence that commercial vendors 
are willing and able to use formal methods in the 
certification process. In the long term, we 
anticipate that the techniques we develop may 
provide the foundation for future certification 
standards and more aggressive use of formal 
methods. 

Since DEOS runs principally on hardware 
platforms designed for business, regional, and 
helicopter aircraft, the frequency of certifications 
will be greater than is typical for the transport class 
of aircraft. We will have multiple opportunities to 
demonstrate the use of formal techniques in 
certification. 
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