
Formalization of the Integral Calculus in the PVS
Theorem Prover

RICKY W. BUTLER

NASA Langley Research Center, Hampton, VA 23681-2199

The PVS theorem prover is a widely used formal verification tool used for the analysis of safety-

critical systems. The PVS prover, though fully equipped to support deduction in a very general

logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions
and associated theorems for every branch of mathematics and computer science that is used in a

verification. This is a formidable task, ultimately requiring the contributions of researchers and

developers all over the world. This paper reports on the formalization of the integral calculus in
the PVS theorem prover. All of the basic definitions and theorems covered in a first course on

integral calculus have been completed. The theory and proofs were based on Rosenlicht’s classic

text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to
provide a practical set of PVS theories that could be used for verification of hybrid systems that

arise in air traffic management systems and other aerospace applications. All of the basic linearity,

integrability, boundedness, and continuity properties of the integral calculus were proved. The
work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion

about why mechanically checked proofs are so much longer than standard mathematics textbook
proofs.

1. INTRODUCTION AND MOTIVATION

There are several motivations for the development of the integral calculus library
for the PVS theorem prover:

(1) Increasingly our formal methods team is being called upon to develop analysis
techniques that can demonstrate the safety of algorithms and systems used for air
traffic management both on the ground and in the air [DMG01, CGBK04, CM00].
This problem domain inevitably requires reasoning about the effect of the software
on aircraft trajectories. Aircraft trajectories are often modeled using differential
equations and the analytic solutions of these equations involves the integral calculus.

(2) The power of the PVS theorem prover has been growing over the last 10 years.
A particularly challenging problem is the formalization and mechanical verification
of the classic proofs of integral calculus including the Fundamental Theorem of
Calculus. The author has often wondered if theorem proving technology might
ever reach the place where it can be a pedagogical aid to the mathematics student
and eventually a tool of practical use to the mathematician. The formalization of
the integral calculus in PVS should provide a basis for judging how close we are to
this goal.

(3) The goal of reducing all of mathematics to primitive logic has a long heritage.
Russell and Whitehead sought to place all of the mathematics upon the foundation
of set theory and classical logic. When the paradoxes were discovered at the begin-
ning of the 20th century, they abandoned their effort. Although mathematicians

Journal of Formalized Reasoning Vol. 2, No. 1, 2009, Pages 1–26.

2 · Ricky W. Butler

have not demonstrated much interest in continuing the Russell and Whitehead
program, computer scientists have[QED04].

The Lebesgue integral has been formalized in the Isabelle/Isar theorem prover
[Ric03] and the Gauge Integral in Isabelle/HOL as well [Fle00]. Harrison describes
the development of the theory of integration in the HOL theorem prover in [Har98].
L. Cruz-Filipe developed a constructive theory of analysis in the Coq theorem
prover in his Ph.D dissertation [CF04]. Here, we are providing the mathematical
foundations for classic Riemann Integral in the PVS theorem prover. This work
uses and extends the work done by Bruno Dutertre [Dut96]. He developed the
first version of the PVS analysis library which provided definitions and properties
of limits, derivatives, and continuity. This work develops the theory of integration
through the Fundamental Theorem of Calculus.

In this paper I will provide a summary of the formalization and a few illustrations
of the mechanical proofs to emphasize the difference between the rigorous proofs
provided by Rosenlicht [Ros68] in his classic text and a mechanically checked proof
in PVS [ORS92, SOR93]. The PVS theories and proofs are available at NASA
Langley’s formal methods web site 1.

2. A QUICK INTRODUCTION TO PVS SYNTAX

The PVS specification language is basically a typed higher-order logic. A specifi-
cation is constructed from predefined and user-defined types and expressions and
functions over these types. The predefined types include booleans, reals, integers,
rationals, etc. From these, other types can be constructed using function, record
and tuple type constructions. The following is a typical type construction:

range: TYPE = {i: int | 25 < i < 35}

This declares a new type range which contains all of the integers strictly between
25 and 35. A record type is constructed as follows

rectype: TYPE = [# field1: real,
field2: int

#]

A variable r of type rectype could be declared as follows

r: VAR rectype

The second field of this record can be accessed as follows: r‘field2.
Function declarations are central to PVS specifications. The following is a typical

function declaration

f(x: real, y: real): nonneg_real = sqrt(x*x + y*y)

The function f is a function of two real variables. It returns a non-negative real
number equal to the square root of the sum of the squares of these variables. It is
defined using another previously defined function: sqrt.

Types, function declarations, and theorems are collected together in PVS theories
which are structured as follows:

1http://shemesh.larc.nasa.gov

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 3

theory_name [T: TYPE FROM real]: THEORY
BEGIN

ASSUMING
...

ENDASSUMING
...
END theory_name

This theory is parameterized by a type T which is a subtype of real. Theories can be
imported and used in other theories. In the formalization of the integral calculus
all of the theories were declared over an arbtrary subtype of the reals with the
restriction that the sub-type was connected and had more than one element. This
was accomplished using the assuming clause

ASSUMING
connected_domain : ASSUMPTION
FORALL (x,y: T),(z: real): x <= z AND z <= y IMPLIES T_pred(z)

not_one_element : ASSUMPTION
FORALL (x: T): EXISTS (y : T) : x /= y

ENDASSUMING

The modular theory structure of PVS helps the user manage a large specification.

3. RIEMANN INTEGRAL

We begin our formalization of the integral with the definition of a partition.

3.1 Definition of Partition

Rosenlicht defines a partition as follows:

Definition 3.1. Let a, b ∈ <, a < b. By a partition of the closed interval [a, b] is
meant a finite sequence of numbers x0, x1, ..., xN such that a = x0 < x1 < x2... <
xN = b.

In PVS a “finite sequence” is a record with two fields:

finite_sequence: TYPE = [# length: nat, seq: [below[length] -> T] #]

To define a partition we create a predicate subtype of finite sequences with the
appropriate properties:

integral_def[T: TYPE FROM real]: THEORY
BEGIN
a,b,x: VAR T
closed_interval(a:T, b:{x:T|a<x}): TYPE = { x | a <= x AND x <= b}

partition(a:T,b:{x:T|a<x}): TYPE =
{fs: finite_sequence[closed_interval(a,b)] |

Let N = length(fs), xx = seq(fs) IN
N > 1 AND xx(0) = a AND xx(N-1) = b AND
(FORALL (ii: below(N-1)): xx(ii) < xx(ii+1))}

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

4 · Ricky W. Butler

The width of this partition is defined by Rosenlicht as follows:

max{xi − xi−1 : i = 1, 2, ..., N}

In PVS we have:

width(a:T, b:{x:T|a<x}, P: partition(a,b)): posreal =
max({ l: real | EXISTS (ii: below(length(P)-1)):

l = seq(P)(ii+1) - seq(P)(ii)})

In PVS it is necessary to include the endpoints of the interval [a,b] as the first
arguments of width. Note the convenience of max{xi − xi−1 : i = 1, 2, ..., N}
compared to the PVS formalization. In the PVS definition, there is an existential
quantifier which is hidden by the traditional notation.

3.2 Definition of Riemann Sum

Definition 3.2. If f is a real-valued function on [a, b] by a Riemann sum for f
corresponding to the given partition is meant a sum

N∑
i=1

f(x′i)(xi − xi−1)

where xi−1 ≤ x′i ≤ xi for each i = 1, 2, ..., N .

This is illustrated in figure 1 where the x′i values are indicated by the dashed lines.

a x x x x x b1 2 3 4 5

Fig. 1. Riemann Integral

Originally the following erroneous formalization was attempted:

Riemann_sum(a:T,b:{x:T|a<x},P:partition(a,b),f:[T->real]): real =
LET xx = seq(P), N = length(P)-1 IN
sigma[upto(N)](1,N,(LAMBDA (n: upto(N)):

f(x_in(xx(n-1),xx(n)))*(xx(n)-xx(n-1))))

using sigma from the reals library and defining x_in as

x_in(aa:T,bb:{x:T|aa<x}): {t: T | aa <= t AND t <= bb}

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 5

The xi values are provided by a finite sequence P and the x′i values are provided by a
function x_in. Originally it looked like this would be a nice short-cut for picking an
arbitrary x′i in a subinterval, that is, by merely constraining the function to return
an unspecified number between aa and bb. But, there are two problems with this
formulation, one minor and one serious. First, it will not typecheck (unprovable
typecheck condition (TCC)) because the typechecker does not know that the sigma
function will not evaluate xx(n) outside of the range 1 to N. The value of n-1 in
xx(n-1) will actually never go negative, but the PVS typechecker has no way of
knowing this. This is easily repaired by surrounding the x_in expression with an
IF n > 0 THEN x_in ... ELSE 0 ENDIF test. Second, the function x_in, which
provides the value of x′i on which f is evaluated, is seriously deficient. Although
it is in some sense arbitrary, there is no real quantifier here. The function x_in
returns one unspecified value between aa and bb, but that is not the same thing as
a quantification. The proof of the integral split theorem requires that we quantify
over all possible values of x′i between each of the subintervals; see section 5 for more
details. Thus, it was necessary to define the following more general predicate to
specify the selection of the x′i values:

xis?(a:T,b:{x:T|a<x},P:partition(a,b))
(fs: [below(length(P)-1) -> closed_interval(a,b)]): bool =

(FORALL (ii: below(length(P)-1)):
P(ii) <= fs(ii) AND fs(ii) <= P(ii+1))

Given a sequence of x values, this predicate is true iff the ith value in the sequence
is contained in the ith subinterval of the partition.

Now we can define a Riemann sum as follows:

Rie_sum(a:T,b:{x:T|a<x},P:partition(a,b),
xis: (xis?(a,b,P)),f:[T->real]): real =
LET N = length(P)-1 IN

sigma[below(N)](0,N-1,(LAMBDA (n: below(N)):
(P(n+1) - P(n)) * f(xis(n))))

We note that the fourth parameter xis provides the values of x′i on which the
height of each rectangle can be calculated: f(x′i). This xis sequence of values is
a parameter to this function. We can now quantify over an arbitrary sequence of
values as follows:

Riemann_sum?(a:T,b:{x:T|a<x},P:partition(a,b),
f:[T->real])(S:real): bool =

(EXISTS (xis: (xis?(a,b,P))): LET N = length(P)-1 IN
S = Rie_sum(a,b,P,xis,f))

3.3 Definition of Riemann Integral

Maxwell Rosenlicht provides the following definition of an integral:

Definition 3.3. Let a, b ∈ <, a < b. Let f be a real-valued function on [a, b]. We
say that f is Riemann integrable on [a,b] if there exists a number A ∈ < such that,
for any ε > 0, there exists a δ > 0 such that |S −A| < ε whenever S is a Riemann
sum for f corresponding to any partition of [a, b] of width less than δ. In this case

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

6 · Ricky W. Butler

A is called the Riemann Integral of f between a and b and is denoted∫ b

a

f(x) dx

In other words, in order to establish that
∫ b

a
f(x) dx = A, we must show that for any

given ε there exists a δ and a real number A such that no matter how we partition
the interval, if the width of that partition is less than δ and S is a Riemann sum
corresponding to that partition, we have |S −A| < ε.

We begin the formulation of the Riemann integral, by defining the following
predicate:

integral?(a:T,b:{x:T|a<x},f:[T->real],S:real): bool =
(FORALL (epsi: posreal): (EXISTS (delta: posreal):

(FORALL (P: partition(a,b)):
width(a,b,P) < delta IMPLIES

(FORALL (R: (Riemann_sum?(a,b,P,f))):
abs(S - R) < epsi))))

From this definition we can construct a predicate integrable? and a function
integral which is defined on integrable? functions:

integrable?(a:T,b:{x:T|a<x},f:[T->real]): bool =
(EXISTS (S: real): integral?(a,b,f,S))

integral(a:T,b:{x:T|a<x}, ff: { f | integrable?(a,b,f)}):
{S: real | integral?(a,b,ff,S)}

The uniqueness of the integral was demonstrated in the proof of

integral_unique: LEMMA a < b AND
integral?(a,b,f,A1) AND
integral?(a,b,f,A2)

IMPLIES A1 = A2

Thus, the return type of the function integral consists of only one possible value.
From this we can easily prove

integral_def: LEMMA a < b IMPLIES
((integrable?(a,b,f) AND integral(a,b,f) = s)

IFF integral?(a,b,f,s))

Next, we eliminate the restriction that a < b, as follows:

Integrable?(a:T,b:T,f:[T->real]): bool = (a = b) OR
(a < b AND integrable?(a,b,f)) OR
(b < a AND integrable?(b,a,f))

Integrable_funs(a,b): TYPE = { f | Integrable?(a,b,f)}

Integral?(a:T,b:T,f:[T->real],S:real): bool =
(a = b AND S = 0) OR (a < b AND integral?(a,b,f,S))

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 7

Integral(a:T,b:T,f:Integrable_funs(a,b)): real =
IF a = b THEN 0
ELSIF a < b THEN integral(a,b,f)
ELSE -integral(b,a,f)
ENDIF

The names were capitalized to distinguish these functions from the more restricted
ones.

All of the proofs were straight-forward. The total number of proof commands
were just a little over 500 in number, including all of the typecheck condition proofs.
The only long proof was integral_unique which required 102 proof steps.

4. LINEARITY PROPERTIES

Following Rosenlicht, the first properties of the integral that were proved were the
linearity properties:

integral_const_fun: LEMMA a < b IMPLIES
integrable?(a,b,const_fun(D))
AND integral(a, b, const_fun[T](D)) = D*(b-a)

integral_scal: LEMMA a < b AND integrable?(a,b,f) IMPLIES
integrable?(a,b,D*f) AND integral(a,b,D*f) = D*integral(a,b,f)

integral_sum: LEMMA a < b AND
integrable?(a,b,f) AND integrable?(a,b,g) IMPLIES

integrable?(a,b,(LAMBDA x: f(x) + g(x))) AND
integral(a,b,(LAMBDA x: f(x) + g(x))) =

integral(a,b,f) + integral(a,b,g)

integral_diff: LEMMA a < b AND
integrable?(a,b,f) AND integrable?(a,b,g) IMPLIES

integrable?(a,b,(LAMBDA x: f(x) - g(x))) AND
integral(a,b,(LAMBDA x: f(x) - g(x))) =

integral(a,b,f) - integral(a,b,g)

These properties were then used to prove that non-negative functions have non-
negative integrals:

integral_ge_0: LEMMA a < b AND integrable?(a,b,f) AND
(FORALL (x: closed_interval(a,b)): f(x) >= 0) IMPLIES

integral(a,b,f) >= 0

Size of proofs:

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

8 · Ricky W. Butler

lemma Proof Buffer Size
integral_const_fun 35 lines
integral_scal 85 lines
integral_sum 85 lines
integral_diff 37 lines
integral_ge_0 94 lines

All of these proofs were easy. However the following simple property (example 2
on page 114 of Rosenlicht):

integral_jmp: LEMMA a < b AND a <= z AND z <= b AND f(z) = cc AND
(FORALL x: x /= z IMPLIES f(x) = 0) IMPLIES

integrable?(a,b,f) AND integral(a,b,f) = 0

required 602 proof lines. Lemmas integral_sum and integral_jmp were then used
to prove the following lemma in 36 steps:

integral_chg_one_pt: LEMMA a < b IMPLIES
FORALL y: a <= y AND y <= b AND integrable?(a,b,f)

IMPLIES integrable?(a,b,f WITH [(y) := yv]) AND
integral(a,b,f) = integral(a,b,f WITH [(y) := yv])

which shows that if you change a function at one point, then its integral does not
change.

The proof of the Cauchy Criterion (named Lemma 1 on page 118 of Rosenlicht)
required 338 PVS proof lines:

integrable_lem: THEOREM a < b IMPLIES
(integrable?(a,b,f) IFF

(FORALL (epsi: posreal): (EXISTS (delta: posreal):
(FORALL (P1,P2: partition(a,b)):
width(a,b,P1) < delta AND
width(a,b,P2) < delta IMPLIES
(FORALL (RS1: (Riemann_sum?(a,b,P1,f)),

RS2: (Riemann_sum?(a,b,P2,f))):
abs(RS1 - RS2) < epsi)))))

This was Rosenlicht’s first major building block for the more difficult theorems. His
next step was to develop the necessary apparatus to integrate step functions.

5. STEP FUNCTIONS AND THE INTEGRAL SPLIT THEOREM

Establishing the key properties for integrals involving step functions proved more
difficult than was expected. Surprisingly, some of the most difficult challenges
occurred in places where visually the proofs were easy to see.

The first step was to provide a definition for a step function. This was accom-
plished by exploiting the machinery we had already constructed for partitions. We
define a predicate that returns true iff the function is constant on the sub-intervals
of the partition:

step_function_on?(a:T,b:{x:T|a<x},f:[T->real],
P: partition[T](a,b)): bool =

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 9

Let N = length(P), xx = seq(P) IN
(FORALL (ii: below(N-1)): (EXISTS (fv: real):
(FORALL (x: open_interval[T](xx(ii),xx(ii+1))):

f(x) = fv)))

Then we define a “step function” to be a function for which there exists a partition
for which step_function_on? holds:

step_function?(a:T,b:{x:T|a<x},f:[T -> real]): bool
= (EXISTS (P: partition(a,b)): step_function_on?(a,b,f,P))

a b

.

The first step function that was solved was the simple “square wave”:

Example_3: LEMMA a <= xl AND xl < xh AND xh <= b AND
(FORALL z: (IF xl < z AND z < xh THEN f(z) = 1

ELSE f(z) = 0 ENDIF))
IMPLIES integrable?(a,b,f) AND

integral(a,b,f) = xh-xl

This was example 3 on page 114. The proof of this lemma in Rosenlicht’s text was
27 lines, the PVS proof was surprisingly difficult requiring 640 steps.

By showing that a step function is equivalent to a finite sum of these square wave
functions, Rosenlict’s Lemma 2 (page 119) was proved:

Lemma 5.1. A step function is integrable. In particular, if x0, x1, ..., xn is a
partition of the interval [a, b], if c1, ..., cn ∈ < and if f : [a, b] −→ < is such that
f(x) = ci, if xi−1 < x < xi for i = 1, ..., n, then∫ b

a

f(x) dx =
n∑

i=1

ci(xi − xi−1)

In PVS we have:

step_function_integrable?: LEMMA
a < b AND step_function?(a,b,f) IMPLIES integrable?(a,b,f)

step_function_on_integral: LEMMA a < b IMPLIES
FORALL (P: partition[T](a,b)):
step_function_on?(a,b,f,P) IMPLIES

integral(a,b,f) =
LET N = length(P) IN

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

10 · Ricky W. Butler

sigma(0,N-2,(LAMBDA (i: below(N-1)):
val_in(a,b,P,i,f)*(P(i+1) - P(i)))) ;

where val_in(a,b,P,i,f) is just the value of f in the ith section of the partition
P. In PVS this was defined as follows:

pick(a:T,b:{x:T|a<x},(P: partition[T](a,b)),j: below(length(P)-1)):
{t:T | seq(P)(j) < t AND t < seq(P)(j + 1)} =

choose({t:T | seq(P)(j) < t AND t < seq(P)(j + 1)})

val_in(a:T,b:{x:T|a<x},(P: partition[T](a,b)),
j: below(length(P)-1),f): real

= f(pick(a,b,P,j))

Establishing step_function_on_integral required the proof of 8 supporting lem-
mas and over 2500 proof steps.

The next key result proved in Rosenlicht is the following proposition from page
120:

Lemma 5.2. : The real-valued function f on the interval [a, b] is integrable on
[a, b] if and only if for each ε > 0 there exists step functions f1, f2 on [a, b] such that

f1(x) ≤ f(x) ≤ f2(x) for each x ∈ [a, b]

and ∫ b

a

(f2(x)− f1(x)) dx < ε

This result, which he simply labeled as a proposition, required 2 1
2 pages in his

book. The PVS proof was accomplished by decomposing the “if and only if” into
two subgoals. First the forward direction was established:

step_to_integrable: LEMMA a < b AND % Rosenlict pg 120
(FORALL (eps: posreal):

(EXISTS (f1,f2: [T -> real]):
step_function?(a,b,f1) AND step_function?(a,b,f2)
AND (FORALL (xx: closed_interval(a,b)):

f1(xx) <= f(xx) AND f(xx) <= f2(xx))
AND integrable?(a,b,f2-f1)
AND integral(a,b,f2-f1) < eps))

IMPLIES integrable?(a,b,f)

This proof was straight-forward and required only 146 PVS proof steps. However,
the reverse direction was very difficult. The proof of the reverse direction took
about 3 man weeks of effort. First it was necessary to establish that an integrable
function is bounded (600 proof steps):

integrable_bounded: LEMMA a < b AND % Rosenlicht pg 122
integrable?(a,b,f)

IMPLIES bounded_on?(a, b, f)

where bounded_on?(a, b, f) was defined as

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 11

bounded_on?(a,b,f): bool = (EXISTS (B: real):
(FORALL (x: closed_interval(a,b)): abs(f(x)) <= B))

Then an additional 960 proof steps were necessary to finish the reverse direction.
The difficulty here was largely the complexity of the Rosenlicht proof, which in-
volved the construction of the step functions from greatest lower bounds and least
upper bounds of the function for each subinterval of the partition. This was followed
by some inequality reasoning over summations and then some tricky epsilon-delta
reasoning. The PVS decision procedures do not provide any help with the algebraic
manipulation of summations. These manipulations must be accomplished by ex-
plicitly introducing lemmas about summations (which are higher-order functions in
PVS). All of the standard results about summations were available in a previously-
developed summations library. Nevertheless, the manipulation in the context of
the proof constructions was tedious.

The next main result proved was that a continuous function is integrable (Pg 123
Rosenlicht)

Theorem 5.3. If f is a continuous real-valued function on the interval [a, b] then∫ b

a
f(x) dx exists.

The PVS version is:

continuous_integrable: LEMMA a < b AND
(FORALL (x: closed_interval(a,b)): continuous?(f,x))

IMPLIES integrable?(a,b,f)

The proof given in Rosenlicht is 16 lines while the formal PVS proof is over 1200
lines long. See section 7 for discussion of why there is such a large difference between
PVS proofs and traditional mathematical rigor.

The integral split theorem was probably the most difficult result to achieve in
PVS. Here is its statement in Rosenlicht (page 123):

Theorem 5.4. Let a, b, c ∈ <, a < b < c, and let f be a real-valued function on
[a, c]. Then f is integrable on [a, c] if and only it is is integrable on both [a, b] and
[b, c], in which case ∫ b

a

f(x) dx+
∫ c

b

f(x) dx =
∫ c

a

f(x) dx

This theorem is easily stated in PVS as follows:

integral_split: THEOREM a < b AND b < c AND
integrable?(a,b,f) AND
integrable?(b,c,f)
IMPLIES integrable?(a,c,f) AND

integral(a,b,f) + integral(b,c,f) = integral(a,c,f)

Although the rigorous proof in Rosenlicht was only 2 pages, the PVS proof required
the use of 131 lemmas, whose proofs required over 4000 PVS proof commands. As
explained in section 3.2, the Riemann sum was originally defined using x_in:

x_in(aa:T,bb:{x:T|aa<x}): {t: T | aa <= t AND t <= bb}

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

12 · Ricky W. Butler

to select the xis within each subinterval in the partition. Using this definition all of
the theorems were completed except the integral split theorem. In the first version
of the library, the integral split theorem was included as an axiom, because the
time required to prove this lemma was deemed prohibitive at that time. Using this
axiom and the other proven lemmas the fundamental theorem was completed. The
library was released with the expectation that this integral split lemma would be
proved later.

The first indication of a problem with this definition of a Riemann sum, was in
an email from David Lester of Manchester University. He pointed out that this
definition does not allow one to establish that an integrable function was bounded.
Given an integrable function the goal is to establish that f is bounded. It is not
enough to pick an arbitrary xi value in a interval i to compute the height of the
rectangle f(xi). One must exploit the fact that no matter what value of xi you
chose, f(xi) is sufficiently small if indeed the function is integrable. This requires
explicit quantification of each xi for all intervals in the partition. After receiving
his email, the definition was revised, and all of the other lemmas were reproved
using the new definition, and finally this integral split theorem was also completed.
There are now no axioms in this PVS library.

6. FUNDAMENTAL THEOREM OF CALCULUS

The culmination of this work was the completion of the Fundamental Theorem of
Calculus in the PVS theorem prover. The statement of this theorem in PVS is:

fundamental: THEOREM %% Second Form %%
continuous?(f) AND
(FORALL x: F(x) = Integral(a,x,f))

IMPLIES derivable?(F) AND deriv(F) = f

where derivable? and deriv are defined in the differential calculus part of the
analysis library that had been previously developed by Bruno Dutertre of the Royal
Holloway & Bedford New College (now at SRI International). These define deriv-
ability (i.e. differentiability) and the derivative respectively. The deriv function is
only defined on functions of type (derivable?), so this function must be guarded
by the derivable? predicate.

The PVS proof chain analyzer reports that the final completed proof of funda-
mental depends upon 978 proven lemmas and theorems. The following corollaries
were also completed:

fundamental2: THEOREM
continuous?(f)

IMPLIES (EXISTS F: derivable?(F) AND deriv(F) = f)

fundamental3: THEOREM %% First Form %%
derivable?(F) AND deriv(F) = f AND continuous?(f)

IMPLIES Integral(a,b,f) = F(b) - F(a)

Next the concept of the antiderivative was formulated as follows:

antiderivative?(F,f): bool = derivable?(F) AND deriv(F) = f

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 13

antiderivative_lem: LEMMA
antiderivative?(F,f) AND derivable?(G) AND deriv(G) = f

IMPLIES (EXISTS (c: real): F = G + const_fun(c))

A functional that returns the antiderivative was also provided:

antideriv(f: continuous_fun[T]):
{ gg: [T -> real] | derivable?(gg) AND deriv(gg) = f }

7. WHY ARE PVS PROOFS SO MUCH LARGER?

Obviously providing a complete script of every formal step of one of the key lemmas
in this library would require hundreds of pages and the details would be of no
interest to the reader2. Furthermore, these proof steps are easily viewed using PVS
on our publicly available libraries.

Therefore, I thought it might be of interest to the reader to offer some simple ex-
amples of how a completely formal proof differs from the traditional rigorous proof
offered in a standard mathematics text. This presentation is in no way compre-
hensive – it highlights only a fraction of the complexities one faces in a completely
formal theorem prover.

7.1 Formalizing Partitions

In a classic text book, the following suffices to define a partition of an interval:

a = x0 < x1 < x2... < xN = b

But in a formal system this must be represented as a finite sequence of real numbers:

partition(a:T,b:{x:T|a<x}): TYPE =
{fs: finite_sequence[closed_interval(a,b)] | }

Formally, xi is seq(P)(i) where P is a partition. But that is only a superficial
difference. The real problem comes from all of the properties one implicitly knows
about these xis:

seq(P)(0) = a AND
seq(P)(N-1) = b AND
(FORALL (ii: below(N-1)): seq(P)(ii) < seq(P)(ii+1))}

which are defined in the “....” part of the definition above. From i < j it is obvious
that xi < xj , but in PVS whenever one needs this property it has to be brought
into the proof manually as a lemma:

parts_order: LEMMA
FORALL (P: partition(a,b), ii,jj: below(length(P))):

ii < jj IMPLIES seq(P)(ii) < seq(P)(jj)

Even the trivial property that if a ≤ x ≤ b, then xmust be in one of the subintervals,
say i, requires the use of the following lemma

2A typical proof of say 100 proof steps, produces over 4000 lines of proof trace when each step is
replayed.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

14 · Ricky W. Butler

part_in: LEMMA FORALL (P: partition(a,b)):
a < b AND a <= x AND x <= b
IMPLIES (EXISTS (ii: below(length(P)-1)):

seq(P)(ii) <= x AND x <= seq(P)(ii+1))

which first must be proved by induction. If one needs the trivial property that if
x is inside subinterval i, then it is not in another subinterval j, you must bring in
the following lemma:

parts_disjoint: LEMMA
FORALL (P: partition(a,b), ii,jj: below(length(P)-1)):

seq(P)(ii) < x AND x < seq(P)(1 + ii) AND
seq(P)(jj) < x AND x < seq(P)(1 + jj)
IMPLIES

jj = ii

If you have established that something is true for an arbitrary subinterval i, and
you want to conclude that it is therefore true for all of [a, b], you need to reference:

Prop: VAR [T -> bool]
part_induction: LEMMA

(FORALL (P: partition(a,b)):
(FORALL (x: closed_interval(a,b)):

LET xx = seq(P), N = length(P) IN
(FORALL (ii : below(N-1)):

xx(ii) <= x AND x <= xx(ii+1) IMPLIES Prop(x))
IMPLIES Prop(x)))

and manually instantiate the property of interest. Clearly, this adds a tremendous
amount of time-consuming, tedious work.

In general constructs such as x0, x1, ..., xN inevitably lead to inductions, the
details of which mathematicians such as Rosenlicht rarely delve into.

7.2 Step Functions

There are many properties of step functions that are obviously true from a visual
viewpoint, but require fairly time-consuming proofs in a mechanical theorem prover.
For example, the property that the addition of two step-functions yields another
step function is assumed without proof in Rosenlicht. However, the proof in PVS
was surprisingly tedious:

sum_step_is_step: LEMMA a < b AND
step_function?(a, b, f) AND
step_function?(a, b, g)
IMPLIES
step_function?(a, b, f + g)

This lemma required over 350 proof steps and the construction of a function

UnionPart(a:T,b:{x:T|a<x},P1,P2: partition[T](a,b)):
partition[T](a,b) =

set2part(union(part2set(a, b, P1), part2set(a, b, P2)))

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 15

that generates a new partition containing all of the xis from the two step functions
being added together. All of the trivial properties such as the fact that if an xi

is a discontinuity point on one of the original step functions then it is also one of
the discontinuity points in the generated one must be manually introduced into the
proof in order to be used. The obvious property that the nth sub interval of the
new partition must be contained within some sub interval of the original partitions
is

Union_lem: LEMMA
FORALL (a:T, b: {x:T|a<x}, P1,P2: partition[T](a, b),

n: below(length(UnionPart(a,b,P1,P2))-1)):
in_sect?(a,b,UnionPart(a,b,P1,P2),n,x)
IMPLIES (EXISTS (k: below(length(P1)-1)):

seq(P1)(k) <= UnionPart(a,b,P1,P2)(n) AND
UnionPart(a,b,P1,P2)(n+1) <= seq(P1)(k+1))

This property requires a tricky proof using the following maximum:

max[length(P1) - 1] ({k: below(length(P1) - 1) |
seq(P1)(k) <= UnionPart(a, b, P1, P2)‘seq(n)})

i.e, the largest subinterval index less than n. Similar proofs were needed for the
difference of two partitions, the concatenation of two partitions and several other
constructions involving step functions.

7.3 Complications Due To Working In Type Theory Rather Than Set Theory

One of the most disturbing things about working in type theory rather than set
theory is that standard operators such as Σ, are not unique. There are different
versions depending upon the domain of the function being summed. For example
the summation operator over functions from [nat -> real] is sigma[nat] whereas
the operator for functions from [upto[N] -> real] is sigma[upto[N]] and they
are not interchangeable even though upto[N] is a subtype of nat.

Also, restrictions of function domains to subdomains can lead to ugliness involv-
ing the PVS prelude restrict/extend functions. For example

continuous?[closed_interval[T](seq(PP)(ii), seq(PP)(1 + ii))]
(restrict[T,

closed_interval[T](seq(PP)(ii), seq(PP)(1 + ii)),
real] (f), x)

Here the restrict function takes an argument f, which is a function whose domain
is all of the reals, and returns a function whose domain is a closed interval, i.e.
closed_interval[T](seq(PP)(ii), seq(PP)(1 + ii)). Also, one has to deal
with a proliferation of different versions of continuous? e.g. continuous?[T](f),
continuous?[closed_interval(a,b)](f), and continuous?[closed_interval[T]
(seq(PP)(ii), seq(PP)(1 + ii))].

8. ILLUSTRATION OF A FULLY MECHANIZED PROOF

As noted before, the complete presentation of a PVS proof of a lemma would require
dozens of pages and likely to be of no real interest to the reader. Therefore in this
section I merely provide a proof sketch of a theorem from page 123 of Rosenlicht.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

16 · Ricky W. Butler

8.1 A Continuous Function Is Integrable

Theorem 8.1. If f is a continuous real-valued function on the interval [a, b] then∫ b

a
f(x) dx exists.

Proof. We shall prove this theorem by showing that the criterion of the preced-
ing lemma obtains. Since f is uniformly continuous on [a,b], given any ε > 0 we can
find a δ such that whenever x, x′′ ∈ [a, b] and |x′ − x′′| < δ then |f(x′)− f(x′′)| <
ε/(b− a). Choose any partition x0, x1, ...xN of [a, b] of width less than δ. For each
i = 1, ..., N choose x′i, x

′′
i ∈ [xi−1, xi] such that the restriction of f to [xi−1, xi]

attains a minimum at a′i and a maximum at x′′i . Define step functions f1, f2 on
[a, b] by

f1(x) =
{
f(x′i) if xi−1 < x < xi, i = 1, ...N
f(x) if x = xi, i = 0, 1, ..., N

f2(x) =
{
f(x′′i) if xi−1 < x < xi, i = 1, ...N
f(x) if x = xi, i = 0, 1, ..., N

Then f1(x) ≤ f(x) ≤ f2(x) for all x ∈ [a, b]. Furthermore for each i = 1, ..., N
we have |x′i − x′′i | ≤ x′i − x′′i < δ, so that |f(x′i)− f(x′′i)| < ε/(b− a) and therefore
f2(x)− f1(x) ≤ ε/(b− a) for all x ∈ [a, b]. Therefore∫ b

a

(f2(x)− f1(x)) dx < max{f2(x)− f1(x) : x ∈ [a, b]} · (b− a)

<
ε

b− a
· (b− a) = ε

8.2 Formal Proof Sketch of This Theorem

The Informal proof is 16 lines in Rosenlicht. The Formal PVS proof is over 1200
lines long (not counting the auxiliary lemmas and TCCs). The PVS proof script
(i.e. M-x edit-proof) is 417 command lines and the proof trace is over 8000 lines
long. Here are some highlights of this formal proof. The formal proof begins with

{-1} a < b
{-2} FORALL (x: closed_interval(a, b)): continuous?(f, x)
|-------

{1} integrable?(a, b, f)

The negatively labeled formulas are assumptions, the positively labeled formula
is the goal. We use a lemma that establishes that f is uniformly continuous and
obtain

[-1] uniformly_continuous?(LAMBDA (s: closed_interval[T](a, b)):
f(s),

{xx: closed_interval[T](a, b) | TRUE})
[-2] a < b
[-3] FORALL (x: closed_interval(a, b)): continuous?(f, x)

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 17

|-------
[1] integrable?(a, b, f)

We rewrite with the lemma step_to_integrable and the goal becomes:

{1} EXISTS (f1, f2: [T -> real]):
step_function?(a, b, f1) AND step_function?(a, b, f2)

AND FORALL (xx: closed_interval[T](a, b)):
f1(xx) <= f(xx) AND f(xx) <= f2(xx)

AND integrable?(a, b, f2 - f1)
AND integral(a, b, f2 - f1) < eps

We instantiate f1 and f2 with fmin and fmax defined as follows

min_x(a:T,b:{x:T|a<x}, f: fun_cont_on(a,b)):
{mx: T | a <= mx AND mx <= b AND

(FORALL (x: T): a <= x AND x <= b IMPLIES
f(mx) <= f(x))}

max_x(a:T,b:{x:T|a<x}, f: fun_cont_on(a,b)):
{mx: T | a <= mx AND mx <= b AND

(FORALL (x: T): a <= x AND x <= b IMPLIES
f(mx) >= f(x))}

fmin(a:T,b:{x:T|a<x},P: partition(a,b), f: fun_cont_on(a,b)):
{ff: [T -> real] | LET xx = seq(P) IN
FORALL (ii : below(length(P)-1)):

FORALL (x: T): (xx(ii) < x AND x < xx(ii+1) IMPLIES
ff(x) = f(min_x(xx(ii),xx(ii+1),f))) AND

((xx(ii) = x OR x = xx(ii+1)) IMPLIES
ff(x) = f(x))}

fmax(a:T,b:{x:T|a<x},P: partition(a,b), f: fun_cont_on(a,b)):
{ff: [T -> real] | LET xx = seq(P) IN
FORALL (ii : below(length(P)-1)):

FORALL (x: T): (xx(ii) < x AND x < xx(ii+1) IMPLIES
ff(x) = f(max_x(xx(ii),xx(ii+1),f))) AND

((xx(ii) = x OR x = xx(ii+1)) IMPLIES
ff(x) = f(x))}

These leaves us with the following goal:

{1} step_function?(a, b, fmin(a, b, PP, f))
AND step_function?(a, b, fmax(a, b, PP, f))
AND FORALL (xx: closed_interval[T](a, b)):

fmin(a, b, PP, f)(xx) <= f(xx) AND
f(xx) <= fmax(a, b, PP, f)(xx)

AND integrable?(a, b,
fmax(a, b, PP, f) - fmin(a, b, PP, f))

AND integral(a, b,

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

18 · Ricky W. Butler

fmax(a, b, PP, f) - fmin(a, b, PP, f))
< eps

Next, we demonstrate that fmin and fmax are indeed step functions. And then
seek to establish each of the remaining conjuncts. Let’s look at just one of the
obligations:

fmin(a, b, PP, f)(xx) <= f(xx)

To prove this we get the definition of fmin and bring in part_induction:

{-1} FORALL (Prop: [T -> bool], a, b: T, P: partition[T](a, b),
x: closed_interval[T](a, b)):

LET xx: [below[P‘length] -> closed_interval[T](a, b)] = seq(P),
N = length(P)

IN
(FORALL (ii: below(N - 1)):

xx(ii) <= x AND x <= xx(ii + 1) IMPLIES Prop(x))
IMPLIES Prop(x)

[-2] FORALL (ii: below(length(PP) - 1)):
FORALL (x: T):
(seq(PP)(ii) < x AND x < seq(PP)(1 + ii) IMPLIES
fmin(a, b, PP, f)(x) =
f(min_x(seq(PP)(ii), seq(PP)(1 + ii), f)))

AND
((seq(PP)(ii) = x OR x = seq(PP)(1 + ii)) IMPLIES
fmin(a, b, PP, f)(x) = f(x))

[-3] a < b
|-------

[1] fmin(a, b, PP, f)(xx) <= f(xx)

Provide the property for the induction

(inst -1 "(LAMBDA x: fmin(a, b, PP, f)(x) <= f(x))"
"a" "b" "PP" "xx")

obtaining

[-1] seq(PP)(ii) <= xx
[-2] xx <= seq(PP)(1 + ii)
{-3} (seq(PP)(ii) < xx AND xx < seq(PP)(1 + ii) IMPLIES

fmin(a, b, PP, f)(xx) =
f(min_x[T](seq(PP)(ii), seq(PP)(1 + ii), f)))

AND
((seq(PP)(ii) = xx OR xx = seq(PP)(1 + ii)) IMPLIES
fmin(a, b, PP, f)(xx) = f(xx))

[-4] a < b
|-------

[1] fmin(a, b, PP, f)(xx) <= f(xx)

If seq(PP)(ii) < xx then the result follows quickly from the definition of min_x.
But we have to also deal with the cases where seq(PP)(ii) = xx or seq(PP)(1+ii) = xx,
which I will pass over here.
Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 19

Once we have established the integrability of
fmax(a, b, PP, f) - fmin(a, b, PP, f)

we need to establish:
integral(a,b,fmax(a,b,PP,f)-fmin(a,b,PP,f)) < eps.

In the prover, we have:

[-1] integrable?(a, b,
fmax(a, b, PP, f) - fmin(a, b, PP, f))

[-2] step_function?(a, b, fmax(a, b, PP, f))
[-3] step_function?(a, b, fmin(a, b, PP, f))
[-4] eq_partition(a, b, 2 + floor((b - a) / delta)) = PP
[-5] FORALL (x,

y:
(LAMBDA (t: real):

IF T_pred(t) AND a <= t AND t <= b THEN TRUE
ELSE FALSE
ENDIF)):

abs(x - y) < delta IMPLIES
abs(f(x) - f(y)) < (eps / 2) / (b - a)

[-6] a < b
[-7] FORALL (x: closed_interval(a, b)): continuous?(f, x)
|-------

{1} integral(a,b,fmax(a, b, PP, f)-fmin(a,b,PP,f))
< eps

Using the a lemma about partitions with equal sub-intervals, we have

{-1} width(a, b,
eq_partition(a, b, 2 + floor((b - a) / delta)))

= (b - a) / (1 + floor((b - a) / delta))

with some algebraic manipulations we obtain:

[-2] width(a, b, PP) < delta

Using lemma integral_bound_abs we get

{-1} (a < b AND
integrable?(a, b,

fmax(a, b, PP, f) - fmin(a, b, PP, f))
AND
(FORALL (x: closed_interval[T](a, b)):

abs((fmax(a, b, PP, f) - fmin(a, b, PP, f))(x)) <=
eps / (2 * (b - a))))

IMPLIES
abs(integral(a, b,

fmax(a, b, PP, f) - fmin(a, b, PP, f)))
<= eps / (2 * (b - a)) * (b - a)

[-2] width(a, b, PP) < delta
[-3] integrable?(a, b,

fmax(a, b, PP, f) - fmin(a, b, PP, f))

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

20 · Ricky W. Butler

[-4] step_function?(a, b, fmax(a, b, PP, f))
[-5] step_function?(a, b, fmin(a, b, PP, f))
[-6] FORALL (x,

y:
(LAMBDA (t: real):

IF T_pred(t) AND a <= t AND t <= b THEN TRUE
ELSE FALSE
ENDIF)):

abs(x - y) < delta IMPLIES
abs(f(x) - f(y)) < (eps / 2) / (b - a)

[-7] a < b
[-8] FORALL (x: closed_interval(a, b)): continuous?(f, x)
|-------

[1] integral(a,b,fmax(a, b, PP, f)-fmin(a, b, PP, f))
< eps

The uniform continuity result [-6] is used to establish

abs(MAX_x - MIN_x) < delta IMPLIES
abs(f(MAX_x) - f(MIN_x)) < (eps / 2) / BMA

(Note: this occurs as the following subcase:

continuous_integrable.1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.1.2.1.1.1.1

which provides a sense of the complexity of this proof.) Further manipulation
enables us to simply (-1) to:

{-1} abs(integral(a, b,
fmax(a, b, PP, f) - fmin(a, b, PP, f)))

<= eps / (2 * BMA) * BMA

where BMA = "b-a, from which the subgoal follows from properties about abs. The
complete proof trace is 8000 lines long.

The PVS proof follows the informal proof very closely. However, things taken for
granted in a pencil and paper proof such as the following

[-1] seq(PP)(ii) <= MIN_x
[-2] MIN_x <= seq(PP)(1 + ii)
[-3] seq(PP)(ii) <= MAX_x
[-4] MAX_x <= seq(PP)(1 + ii)
|-------

[1] abs(MAX_x - MIN_x) <= seq(PP)(1 + ii) - seq(PP)(ii)

must be proven in detail in a fully formal proof. Fortunately, this is example
of where the automation provided by PVS decision procedures is helpful. The
PVS strategy (grind) automatically opens up the abs function, performs the case
analysis and finishes off the inequality reasoning automatically. But the (grind)
command cannot handle something simple like

[-1] a < b
|-------

{1} (b - a) / delta > 0

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 21

because of the nonlinear division by delta. Here the user of the prover must
augment (grind) with some automatic rewriting using a built-in set of rewrite rules
for the reals, i.e. (grind-reals). Alternatively the user could manually issue the
command (mult-by 1 "delta") to finish off this subgoal. The author believes that
the automation in PVS is very beneficial and simplifies many aspects of the proof
process. There is no doubt that future advances in automated reasoning will make
mechanized proving closer to pencil and paper proofs. But we are still far from that
goal at this time. Mathematics students would no doubt quickly become frustrated
with some of the low-level manipulations that are required. However, there are
places where the mechanical rigor is eye-opening. For example, the multiple layers
of quantification that naturally occur in epsilon-delta proofs must be dealt with
explicitly in a mechanical proof. The quantifiers must be instantiated in a very
precise order and no hand-waving is allowed. This is highly educational.

Fortunately progress has been made in recent years in the capabilities of PVS to
algebraically manipulate formulas over the reals [Di 02]. These capabilities elim-
inate the need to manually invoke lemmas about the field properties of the real
numbers. Also, high-level strategies such as Field have been developed that auto-
matically eliminate divisions from a formula [Muñ01] and thus can automatically
solve many non-linear formulas. These manipulation tools were extremely valuable
in the formalization of the Riemann integral.

9. EXAMPLE OF PROOF DEFICIENCY IN ROSENLICHT

The proofs in Rosenlicht are remarkably complete and well documented. Neverthe-
less, it is not unusual to encounter special cases that are not covered in the book.
Here is an example of such a deficiency taken from page 114 and 115.

Theorem 9.1. Let α, β ∈ [a, b] with α < β. Let f : [a, b]− > < be defined by

f(x) =
{

1 if x ∈ (α, β)
0 if x ∈ [a, b], x /∈ (α, β)

Then ∫ b

a

f(x) dx = β − α

Proof. Let x0, x1, ..., xN be a partition of [a, b] of width less than δ and consider
a Riemann sum for f corresponding to this partition, say

S =
N∑

i=1

f(x′i)(xi − xi−1)

where xi−1 ≤ x′i ≤ xi for each i = 1, 2, ..., N . Since f(x′i) is 1 or 0 according as the
point x′i is in the open interval (α, β) or not, we have

S =
∑∗

(xi − xi−1)

the asterisk indicating that we include in the sum only those i for which x′i ∈ (α, β).
Now choose p, q from among the i = 1, 2, ..., N such that

xp−1 ≤ α < xp, xq−1 < β ≤ xq

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

22 · Ricky W. Butler

But this step overlooks the possibility that all of the xi may fall outside of (α, β).
The proof is repairable, but this case must be dealt with explicitly. The PVS
theorem prover required that all of the details of this case be supplied. However,
these details were not included in the Rosenlicht text. Admittedly this would clutter
up the text book, but a complete formal proof must cover it. Another special case
is when N is 3 or less for which the above construction again fails. Later in the
proof the following fact is used p+ 1 ≤ q − 1. But this is not possible if N is very
small.

10. PRACTICAL USE

All of these theories have been incorporated into the NASA PVS analysis library
which is available at

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.

The PVS analysis library has been used to verify a preliminary version of an auto-
mated concept of operations for regional airports [CGBK04]. The Riemann Integral
has also been used to construct all of the trigonometric functions by starting with
the integral definition of arc-tangent:

atan(x) =
∫ x

0

1
1 + t2

dt

or in PVS notation

atan_deriv_fn(t:real):posreal = 1/(1+t*t)

atan_value(x:real): real = Integral[real](0,x,atan_deriv_fn)

The trigonmetric functions are often used in the formal definition and verification of
air-traffic management algorithms. Originally we had constructed the trigonometry
libraries using axioms. When David Lester of Manchester University took on the
task of developing foundational definitions for the trigonmetric functions and prov-
ing the axioms we have created, he found several errors in them. Although these
axioms were extracted from classic trigonometry text books, errors were made in
the formal specification of the inverse trigonmetric functions. So we are now strong
contenders that formal verifications should not rely on axiomatic constructions that
have not been formally proven to be correct.

11. CONCLUSION

A formalization of the integral calculus in the PVS theorem prover has been com-
pleted. The theory and proofs were based on Rosenlicht’s classic text on real
analysis and follow the traditional epsilon-delta method. The goal of this work was
to provide a practical set of PVS theories that could be used for verification of
hybrid systems that arise in air traffic management systems and other aerospace
applications. All of the basic linearity, integrability, boundedness, and continuity
properties of the integral calculus were proven. The work culminated in the proof of

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 23

the Fundamental Theorem Of Calculus. There is a brief discussion about why me-
chanically checked proofs are so much longer than standard mathematics textbook
proofs.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

24 · Ricky W. Butler

A. USER GUIDE

It is expected that most users of this formalization of the integral, will only need
the theorems in two PVS theories: integral and fundamental_theorem. Here is
a quick reference guide to these theorems:

Theorem Lemma Name∫ a

a
f(x) dx = 0 Integral_a_to_a∫ b

a
c dx = c ∗ (b− a) Integral_const_fun∫ a

b
f(x) dx = −

∫ b

a
f(x) dx Integral_rev∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx Integral_scal∫ b

a
f(x) + g(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx Integral_sum∫ b

a
f(x)− g(x) dx =

∫ b

a
f(x) dx−

∫ b

a
g(x) dx Integral_diff∫ b

a
f WITH [(y) := yv] dx =

∫ b

a
f dx Integral_chg_one_pt

f(x) ≥ 0 ⊃
∫ b

a
f dx ≥ 0 Integral_ge_0

|f(x)| < M ⊃ |
∫ a

a
f(x) dx| ≤M ∗ (b− a) Integral_bounded

f integrable ⊃ |f(x)| < B Integrable_bounded

f continuous ⊃ f integrable continuous_Integrable?∫ b

a
f(x)dx+

∫ c

b
f(x)dx

∫ c

a
f(x)dx Integral_split

For step function f :
∫ b

a
f(x) dx =

∑n
i=1 ci(xi − xi−1) step_function_on_integral

F =
∫ x

a
dt ⊃ F ′ = f fundamental1∫ b

a
f(t) dt = F (b)− F (a) fundamental3

The theory was first developed for integrals where a < b. These results are dis-
tributed over a number of PVS theories:

Theorem Lemma Name Theory∫ b

a
c dx = c ∗ (b− a) integral_const_fun integral_prep∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx integral_scal integral_prep∫ b

a
f(x) + g(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx integral_sum integral_prep∫ b

a
f(x)− g(x) dx =

∫ b

a
f(x) dx−

∫ b

a
g(x) dx integral_diff integral_prep∫ b

a
f dx =

∫ b

a
f WITH [(y) := yv] dx integral_chg_one_pt integral_prep

f(x) ≥ 0 ⊃
∫ b

a
f dx ≥ 0 integral_ge_0 integral_prep

f integrable ⊃ |f(x)| < B integrable_bounded integral_bounded

f continuous ⊃ f integrable continuous_integrable integral_cont∫ b

a
f(x) dx+

∫ c

b
f(x) dx

∫ c

a
f(x) dx integral_split integral_split

For step function f :
∫ b

a
f(x) dx =∑n

i=1 ci(xi − xi−1)
step_function
_on_integral

integral_step

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

Formalization of the Integral Calculus in the PVS Theorem Prover · 25

References

[CF04] L. Cruz-Filipe. Constructive Real Analysis: a Type-Theoretical Formal-
ization and Applications. PhD thesis, University of Nijmegen, April
2004.

[CGBK04] Victor A. Carreno, Hanne Gottliebsen, Ricky Butler, and Sara Kalvala.
Formal modeling and analysis of a preliminary small aircraft trans-
portation system (SATS) concept. NASA Technical Memorandum
NASA/TM-2004-212999, NASA, March 2004.

[CM00] V. Carreño and C. Muñoz. Aircraft trajectory modeling and alerting
algorithm verification. In Theorem Proving in Higher Order Logics:
13th International Conference, TPHOLs 2000, volume 1869 of Lecture
Notes in Computer Science, pages 90–105, 2000. An earlier version
appears as report NASA/CR-2000-210097 ICASE No. 2000-16.

[Di 02] Ben L. Di Vito. A pvs prover strategy package for common manipu-
lations. NASA Technical Memorandum 2002-211647, NASA Langley
Research Center, Hampton, VA, April 2002.

[DMG01] Gilles Dowek, Cesar Munoz, and Alfons Geser. Tactical conflict detec-
tion and resolution in a 3-D airspace. In 4th USA/Europe Air Traffic
Management R&D Seminar, Santa Fe, pages 3–7, December 2001.

[Dut96] Bruno Dutertre. Elements of mathematical analysis in pvs. In The-
orem Proving in Higher Order Logics: 9th International Conference,
TPHOLs ’96, volume 1125, pages 141–156, Turku, Finland, 1996.
Springer-Verlag.

[Fle00] Jacques D. Fleuriot. On the mechanization of real anal-
ysis in isabelle/hol. In Theorem Proving in Higher Order
Logics: 13th International Conference, TPHOLs 2000, Lecture
Notes in Computer Science, volume 1869, 2000. Available at
http://homepages.inf.ed.ac.uk/bundy/projects/phd/nsa.html.

[Har98] John Harrison. Theorem Proving with the Real Numbers. Springer-
Verlag, 1998.

[Muñ01] Cesar A. Muñoz. Real automation in the field. Techni-
cal Report NASA/CR-2001-211271, ICASE-NASA Langley, NASA
LaRC,Hampton VA 23681-2199, USA, December 2001.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A proto-
type verification system. In Deepak Kapur, editor, 11th International
Conference on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June
1992. Springer Verlag.

[QED04] ftp://info.mcs.anl.gov/pub/qed/manifesto, May 2004.
[Ric03] Stefan Richter. Formalizing integration theory, with an application to

probabilistic algorithms, May 2003. Diploma Thesis, Technische Univer-
sitat Munchen, Department of Informatics, Available at http://www-
lti.informatik.rwth-aachen.de/ richter/papers/index.html.

[Ros68] Maxwell Rosenlicht. Introduction to Analysis. Scott, Foresman and
Company, 1968.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

26 · Ricky W. Butler

[SOR93] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A
Reference Manual (Beta Release). Computer Science Laboratory, SRI
International, Menlo Park, CA, February 1993.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

