FORMAL METHODS TOOL QUALIFICATION

15 September 2016

Formal Methods Tool Qualification (FMTQ)
Mitigation Strategies for Qualification

Prepared for NASA
System-Wide Safety Assurance Technologies (SSAT)
Subtopic AFCS-1.3 Software Intensive Systems: Qualification of Formal Methods Tools
Contract NNL14AA06C

	Technical Point of Contact:		
Lucas Wagner
Rockwell Collins, Inc.
400 Collins Rd NE, MS 108-206
Cedar Rapids, IA 52498	
Telephone: (319) 295-5672
lucas.wagner@rockwellcollins.com
	Business Point of Contact:
Julie Issa
Rockwell Collins, Inc.
400 Collins Rd. NE, MS 121-200
Cedar Rapids, IA 52498
Telephone: (319) 295-0511
julie.issa@rockwellcollins.com

	
	

[image: RClogo_col_rgb]Rockwell Collins, Inc.
400 Collins Rd. NE
Cedar Rapids, Iowa 52498

[bookmark: h.30j0zll][image:]

Table of Contents
1	Purpose	3
2	Scope	3
3	Aspects of Qualification	4
4	Tool Qualification Objectives	6
4.1	Table T-0 Tool Operational Processes	6
4.1.1	Objective T-0.1: Tool Qualification Need	6
4.1.2	Objective T-0.2: Tool Operational Requirements (TORs)	7
4.1.3	Objective T-0.5: Tool complies with TORs	8
4.1.4	Objective T-0.6: Tool Operational Requirements are sufficient and correct	8
4.1.5	Objective T-0.7: Software Life Cycle Process needs are met by the tool	8
4.2	Table T-1 Tool Planning Processes	9
4.2.1	Objective T-1.4: Additional Considerations are addressed	9
4.3	Table T-2 Tool Development Processes	9
4.3.1	Objective T-2.1: Tool Requirements are developed	9
4.3.2	Objective T-2.3: Tool architecture is developed	10
4.4	Table T-3 Verification of Outputs of Tool Requirements Processes	11
4.4.1	Table T-3.9: Algorithms are accurate (TQL-4)	11
4.5	Table T-4 Verification of Outputs of Tool Design Process	12
4.5.1	Objective T-4.10: Protection mechanisms, if used, are confirmed (TQL-4)	12
4.6	Table T-5 Verification of Outputs of Tool Coding and Integration Process	12
4.7	Table T-6 Testing of Outputs of Integration Process	12
4.7.1	Objective T-6.2: Tool Executable Object code is robust with Tool Requirements	12
4.8	Table T-7 Verification of Outputs of Tool Testing	13
4.9	Table T-8 Tool Configuration Management Process	14
4.10	Table T-9 Tool Quality Assurance Process	14
4.11	Table T-10 Tool Qualification Liaison Process	14
5	Summary	15
6	References	16

[bookmark: _Toc461716311]Purpose
The purpose of this document is to identify aspects of formal methods tools that could make it difficult to satisfy the tool qualification objectives outlined in DO-330: Software Tool Qualification Considerations [1]. If a difficulty is identified, a mitigation strategy is provided.
[bookmark: _Toc461716312]Scope
This document covers the aspects of qualifying formal methods tools for usage in avionics software development processes. DO-178C: Software Considerations in Airborne Systems and Equipment Certification [2] provides guidance on the production of trustworthy software for avionics applications. The process in which software is declared trustworthy is referred to as certification. Frequently software tools are used to aid in the development and verification of airborne software. If a tool is to be trusted, it must undergo a process similar to certification, known as qualification.
This document addresses unique qualification aspects of formal methods tools. In cases where it is unclear how qualification objectives might be certified, mitigation strategies are provided. In cases where the authors believe insights into the qualification process would make prospective qualification easier for the reader, they are also provided.
Qualification of any tool is dictated by the guidance in DO-178C and DO-330. One major factor that influences the rigor of qualification is the selection of Tool Criteria, and thus Tool Qualification Level. This document only addresses Tool Qualification Level 4 and 5 qualification efforts. The rationale for this decision is explained in Section 3, but can be quickly summarized by pointing out that formal methods tools are likely to be used for verification activities which have less impact on the final outputs of the software development processes.

[bookmark: _Ref443051659][bookmark: _Toc461716313]Aspects of Qualification
Qualification is the process for which a software tool is demonstrated to be trustworthy for use in an avionics software development process. DO-330 provides guidance on how a tool is to be qualified under the DO-178C methodology. First, the tool’s Tool Qualification Level (TQL) must be identified. This is determined by the guidance provided in Section 12.2.2 of DO-178C.
First, the applicant must identify the tool’s criteria. The criteria of a tool is identified by how it is used in software life cycle processes. DO-178C identifies the following tool criteria:
· Criteria 1: tools whose output is part of the airborne software and thus could insert an error
· Criteria 2: tools that automate verification processes and thus could fail to detect an error, and whose output is used to justify the elimination or reduction of additional verification processes (other than those automated by the tool itself) or development processes.
· Criteria 3: tools that within the scope of their intended use could fail to detect an error.
[bookmark: _Ref423419027][bookmark: _Ref423419497]The authors anticipate that formal methods tools will be used to satisfy DO-178C objectives related to verification activities of the software lifecycle processes, and thus are unlikely to be classified as a Criteria 1 tool. The remaining criteria, Criteria 2 and Criteria 3, make a distinction between whether or not the tool’s output is used to justify the elimination or reduction of development processes, or additional verification processes other than those automated by the tool.
Given a tool Criteria and Software Level (criticality level of the software the tool is used to verify) a Tool Qualification Level can be selected. Criteria 3 tools are always TQL-5, regardless of the applicable Software Level. Criteria 2 tools are TQL-4 for Software Levels A and B and TQL-5 for Software Levels C and D. Thus, a formal methods tool is most likely to be qualified as a TQL-4 or TQL-5 tool. The summary of objectives for a TQL-4 (and subsequently TQL-5 qualifications) can be found in Table 1.
	DO-330 Table
	TQL-4
	TQL-5

	T-0: Tool Operational Processes
	4
	1,2,3,5,6,7

	T-1: Tool Planning Processes
	1,4
	

	T-2: Tool Development Processes
	1,2,3,7,8
	

	T-3: Verification of Outputs of Tool Requirements Process
	1,2,3,4,5,6,8,9
	

	T-4: Verification of Outputs of Tool Design Process
	10
	

	T-5: Verification of Outputs of Tool Coding & Integration Process
	
	

	T-6: Testing of Output of Integration Process
	1,2
	

	T-7: Verification of Outputs of Tool Testing
	2,3
	

	T-8: Tool Configuration Management
	2,3,5
	1,4

	T-9: Tool Quality Assurance Process
	
	2,5

	T-10: Tool Qualification Liaison Process
	
	1,2,3,4

[bookmark: _Ref442098703]Table 1-Summary of Objectives for TQL-4 and TQL-5 Qualifications
The least rigorous qualification, TQL-5, focuses on the operational usage of the tool. The applicant must identify the Tool Operational Requirements and demonstrate that the tool satisfies them. No insight into the development activities of the tool is required. TQL-5 qualifications are limited to objectives found in Tables T-0, T-8, T-9, and T-10.
TQL-4 qualifications introduce additional rigor. In addition to the TQL-5 objectives (increasing TQL levels incorporate the objectives from the levels below it), additional objectives require the applicant to expose portions of the development processes of the tool itself. This introduces a dependency on the tool-developer if the tool is not developed in-house. This has some consequences to formal methods tools that are developed within academia. Kind 2 [3], JKind [4], Frama-C [5], PVS [6], ACL2 [7], and many other formal methods tools have roots in academic research. While these tools may have extensive service history, bug reporting, and production-like development and maintenance activities, they may not have followed a DO-330 compliant tool development process, and thus lack the required artifacts to successfully complete a TQL-4 qualification. Prospective tool users should be aware of this consequence when using a tool to satisfy DO-178C objectives as a TQL-4 qualification may not be attainable. This is discussed further in Section 4.2.1.
Mitigation Strategy for Tools lacking DO-330 requisite artifacts:
Since TQL-4 qualifications require inputs from the tool-developer this issue can be mitigated by relying on tool vendors that provide qualification support. Some commercial tools, such as Polyspace, provide qualification artifacts for this very purpose.

Tools that have not followed a DO-178C compliant development process may only be able to be qualified to TQL-5 level of rigor if developer support to create the relevant artifacts is unavailable. In this case, the results of the tool that are used to justify the elimination or reduction of additional verification processes or development processes may not be claimed through the more rigorous TQL-4 qualification of the tool. Thus, the applicant must still perform these processes.

[bookmark: _GoBack]

[bookmark: _Toc461716314]Tool Qualification Objectives
This section walks through the qualification objectives relevant to a Criteria 2 or Criteria 3 tool; that is, it covers all of the objectives necessary to satisfy a TQL-4 qualification. The relevant objectives can be found in Table 1 of Section 3.
Annex A from DO-330 summarizes the objectives in a tabular format. The tables found within Annex A organize the objectives according to tool life cycle processes. There are 11 tables in total, labeled T-0 through T-11. Each table is addressed in its own section, beginning with Section 4.1 and ending with Section 4.11. In each table’s treatment, if an issue is identified, or further discussion is merited, then a section addressing the particular objective in question is present and contains the discussion.
[bookmark: _Ref441577798][bookmark: _Toc461716315][bookmark: _Ref427054086]Table T-0 Tool Operational Processes
This table addresses Tool Qualification Objectives (TQOs) relating to the usage of the tool in the software lifecycle processes. It is here that the tool qualification need, tool operational requirements, tool executable object code, tool operational environment are identified. Further, the Tool Operational Verification and Validation Test Cases and Procedures (TOVVCPs) are developed, executed, and results recorded. Table 2 identifies the relevant TQL-4 objectives.
Note to Reader:
Each section contains a table that summarizes the TQL-4 objectives for the particular DO-330 Annex A table that it covers. This table contains a column titled Reference, which describes which section of DO-330 that the reader can use to find more information about that objective. This table also contains a column titled Discussion; this section describes any comments, insights, or identified issues that the authors make. If this section is empty, then the qualification objective does not contain any unique aspects that must be considered when qualifying formal methods tools.

	Objective
	Description
	Reference[footnoteRef:1] [1: DO-330 Sections that discuss the objective are provided in this column.]

	Discussion[footnoteRef:2] [2: This column references the section of this document that discusses potential issues.]

	T-0.1
	Tool qualification need is established.
	4.1
	4.1.1

	T-0.2
	Tool Operational Requirements (TORs) are defined.
	5.1.1a
	4.1.2

	T-0.3
	Tool Executable Object Code is installed in the tool operational environment
	5.3.1a
	

	T-0.4
	Tool Operational Requirements are complete, accurate, verifiable, and consistent.
	6.2.1a
	

	T-0.5
	Tool operation complies with the Tool Operational Requirements
	6.2.1.b
	4.1.3

	T-0.6
	Tool Operational Requirements are sufficient and correct
	6.2.1.aa
	4.1.4

	T-0.7
	Software life cycle process needs are met by the tool
	6.2.1.bb
	

[bookmark: _Ref443289098][bookmark: _Ref443054059]Table 2 – TQL-4 relevant objectives from Table T-0
[bookmark: _Ref443292187][bookmark: _Ref443292194][bookmark: _Toc461716316]Objective T-0.1: Tool Qualification Need
This objective requires the applicant to identify the need for tool qualification. Establishment of the tool qualification need requires the applicant to describe how the tool is used, how it interfaces with other tools in the software life cycle processes, what objectives the tool will be used to satisfy, and the appropriate tool qualification level for qualification.
Part of defining the tool operational usage is outlining how the user is to interact with the tool. Some tools, such as interactive theorem provers, require constant human interaction and guidance to successfully prove a property of interest. For example, PVS requires the user to interactively provide inference rules to the tool. When the series of commands given by the user results in a proof, the collection of commands and the order they were given, is captured by the tool. From a certification perspective, we are concerned less with how the user interacted with the tool and more concerned whether or not the collection of commands is a correct proof with respect to the artifact being analyzed. This concern is not limited to theorem proving tools as certain variants of model checking and abstract interpretation tools share similar concerns.
Mitigation Strategy for Interactive Proof Tools:
When a tool requires extensive human interaction to obtain a proof it is not in the interest of the applicant to consider all of the potential ways the user might interact with the tool for qualification. Instead, the applicant should focus on whether or not the final result is valid and trustworthy. For example, when qualifying the PVS theorem prover it is recommended to only qualify the ability of PVS to establish the proof of interest, not qualify the aspects of the tool that the user invokes to accomplish this. One way to accomplish this is through qualification of the batch operation of PVS, thus ignoring the user interactive components.
[bookmark: _Ref443292205][bookmark: _Toc461716317]Objective T-0.2: Tool Operational Requirements (TORs)
This objective requires the applicant to clearly identify the operational requirements of the tool within the software life cycle processes.
One significant way that formal methods tools vary from traditional software tools is that they are not guaranteed to terminate. A formal methods tool might not terminate if the analysis problem is so large that it takes a large, but finite, time to complete. This is the case with enumerative model checkers, such as SPIN, and BDD-based symbolic model checkers such as NuSMV [8]. If the time for the analysis to complete is so large (weeks, months or years) then it is effectively infinite, making the tool unsuitable for the verification task. Another reason a formal methods tool might not terminate is because the user does not have enough skill in using the tool or enough knowledge of the problem domain to guide the tool to a successful proof. Kind 2, for example, may not be able to prove certain properties that are not k-inductive. Regardless of the reason, this possibility should be addressed by the applicant and considered when satisfying objective T-0.2, specifically the development of performance requirements.
Mitigation Strategy for Termination:
Tools may allow for the user to set a timeout value for processing. Setting a reasonable value for the timeout is one way to set a hard limit on the processing time a tool is allowed. For example, when using a k-induction model checker such as Kind 2, one might set the timeout to 3600 seconds (1 hour). Other formal methods tools might be expected to run for much, much longer. This approach sets hard limits on acceptable runtimes for the tool, making a very clear delineation between successful, and unsuccessful analysis. If the tool does not allow for a timeout to be set, one might use an external tool to time the run and automatically end it when the timeout is surpassed.

Explicitly specifying the minimum hardware requirements of the Tool Operational Environment, especially for formal methods tools, is recommended. This includes the RAM, CPU, thread/cores, and other resources expected for the tool to operate correctly and in a performant manner.

[bookmark: _Ref443292214][bookmark: _Toc461716318]Objective T-0.5: Tool complies with TORs
This objective requires the applicant to demonstrate that the tool complies with the defined TORs when operating in its intended environment.
This TQO is met by the successful execution of the Tool Operational Verification and Validation Cases and Procedures (TOVVCPs). The TOVVCPs are comprised of review and analysis procedures, test cases, and test procedures. One challenging aspect when developing the TOVVCPs for formal analysis tools (and any tool that parses an input language) is developing review, analysis, and test procedures that adequately exercise the input language. Testing alone is insufficient (nor convincing) in demonstrating that a tool does accept the correct input. For example, logical operations in most model checkers can be nested infinitely deep; the only constraint on their depth are the resource constraints in the Tool Operational Environment. However, analysis and reviews do not establish that the tool object code operates correctly in its defined environment, nor can they be used to identify syntactically correct, but ill-formed input, such as an expression with type errors.
Mitigation Strategy for Well-Formed Input
Reviews and analysis of the parser and parser generator toolset can be used to establish that the tool accepts the correct syntax. Testing will be necessary to ensure that syntactically correct input is still well-formed. For example, a syntactically correct input may not be type-correct; testing should be used to demonstrate that the tool performs type-checking correctly. Similar checks can be used to identify commonly unsupported elements such as nonlinear arithmetic. Test cases that exercise abnormally complex or large inputs (such as deeply nested operations or function calls) should be performed to ensure that the tool’s implementation (and language parser) in the Tool Operational Environment is not resource constrained.

[bookmark: _Toc461716319][bookmark: _Ref443054484]Objective T-0.6: Tool Operational Requirements are sufficient and correct
This objective requires the applicant to demonstrate that the TORs are sufficient and correct to automate, reduce, or eliminate the procedures that the tool satisfies. This objective is satisfied by ensuring that the guidance in DO-330 Section 10.3.1 is followed. This section identifies the key characteristics of the Tool Operational Requirements.
There are no aspects of formal methods tools that are unique or challenging when satisfying this Tool Qualification Objective.
[bookmark: _Toc461716320]Objective T-0.7: Software Life Cycle Process needs are met by the tool
This objective addresses whether or not the tool meets the needs of the software life cycle processes in the tool operational environment.
There are no aspects of formal methods tools that are unique or challenging when satisfying this Tool Qualification Objective. However, the suitability of formal methods (not the tool implementing formal methods, but the use of formal methods themselves) for satisfying DO-178C objectives must be addressed according to guidance provided by DO-333: Formal Methods Supplement to DO-178C and DO-278A [9].
[bookmark: _Toc461716321]Table T-1 Tool Planning Processes
This table addresses the planning activities in the development of the tool. This includes defining the tool life cycle processes in compliance with the tool’s intended usage, determining the tool life cycle, identify the tool development environment, development standards used for tool development, addressing additional considerations (for example, if the tool executes in parallel with the software under test, how are adverse reactions between tools avoided), and coordinating the development and revision of tool plans over the course of tool development.
	Objective
	Description
	Reference
	Discussion

	T-1.1
	Tool development and integral processes are defined.
	4.3a
	

	T-1.4
	Additional considerations are addressed.
	4.4a, 4.4e
	4.2.1

TQL-4 relevant objectives from Table T-1
[bookmark: _Ref441757123][bookmark: _Ref442099907][bookmark: _Ref443055857][bookmark: _Toc461716322]Objective T-1.4: Additional Considerations are addressed
This objective requires the applicant to address additional tool development considerations as outlined in DO-330 Section 11. This section covers the qualification of multi-function tools, previously qualified tools, COTS tools, the role of service history in qualification, and any alternative methods of qualification (such as the use of formal methods).
There are no unique aspects of formal methods tools that must be addressed here, however, we strongly suggest that the applicant thoroughly understands DO-330 Section 11.3 (Qualifying COTS Tools) when attempting to qualify a Commercial Off-The-Shelf (COTS) tool. The guidance provided here distinguishes between the role of tool-user (usually the applicant) and tool-developer. Some formal methods tools, such as Polyspace Code Prover™ (a tool based on abstract interpretation), provide qualification kits to their users. These kits closely follow the guidance in DO-330 Section 11 and provide the tool-developer portions of a qualification.
[bookmark: _Toc461716323]Table T-2 Tool Development Processes
Table T-2 address objectives related to the tool development processes. This includes the development of the Tool Requirements (not to be confused with the Tool Operational Requirements), derived tool requirements, tool architecture, development of low-level requirements, source code, executable object code, and tool installation.
	Objective
	Description
	Reference
	Discussion

	T-2.1
	Tool Requirements are developed.
	5.2.1.1.a
	4.3.1

	T-2.2
	Derived Tool Requirements are defined.
	5.2.1.1.b
	

	T-2.3
	Tool architecture is developed.
	5.2.2.1.a
	4.3.2

	T-2.7
	Tool Executable Object code is produced.
	5.2.4.1.a
	

	T-2.8
	Tool is installed in the tool verification environment(s).
	5.2.4.1.b
	

TQL-4 relevant objectives from Table T-2
[bookmark: _Toc461716324][bookmark: _Ref443209880]Objective T-2.1: Tool Requirements are developed
This objective requires the applicant to develop the Tool Requirements. The development of Tool Requirements must comprehensively cover satisfiability of Tool Operational Requirements, address tool functionality and interface requirements, adhere to Tool Development Plan processes, follow Tool Requirements Standards, be verifiable and consistent, detect abnormal behavior and prevent invalid output, identify Tool Requirements that do not trace to Tool Operational Requirements, provide user instructions, and identify error messages and constraints.
The development of Tool Requirements is a relatively labor intensive activity for a TQL-4 qualification. The Tool Requirements describe the overall behaviors and may be a superset of behaviors outlined in the Tool Operational Requirements. For example, a model checker such as Kind 2 utilizes several reasoning engines to prove properties of interest: bounded model checking, k-induction, and property directed reachability. However, some may elect to only use a bounded model checking, for instance, to prove properties of interest. If this is the case, the Tool Requirements would address all of the reasoning engines and the Tool Operational Requirements would only address bounded model checking algorithms. Similarly, an abstract interpretation tool might implement several abstract domains, only some of which are necessary to satisfy the Tool Operational Requirements.
It is up to the applicant to clearly define which Tool Requirement support the Tool Operational Requirements and which are related to unused tool functions. This is not a unique problem to formal methods tools. Nevertheless, it’s worth mentioning when considering a TQL-4 qualification of a formal methods tool.
[bookmark: _Ref443209891][bookmark: _Toc461716325]Objective T-2.3: Tool architecture is developed
This objective requires the applicant to develop the tool’s architecture. This should be an output of the tool’s design process and should address relevant features, such as protection mechanisms, etc. The architecture should follow any Tool Design Standards, be verifiable and consistent, and identify external components utilized by the tool, but not under the control of the developer.
There are no unique aspects of formal methods tools that impact this objective, however, it is a worthwhile activity for formal methods tool developers interesting in qualifying their tools to review this objective as it clearly states the expectations for handling external components. Very nearly every formal methods tool makes use of external libraries whether it be an external library for arbitrary precision arithmetic, such as GMP, or uses an SMT solver to solve logical formulas. Many formal methods tools rely on well-tested, general libraries for different purposes and this objective requires the applicant to identify those in use in a particular tool and to very rigorously define how they interact with the tool.
Open Question:
When an external library does a great deal of reasoning, such as an SMT solver in the Kind 2 tool, is simply documenting the use of the external solver adequate? Z3, for instance, verifies that the base and inductive steps of k-induction are valid. Kind 2 only translates the Lustre model to first-order logic that the SMT solver verifies, and interprets the results of both processes to determine if the property is valid. It is estimated that the SMT solver performs 75% or more of the overall reasoning in this tool.

The guidance suggests that the testing that occurs to demonstrate satisfaction of the Tool Operational Requirements, and Tool Requirements, should be sufficient to demonstrate that the solver operates correctly within the tool. Discussions with certification experts as part of this effort confirm this finding.

[bookmark: _Toc461716326]Table T-3 Verification of Outputs of Tool Requirements Processes
Table T-3 outlines objectives related to the verification of the tool requirements. This table contains objectives related to the verifiability, traceability, and compliance of the Tool Requirements with the Tool Operational Requirements. Further, other objectives require the applicant to identify how the tool is to respond to error conditions, as well as verify that the Tool Requirements are compatible with the operational environment.
	Objective
	Description
	Reference
	Discussion

	T-3.1
	Tool Requirements comply with Tool Operational Requirements
	6.1.3.1.a
	

	T-3.2
	Tool Requirements are accurate and consistent
	6.1.3.1.b
	

	T-3.3
	Requirements for compatibility with the tool operational environment are defined.
	6.1.3.1.c
	

	T-3.4
	Tool Requirements define the behavior of the tool in response to error conditions
	6.1.3.1.d
	

	T-3.5
	Tool Requirements define user instructions and error messages
	6.1.3.1.e
	

	T-3.6
	Tool Requirements are verifiable.
	6.1.3.1.f
	

	T-3.8
	Tool Requirements are traceable to Tool Operational Requirements
	6.1.3.1.h
	

	T-3.9
	Algorithms are accurate
	6.1.3.1.i
	4.4.1

TQL-4 relevant objectives from Table T-3
[bookmark: _Ref443210874][bookmark: _Toc461716327]Table T-3.9: Algorithms are accurate (TQL-4)
This objective requires the applicant to demonstrate that the accuracy and behavior of proposed algorithms used in the tool.
While there are no unique aspects of formal methods tools that impact this objective, some tools may employ algorithms that are unfamiliar to the typical certification representatives. For example, the use of binary decision diagrams used in the NuSMV tool, or the use of k-induction in the Kind 2 tool, or even the use of complicated abstract domains in abstract interpretation tools must be clearly and thoroughly identified. This includes links to relevant literature in the scientific community and a deep discussion of how the identified algorithms are used in the tool of interest.

[bookmark: _Toc461716328]Table T-4 Verification of Outputs of Tool Design Process
This table addresses the verification of the outputs of the tool design process. This table addresses the development and verification of low-level Tool Requirements, traceability of low-level Tool Requirements to the Tool Requirements, and the development and compatibility of the Tool Architecture. Only one objective applies to TQL-4 qualifications, one that confirms the use of protection mechanisms within the tool, if necessary.
	Objective
	Description
	Reference
	Discussion

	T-4.10
	Protection mechanisms, if used, are confirmed
	6.1.3.3.d
	4.5.1

TQL-4 relevant objectives from Table T-4
[bookmark: _Ref443211082][bookmark: _Toc461716329]Objective T-4.10: Protection mechanisms, if used, are confirmed (TQL-4)
The purpose of this objective is to ensure that if a protection mechanism is used in a tool’s architecture, breaches of that protection mechanism are prevented or isolated. More information can be found in DO-330 Section 6.1.3.3.d.
There is nothing unique to the development of formal methods tools to be considered here. However, some formal methods tools exploit parallel computation to speed up analysis times; for example, K-induction in Kind 2 is implemented as a set of parallel processes. Communication between processes is accomplished through the ZeroMQ [10] distributed messaging library. Satisfying this objective for Kind 2 would require evidence to demonstrate that the tool correctly handles interaction between processes such that results are not incorrectly reported.
[bookmark: _Toc461716330]Table T-5 Verification of Outputs of Tool Coding and Integration Process
This table addresses objectives relating the Tool Source Code to the Tool Low-Level Requirements. There are no relevant objectives for TQL-4 or TQL-5 qualifications.
[bookmark: _Toc461716331]Table T-6 Testing of Outputs of Integration Process
Table T-6 addresses the verification of the outputs of the tool integration process. The objectives from this table demonstrate that the Tool Executable Object code complies with the Tool Requirements and Low-level Tool Requirements.
	Objective
	Description
	Reference
	Discussion

	T-6.1
	Tool Executable Object code complies with Tool Requirements
	6.1.4.1.a
	

	T-6.2
	Tool Executable Object code is robust with Tool Requirements
	6.1.4.1.b
	4.7.1

TQL-4 relevant objectives from Table T-6
[bookmark: _Ref443213185][bookmark: _Toc461716332]Objective T-6.2: Tool Executable Object code is robust with Tool Requirements
This objective requires the applicant to demonstrate that the Tool Executable Object code is robust with respect to the Tool Requirements.
There are no unique aspects to formal methods tools that impact this objective, but it is important for formal methods tool developers to thoroughly understand the failure modes and abnormal inputs that could induce unexpected failures in their tools. For example, the k-induction model checker JKind identifies formulas that divide by a constant zero. This input is allowed by the input language but causes the back-end SMT solvers to crash. Similarly, JKind identifies non-linear arithmetic if a solver that does not support it is used. These are just two examples of abnormal inputs that should be detected by the tool.
[bookmark: _Toc461716333]Table T-7 Verification of Outputs of Tool Testing
Table T-7 addresses the suitability of test cases and procedures used to test the tool. This includes a demonstration that the test results are correct and any discrepancies are explained, and test coverage of the Tool Requirements is achieved.
	Objective
	Description
	Reference
	Discussion

	T-7.2
	Test results are correct and discrepancies are explained
	6.1.4.4.c
	

	T-7.3
	Test coverage of tool requirements is achieved
	6.1.4.4.a
	

TQL-4 relevant objectives for Table T-7
The two objectives from Table T-7 do not pose any unique challenges to the qualification of a formal methods tool. These objectives address the adequacy of the review, analysis, and test procedures used to verify the Tool Requirements. These objectives can be met by reviewing the set of test cases used to verify the Tool Requirements and establishing that each tool requirement is covered by at least one test case.
Discussion:
The objectives from Table T-7 seek the applicant to demonstrate that the test results are correct. In practice, some tests cases may produce results that are difficult to check by inspection. For example, a test for a model checker might output a very large, complex counterexample. Checking these results by hand can be tedious and error prone. In this instance, one could simulate the counterexample on the model it was derived from, providing greater confidence in its correctness than inspection alone could. This problem is not unique to formal methods tools, but could play heavily into their qualification.

[bookmark: _Toc461716334]Table T-8 Tool Configuration Management Process
Table T-8 addresses the role of configuration management in the life cycle of the tool.
	Objective
	Description
	Reference
	Discussion

	T-8.1
	Configuration items are identified
	7.1.a
	

	T-8.2
	Baselines and traceability are established
	7.1.b
	

	T-8.3
	Problem reporting, change control, change review, and configuration status accounting is established
	7.1.c, 7.1.d, 7.1.e, 7.1.f
	

	T-8.4
	Archive, retrieval, and release are established
	7.1.g
	

	T-8.5
	Tool life cycle environment control is established
	7.1.h
	

TQL-4 relevant objectives from Table T-8
Table T-8 and the relevant TQL-4 objectives contained within, address the configuration management processes used in the tool life cycle. There are no unique aspects of a formal methods tools that impact the configuration management processes.
[bookmark: _Toc461716335]Table T-9 Tool Quality Assurance Process
Table T-9 addresses the role of Quality Assurance in the tool life cycle.
	Objective
	Description
	Reference
	Discussion

	T-9.2
	Assurance is obtained that tool processes comply with approved plans.
	8.1.b
	

	T-9.5
	Tool conformity review is conducted
	8.1.d
	

TQL-4 relevant objectives from Table T-9
Table T-9 and its relevant TQL-4 objectives address the role of quality assurance in the tool life cycle. Similar to configuration management, there are no unique aspects of formal methods tools that impact the quality assurance processes.
[bookmark: _Ref441577806][bookmark: _Toc461716336]Table T-10 Tool Qualification Liaison Process
Table T-10 addresses the integration of the tool and related qualification information into the overall avionics certification package.
	Objective
	Description
	Reference
	Discussion

	T-10.1
	Communication and understanding between the applicant and the certification authority is established.
	9.0
	

	T-10.2
	The means of compliance is proposed and agreement is obtained.
	9.0
	

	T-10.3
	Compliance substantiation is provided
	9.0
	

	T-10.4
	The impact of known problems on the Tool Operational Requirements is identified and analyzed.
	9.0
	

TQL-4 relevant objectives from Table T-10
Table T-10 and its relevant TQL-4 objectives address the integration of the tool and its qualification data into the overall avionics certification package. There are no unique aspects of formal methods tools that impact the objectives in this table.
[bookmark: _Toc461716337]Summary
It is the author’s determination that DO-330 anticipates the qualification of formal methods tools rather well. While some objectives have some subtle nuances that must be addressed when qualifying formal methods tools, there are no obstacles that would prevent the applicant from successfully qualifying a formal methods tool at a TQL-5 level.
One major issue that was identified as part of this study is the potential inability to qualify tools at a TQL-4 level if the tool was not developed in a DO-330 compliant process. Many formal methods tools arise from academic developments. The nature of a TQL-4 qualification requires insight into the development processes, requiring a rigorous evaluation of the tool’s requirements, and practices used to verify the tool. If these artifacts are not present, or unavailable (for instance, they are proprietary) it is not possible to satisfy the requirements of a TQL-4 qualification. This should be carefully considered when defining the operational usage of a formal methods tool.
Finally, this document should serve as a primer for formal methods tool users interested in pursuing qualification. It outlines the selection of appropriate tool qualification levels (TQLs) for formal methods tools and walks through the relevant objectives. It focuses only on objectives for Criteria 2 or 3 tools, which the most anticipated usage of a formal methods tool in a DO-178C software development process. Using the information provided in this document one can easily identify the relevant sections of DO-330 for a formal methods qualification.

References

[1] 	RTCA, "DO-330 Software Tool Qualification Considerations," 15 June 2015. [Online]. Available: http://www.rtca.org/store_product.asp?prodid=792.
[2] 	RTCA, "DO-178C Software Considerations in Airborne Systems and Equipment Certification," 15 June 2015. [Online]. Available: http://www.rtca.org/store_product.asp?prodid=803.
[3] 	T. Kahsai and C. Tinelli, "PKind: A parallel k-induction based model checker," in Parallel and Distributed Methods in Verification, 2011.
[4] 	GitHub, "JKind Model Checker Github Homepage," [Online]. Available: https://github.com/agacek/jkind. [Accessed 7 January 2016].
[5] 	Frama-C, "Frama-C product website," [Online]. Available: http://www.frama-c.com. [Accessed 23 January 2015].
[6] 	S. Owre, J. Rushby and N. Shankar, "A Prototype Verification System," in 11th International Conference On Automated Deduction (CADE), Saratoga, 1992.
[7] 	M. Kaufmann and J. S. Moore, "ACL2 Homepage," University of Texas at AUstin, 14 January 2016. [Online]. Available: http://www.cs.utexas.edu/users/moore/acl2/. [Accessed 15 February 2016].
[8] 	Fondazione Bruno-Kessler, "NuSMV Product Home Page," [Online]. Available: http://nusmv.fbk.eu/. [Accessed 5 January 2016].
[9] 	RTCA, "DO-333 Formal Methods Supplement to DO-178C and DO-278A," 15 June 2015. [Online]. Available: http://www.rtca.org/store_product.asp?prodid=859.
[10] 	iMatix, "ZeroMQ Product Page," iMatix, [Online]. Available: http://zeromq.org/. [Accessed 15 February 2016].

© Copyright 2016 Rockwell Collins, Inc. All rights reserved as provided by NASA Contract NNL14AA06C. 16
image1.jpeg

image2.jpg

