
Proof Production in the SMT-based Model Checker Kind 2
[bookmark: _GoBack]
Prepared for NASA
System-Wide Safety Assurance Technologies (SSAT)
Subtopic AFCS-1.3 Software Intensive Systems: Qualification of Formal Methods Tools
Contract NNL14AA06C

	Technical Point of Contact:
Lucas Wagner
Rockwell Collins
400 Collins Rd NE, MS 108-206
Cedar Rapids, IA 52498	
Telephone: (319) 295-5672
lucas.Wagner@RockwellCollins.com
	Business Point of Contact:
Julie Issa
Rockwell Collins
400 Collins Rd. NE, MS 121-200
Cedar Rapids, IA 52498
Telephone: (319) 295-0511
julie.Issa@RockwellCollins.com

[image: RClogo_col_rgb]

Rockwell Collins
400 Collins Rd. NE
Cedar Rapids, Iowa 52498

[bookmark: h.30j0zll][image:]
[bookmark: proof-production-in-the-smt-based-model-][bookmark: sec:intro][bookmark: _Ref464432416]

Table of Contents
2	Introduction	3
3	Technical Preliminaries	6
3.1	-inductive Safety Certificates	7
3.1.1	Extracting and Verifying Certificates	7
3.1.2	Simplifying Certificates	8
4	Front End Certification	11
4.1	Comparing independent translations	11
4.1.1	Observational equivalence	12
5	From Certificates to LFSC Proofs	14
5.1	LFSC Proofs	14
5.2	Extending CVC4’s Proof System	14
6	Experimental Evaluation	17
6.1	Certificate Simplification	17
6.2	Checking Full Certificates	18
7	Related Work	20
7.1	Formally Verified Checkers and Verifiers	20
7.2	Certifying Model Checkers	20
7.3	Proof-producing Solvers	21
8	Conclusion and Future Work	22
9	References	23
10	Kind 2’s Proofs and Certificates in Practice	26
10.1	Input	26
10.2	Generating Proofs and Certificates with Kind 2	27
10.2.1	Intermediate SMT-LIB 2 Certificates	28
10.2.2	LFSC Proofs	30

[bookmark: _Toc464558957]Introduction
Model checkers are perhaps among the most successful formal methods tools in terms of industrial use, particularly for the development of safety-critical systems. In addition to traditional applications in hardware design, they are increasingly used in model-based software development to analyze, for instance, models of embedded systems in the aerospace or automotive industry. Remarkable industrial verification efforts have been carried out successfully at NASA [1], Rockwell Collins [2], SRI [3], Airbus [4], etc. The success of model checking is largely due to the fact that model checking is largely an automatic process that requires little intervention from human experts. This makes it particularly adequate in settings where formal assurance is desirable but the resources allocated to the task are limited. Because of its “push-button” aspect, model checking can be more easily deployed in a traditional software (or hardware) development process than other formal methods tools by engineers that are not experts in formal verification. One clear strength of model checkers, as opposed to proof assistants, say, is their ability to return precise error traces witnessing the violation of a given safety property. In addition to being invaluable to help identify and correct bugs, error traces also represent a checkable unsafety certificate. In contrast, most model checkers are currently unable to return any form of corroborating evidence when they declare a safety property to be satisfied by a system under analysis. This is unsatisfactory in general since model checker are complex tools, based on a variety of sophisticated algorithms and search heuristics, and so are not immune to errors.

To mitigate this problem, a possible approach is to use a model checker whose correctness has been formally verified [5]. An alternative is to instrument the model checker so that it is certifying, i.e. it accompanies its safety claims with a proof certificate, an artifact embodying a proof of the claim [6]. The certificate can then be validated by a trusted certificate checker. While the former approach may seem better at first, based on the fact that the model checker is verified once and for all, it has a number of disadvantages. To start, the effort is normally enormous since there are no general frameworks for verifying modern model checkers. Moreover, any modifications to the originally verified tool requires proofs to be redone. In more extreme cases (e.g., an in-depth modification) one may have to invest the same amount of effort as for the original correctness proof. The main advantage of the second approach is that it requires a much smaller human effort. A disadvantage of course is that every safety claim made by the model checker incurs the cost of generating and then checking the corresponding certificate. This is feasible in general only if such certificates are small and/or simple enough to be checkable by a target certificate checker in a reasonable amount of time (say, with at most an order of magnitude slowdown).

By reducing the trusted core to the certificate checker, certifying model checking facilitates the integration of formal method tools into safety critical processes such as those endorsed by the DO-178C guidelines for avionics software. In the spirit of the de Bruijn criterion [7], traditionally applied to theorem provers, it redirects tool qualification requirements from a complex tool, the model checker, to a much simpler one, the proof certificate checker. In this report, we present an approach for generating and verifying proof certificates for SMT-based model checkers. These tools use a variety of model checking techniques; some of them even employ a portfolio approach by running several engines in parallel. Input models are typically represented internally as transition systems encoded in some fragment of first-order logic. Safety properties are expressed as invariant properties and reasoning about invariance is reduced to checking the satisfiability of formulas in certain logical theories such as integer or real linear arithmetic. The latter problem is then delegated to off-the-shelf solvers for Satisfiability Modulo Theories (SMT) [8].

We describe how to generate intermediate certificates that show that a given safety property is satisfied by the internal transition system. These certificates are designed to be checkable by an SMT solver. Since SMT solvers themselves are complex artifacts, we also show how to reduce the validity of these certificates to proof objects obtained by a proof-producing SMT solver. This reduction capitalizes specifically on the recent proof production capabilities of the SMT solver CVC4 [9] and the availability of an efficient proof certificate checker for its proofs, which are generated in LFSC format [10]. Most model checkers don’t allow users to specify system models directly in this relatively low-level logical representation. Instead, they support some pre-existing modeling language (such as Simulink, Lustre, Promela, SMV, or even just C). To account for possible problems in the translation from the input modeling language to the internal logical representation, we include a second phase which produces an additional proof certificate providing some level of confidence in the correctness of the translation.

While the techniques we have developed are general enough to be applicable to arbitrary SMT-based model checkers, we have implemented them in a specific one: Kind 2 [11], an SMT-based, multi-engine, symbolic model checker[footnoteRef:1] that can prove or disprove safety properties of synchronous reactive systems expressed in the Lustre language [12]. As a consequence, we will describe our work in terms of Lustre and Kind 2, but with the assumption that a knowledgeable reader will be able to see how it generalizes to other SMT-based model checkers. In more detail, this work contains the following specific contributions: [1: Publicly available at http://kind.cs.uiowa.edu.]

1. A technique for generating proof certificates for safety properties of transition systems. We show how to extract and simplify -inductive invariants that are sufficient to summarize proofs generated by the different kinds of SMT-based model checking methods (in Section 3.1) and how proofs can be reconstructed (in Section 0).
1. An approach to increase trust in the translation from the external modeling language to an internal representation language, described in Section 0. A front-end translation certificate is generated in the form of observational equivalence between two internal representations generated by independently developed front ends. Their equivalence is recast as an invariant property; checking that yields itself a second proof certificate from which a global notion of safety can be derived and incorporated in the LFSC proof. We improve on similar previous approaches [13], [14] by adopting a weaker, property-based notion of observational equivalence, which is enough for our purposes.
1. An implementation of these techniques in Kind 2. The first certificate summarizes the work of its different engines which use bounded model checking (BMC), -induction, IC3, as well as additional invariant generation strategies. The certification of the translation is applied to the Lustre language. The intermediate certificates are SMT-LIB 2 scripts, which are checked by CVC4. CVC4’s own proof objects are then used to construct an LFSC proof term providing an overall proof of safety.
[image: process.pdf]
[bookmark: _Ref464429945][bookmark: _Ref464429904]Figure 1. Process for proof certificates generation and verification in Kind 2.
[image:]
[bookmark: _Ref464431936]Figure 2. Lustre model of running example, with safety property.
The full certification process for Kind 2 is depicted in Figure 1. To recap, Kind 2 generates two sorts of safety certificates, in the form of SMT-LIB 2 scripts: one certifying the faithfulness of the translation from the Lustre input model to the internal encoding, and one certifying the invariance of the input properties for the internal encoding of the input system. SMT-LIB 2 is a standard input language for SMT solvers that has commands for declaring symbols, asserting formulas, checking their satisfiability, asking for models of satisfiable formulas, and more [15]. The SMT-LIB 2 certificates produced by Kind 2 are checked by CVC4, then turned into LFSC proof objects by collecting CVC4’s own proofs and assembling them to form an overall proof that can be efficiently verified by the LFSC proof certificate checker. Our initial experimental evaluation indicates that, at the price of minimal instrumentation in the model checker, this approach allows one to efficiently generate and check proofs for non-trivial transition systems and invariance queries.

To illustrate our different techniques, we will rely on the toy model in Figure 2. In Lustre, reactive systems are modeled as the composition of smaller components expressed as nodes. The node add_two in the figure encodes a component that initially outputs 1.0, in variable c, and at each execution step afterwards outputs the maximum between the previous value of c and the sum of the current values of input variables a and b. The model is annotated with an invariance property stating that the output c is positive whenever both inputs are.
[bookmark: sec:prelim][bookmark: _Toc464558958]Technical Preliminaries
Our work is built on logic-based model checking techniques that phrase reachability problems as entailment problems in a suitable logic (with equality) for which efficient solvers exist. Relevant examples of such logics are any of the typed logics used in SMT, such as linear integer arithmetic, linear real arithmetic, the theory of bit vectors, and so on, and their combinations.

For generality, we consider any logic like the above that extends propositional logic (and has classical semantics). We rely on ’s notion of variable, term, formula, free variable, model, satisfiability of a formula in a model , which we write as , and entailment between a formula and a formula , which we write as).

If is a formula of and a tuple of distinct variables, we write to express that the free variables of are in . If are any terms, we write to denote the formula obtained from by simultaneously replacing each occurrence of in by , for . We denote finite tuples of elements by letters in bold font, as in , and use comma (,) for tuple concatenation.

Definition 1. (State and State Space). Given a positive number , a -state or, more simply, a state is an -tuples of distinguished ground terms in .[footnoteRef:2] A state space is a set of states. [2: Depending on , these terms may be for instance Boolean constants, integer constants, and so on.]

We will identify states that are equivalent in , that is, states and such that . We will say that a state satisfies a formula , where is an -tuple of distinct variables, if , that is, if is satisfied by every model of that interprets as . This terminology extends to formulas over several -tuples of free variables as expected.

Definition 2. (Transition system). A transition system is a tuple where is a state space; and are both -tuples of distinct (typed) variables of the same type as the states of ; , the the system’s initial state condition, is a formula of over ; and , the system’s transition relation, is a formula of over .

State properties for a system are properties of denoted by formulas in with free variables from . We say that a state satisfies a state property if .

Definition 3. (Initial state and reachable state). Let be a transition system. A state is an initial state (of) iff . State is reachable (in) iff it is initial or

for some and variable tuples .
Definition 4. (Safety property). Let be a state property for . holds in, or is an invariant of, if every state reachable in satisfies . Property is -inductive for some and variable tuples ,
1. for and
1. .
A -inductive strengthening of is a -inductive formula such that .

One can show that -inductive state properties are invariant. It follows that every state property having a -inductive strengthening is invariant.
[bookmark: sec:kindcert][bookmark: _Ref464432118][bookmark: _Toc464558959]-inductive Safety Certificates
In this section, we focus on transition systems and present a certificate generation approach general enough to capture the information produced by different SMT-based model checking engines while proving invariance properties of a system . We show that -inductive strengthenings of original properties are an adequate summary of the reasoning resulting from the combination of these engines. We also show how to combine and simplify them with the aim of generating the most easily verifiable objects.
[bookmark: extracting-and-verifying-certificates][bookmark: _Toc464558960]Extracting and Verifying Certificates
Kind 2 converts internally input models and properties, expressed in Lustre, to a transition system that captures the same input/output behavior. The translation is relatively straightforward for single-node models, and is based on having state variables corresponding to the node’s input and output variables as well as any terms of the form pret.[footnoteRef:3] For multi-node models, the transition systems for the individual nodes are combined according to Lustre’s synchronous parallel composition semantics. All multi-node models have a top node that represents the whole system. System-level properties are expressed as properties of the top node. Component-level properties are expressed as properties of other nodes. [3: For each non-initial execution step, pret denotes the value of t in the previous step.]

[bookmark: certificate-extraction]Certificate Extraction
In Kind 2, an input property can be proved invariant by one of two main model checking methods: -induction [16] and IC3 [17], each implemented in an independent engine. The job of either engine is facilitated by a number of auxiliary invariant generation engines, which discover and pass along auxiliary invariants that might be helpful in proving the main property. Often these are local invariants, for instance specific to a sub-component of the input system. All of these engines, which run concurrently, generate safety certificates of the form where is a positive number and is a -inductive strengthening of some state property of one of the components. The content of the certificate depends on the engine:
· The -induction engine tries to prove that the input property is invariant by proving that it is -inductive for some . When this succeeds, is its own -inductive strengthening, and a possible certificate is the pair .
· The IC3 engine also tries to prove that an input property is invariant. It succeeds when it is able to construct a conjunction of formulas such that is -inductive. In this case, a possible certificate is .
· Kind 2 has a number of engines that produce auxiliary invariants used to strengthen the transition relation, to help the main engines prove the input properties. They are based on variations of the previous techniques. Every auxiliary invariant used in the proof of an input property is provided with its own certificate, also of the form .
[bookmark: current-limitations.]Current limitations.
In practice, it is not always possible to directly extract -inductive strengthenings of input properties in Kind 2. This is the case, for instance, when Kind 2 uses an optimization called path compression which treats states modulo certain equivalence relations. With path compression on, some properties can be proven by exhaustiveness arguments, instead of inductive reasoning. Once proven, those properties do not have an easily identifiable -inductive strengthening. A workaround in the implementation is to, for instance, disable path compression for proof production runs. Kind 2 also supports some operations on clocks, a Lustre construct that allows components to run at different frequencies. In situations when a component calls a component that has a slower clock, any auxiliary invariants generated for cannot be used unchanged in , simply because the property expressed by the invariant might not hold at ’s frequency. As a consequence, the certificate generated for the invariant may be incorrect in , and so they are usually discarded currently. In the experimental evaluation we discussed later, discarding these auxiliary invariants did not affect, however, Kind 2’s ability to produce a safety certificate, and a proof, for the top-level nodes.
[bookmark: certificate-combination]Certificate Combination
Kind 2 accepts as input multiple properties for a given model, and attempts to verify them individually. This means that it normally produces individual certificates for a collection of user-specified and internally generated properties. These safety certificates are combined together thanks to the following easily provable result.

Proposition 1. If is a -inductive strengthening of property for , then with is a -inductive strengthening of .
[bookmark: verifying-certificates][bookmark: _Ref464431588]Verifying Certificates
Checking a (combined) certificate for a (conjunctive) property reduces to verifying that is indeed a -inductive strengthening of . This can be done using any tool that can prove the following entailments:
[image:]
Using an SMT solver to prove (basek), (stepk), and (implication), effectively moves the burden of trust from the model checker to the solver. As we describe in Section 0, the SMT solver can in turn be removed from the trusted core if it can provide an LFSC proof for each of the three entailments.
[bookmark: sec:min][bookmark: _Ref464432463][bookmark: _Toc464558961]Simplifying Certificates
Good certificates need to be simple and easily checkable by an independent tool or method. In particular, there is an expectation that checking a certificate should not take more time than proving the original property. A common approach in the certificate production literature is to simplify and/or reduce the certificate a posteriori [18]–[20]. This extra effort at construction time can pay large dividends at checking time. In our case, a safety certificate can be simplified by reducing the value of or the size/complexity of , or both. Currently, Kind 2 tries to reduce before simplifying . Empirical evaluation, discussed in Section 0, suggests that this sort of post-processing is always worth the overhead.
[bookmark: reducing-k]Reducing
Referring back to the entailments (basek) and (stepk) from the previous section, because of the checks in (basek), checking a certificate requires a number of sub-checks proportional to .
[image:]
Each sub-check in turn takes time proportional to , making the whole process quadratic in . Due to the concurrent nature of Kind 2, proofs obtained by its -induction engines are not guaranteed to have a minimal . Consequently, lowering can often be the most effective way of simplifying a certificate. To do that, after it constructs an initial combined certificate , Kind 2 will replay the inductive step for for values smaller than , following one of four different strategies, chosen heuristically:

1. forward enumeration: progressively try all values of from 1 to k and stop at the first where -inductiveness holds;
1. backward enumeration: try values of from k down to 1, stopping as soon as -inductiveness is lost;
1. binary search: partition into subintervals and of similar size and recursively consider the first or the second interval depending on whether is -inductive or not;
1. frontier: start by looking at the frontier and if the bound has not been identified revert to the previously described binary search.
[bookmark: simplifying-phi]Simplifying
Because of how combined certificates are generated, the invariant , which is a conjunction of formulas, can contain unnecessary information (redundancy, useless auxiliary invariants, etc.). We tighten with a process based on two fixpoint computations applied in sequence and described in Algorithm 1. There, we use the notation , and as an abbreviation, respectively, of , and . Also, we treat finite sets of formulas as the conjunction of their elements. For entailment checks, we assume the availability of a function that returns an unsatisfiable core of the premises and the negated conclusion of the entailment when the entailment holds, and a function that returns a counterexample when the entailment does not hold. An unsatisfiable core of an unsatisfiable set of formulas is a (preferably minimal) subset of that is itself unsatisfiable. A counterexample to a validity argument of the form is a model of that satisfies but falsifies . Most SMT solvers, including CVC4, are able to provide unsat cores and counterexamples.

Our certificate simplification method is described by Algorithm 1. It uses two functions, trim and cherry_pick, both of which take a set of properties and a set of auxiliary invariants for . Function aims at identifying and removing from invariants that are not needed to prove -inductive. It relies on unsat cores to progressively reduce the set as long as remains -inductive. Function recursively checks that is -inductive and, if it is not, adds to it any of the auxiliary invariants from that eliminate the -induction counter-example found by the SMT solver. In practice, we use several versions of including one that identifies all invariants that could potentially block the counter-example to -induction (c.f. flag --certif_mininvs in Appendix 10). This speeds up the convergence of the approach at the price of a small loss of precision.

One can prove that each function, and so the whole process, is terminating—the main point being that the input set is finite and gets strictly smaller with each recursive call. The process is also sound in the sense that its returned formula is a -inductive strengthening of whenever the input is. However, it is not guaranteed to yield the smallest -inductive strengthening of contained in the input. This is intentional, for practical efficiency.
[bookmark: practical-considerations]Practical Considerations
In principle, applying is computationally expensive because of the cost of its entailment checks. In practice, it terminates after a very small number of iterations—generally less than three on our benchmarks. Moreover, it is very effective at removing large unnecessary parts of the certificate. Considering that certificates with hundreds of conjuncts are common, the cost of running on the original certificate can become prohibitive. In our experiments, it is always beneficial to apply the coarse reduction performed by before calling.

We observe that the effect of is similar to one of the reduction steps proposed by Irvii et al. [21] for invariants produced by SAT-based IC3-like model checkers. While potentially increasing precision, many of their other steps require a number of satisfiability checks linear in the size of , which is already prohibitive for the SMT case. Some of their minimization phases also do not translate to an efficient implementation for the -inductive case (as opposed to simple induction).

It could be useful to try to reduce and simplify at the same time in the hope of getting closer to a minimal than we do currently with our algorithm. This, however, would be more expensive, so further empirical evidences would be needed to assess the practical effectiveness of more sophisticated approaches in practice.
[bookmark: sec:frontend][bookmark: _Ref464432171]

[bookmark: _Toc464558962]Front End Certification
The certificates discussed in the previous section are produced for Kind 2’s internal FOL representation of the input system and properties. Although the translation to this internal representation from the Lustre input is fairly direct, Kind 2’s front end also applies a number of optimizations and simplifications to the input, such as slicing, constant propagation, and so on. This raises the question of whether the front end can be trusted to be correct. We rule out the option of formally proving its correctness for the reason we gave in Section 0. In alternative, we have the translation phase generate certificates of its own.
[bookmark: comparing-independent-translations][bookmark: _Toc464558963]Comparing independent translations
Our goal is to keep the whole certification process lightweight and entirely automatic. As a consequence, instead of proving a semantic preservation between the input Lustre model and its internal representation as a transition system, we prove the observational equivalence of two internal representations obtained independently from the same input. This technique for certifying translations has already been employed in the SAT-based toolchain of Prover Technologies [14] and in the Systerel Smart Solver [13]. In our case, instead of developing another front end for Kind 2 we can rely on a third-party tool: JKind, a Lustre model checker inspired by Kind but developed independently at Rockwell Collins [22]. JKind too converts input models to an FOL representation. It is a good candidate because it is sufficiently different from Kind 2: it has a completely different code base (it is written in Java whereas Kind 2 is written in OCaml) and was developed independently by a different team.

While our approach does not actually guarantee the correctness of the Kind 2 translation, it provides some formal evidence of its trustworthiness.

Our certificate encodes the claim that the transition relations constructed by the two independent front ends are behaviorally equivalent over a set of relevant state variables. In essence, the certificate consists of a transition system that observes the internal states of the two systems generated by each front end. This observer system feeds its two subsystems the same inputs and verifies that their externally visible behavior is the same (see Figure 3).

[image:]
[bookmark: _Ref464429998]Figure 3. Generation and verification of front end certificates.
For , let be the internal transition system, and the property, respectively generated by JKind and Kind 2, with and sharing no components. We construct an observer system and a safety property expressing a suitable notion of observational equivalence () between the two systems. Then we check the correctness of this observer in the same way as we would check the correctness of with respect to the original safety property. This process is illustrated as part of Figure 1, the observer described below and the module Kind 2 Core is the core part of Kind 2, which works directly with the internal FOL representation of a transition system.
[bookmark: observational-equivalence][bookmark: _Toc464558964]Observational equivalence
A standard definition of observational equivalence would require the two systems and to produce the same outputs when given the same inputs at each step. This is, however, is unnecessarily stringent for our purposes and, depending on how different the two translations are, it might not even be the case. A better notion of equivalence is property-based: we consider and equivalent if, for the same input, they agree at each step on the truth value they assign to their respective version of the original input property in the Lustre model. For , let be the subtuple of that corresponds to the input variables of the Lustre model. Then and are defined as follows:

where for two tuples and , the expression denotes the formula . The set of state variables of the observer system is the (disjoint) union of the variables of and . The system itself is effectively the parallel composition of and after their corresponding input variables have been pairwise identified.
[bookmark: front-end-certificates.]Front end certificates.
To recap, the equivalence observer and the associated property constitute an intermediate certificate of Kind 2’s translation from the input Lustre model and properties to Kind 2’s internal representation. Checking it consists in proving that the property is invariant for . Since and are generated in a format that corresponds directly to Kind 2’s internal representation of transition systems and properties, this invariance proof can be done by Kind 2 itself without relying on its front end. Moreover, the proof is provided with its own safety certificate, which we call a front end certificate, of the sort discussed in Section 3.1. One possible problem with this approach is the small likelihood that the property is -inductive for , and for a small , so as to be easily provable by Kind 2. We mitigate this by identifying pairs of corresponding state variables from and and suggesting their equality as a candidate auxiliary invariant for Kind 2 to try. Some of these equalities may indeed be proven invariant and so they can potentially help in the proof of . Note that while this harks back to the stronger notion of observational equivalence we mentioned earlier, it is not the same since the equivalence between certain non-input variables is only suggested, not required.

Example 1. Consider again the Lustre model and property of Figure 2. The systems and respectively generated by JKind 2.1[footnoteRef:4] and Kind 2 from that model are the following, in abstract syntax and modulo variable renaming, with and denoting respectively the universally true and the universally false formula, and denoting the if-then-else operator: [4: We produce by having JKind 2.1 write a dump file from which we can extract its internal representation.]

[image:]
The equivalence observer is defined by

Suggested auxiliary invariants, in this case, will be the equalities , , , and between corresponding state variables in the two systems.
[bookmark: sec:proofs][bookmark: _Ref464432155]

[bookmark: _Toc464558965]From Certificates to LFSC Proofs
The last step of our approach, once the various safety certificates have been produced and checked, is to gather the proofs of the various entailment checks performed by the SMT solver and assemble them into a self-contained overall proof of safety for the original system.
[bookmark: lfsc-proofs][bookmark: _Toc464558966]LFSC Proofs
The entailment proofs are obtained specifically from CVC4 as proof terms in LFSC, an extension of the Edinburgh Logical Framework (LF) [23] with side conditions [19]. In LFSC, which is, in essence, a dependently typed -calculus, proof systems are encoded as type systems. Proof checking then reduces to type checking, performed by a highly optimized checker developed by Stump et al. [10]. This particular LFSC checker takes as input a type system and a term in that system, and checks whether is well typed in . The efficiency of this framework for proof checking lies in the use of side-conditions, defined as small functional programs, which can be pre-compiled by the checker. Using proof rules with side conditions generally leads to both smaller proof sizes and faster proof checking times.
A proof system is formally defined in LFSC through signatures, which contain a definition of the system’s language together with axioms and proof rules. The proof system used by CVC4 is defined over a number of signatures, which are included in its source code distribution. Those relevant to this work include signatures for propositional logic and resolution (sat.plf); first-order terms and formulas, with rules for CNF conversion and abstraction to propositional logic (smt.plf); equality over uninterpreted functions (th_base.plf); and real and integer linear arithmetic (th_int.plf and th_real.plf).
[bookmark: extending-cvc4s-proof-system][bookmark: _Toc464558967]Extending CVC4’s Proof System
We have extended CVC4’s proof system with an additional signature (kind.plf) for -inductive reasoning, invariance and safety.[footnoteRef:5] This signature also specifies the encoding for state variables, initial states, transition relations, and property predicates. State variables are encoded as functions from natural numbers to values. This way, the unrolling of the transition relation done in (basek) and (stepk) does not need the creation of several copies of the state variable tuple . For example, for the state vector with of type real and of type integer, the LFSC encoding will make and functions from naturals to reals and integers, respectively. So we will use the tuples instead of where are (distinct) variables. Correspondingly, our LFSC encoding of a transition relation formula is parametrized by two natural variables, the index of the pre-state and that of the post-state, instead of two tuples of state variables. Similarly, , and are parametrized by a single natural variable. [5: The LFSC checker with all the necessary signatures are distributed with Kind 2 and publicly available.]

The signature defines several derivability judgments, including one for proofs of invariance, which has the following type:

where denotes the product binder of dependently-typed lambda calculus. Intuitively, the judgement takes as input an initial state formula , a transition relation and a state property . A proof of this judgement is a proof that is invariant for the transition system represented by and .

The signature also contains rules to build proofs of invariance by -induction, as illustrated in Figure 4 in abstract syntax. There, proof rule INVIMPL states that weakenings of invariants are invariants. Rule K-IND encodes the -induction principle as presented in Section 3.1. It has two side-conditions that compute formulas for the sub-goals of -induction. The definitions of the LFSC side-condition functions and are provided in abstract syntax in Figure 5. They use some a couple of auxiliary functions to compute unrollings of the transition relation.
[image:]
[bookmark: _Ref464431973]Figure 4. A sample of LFSC rules for 𝑘-induction proofs.
[image:]
[bookmark: _Ref464431990]Figure 5. Side conditions for k-induction proof rules.
This signature also specifies how to encapsulate proofs for the front-end certificates by providing a additional judgment, , which can be derived only when the judgemens and are both derivable, where the second one states the observational equivalence between and . Self contained proofs of safety follow the sketch depicted in Figure 6, where SMT stands for an unsatisfiability rule whose proof tree is obtained, with minor changes, from a proof produced by CVC4.
[image:]
[bookmark: _Ref464432003]Figure 6. Sketch of derivation tree for LFSC proofs of safety produced by Kind 2.
In practice, running Kind 2 in proof production mode on a Lustre model generates an LFSC proof (in a text file) that can be then fed together with the various signature files (and) to the LFSC proof certificate checker.
[bookmark: sec:benchs][bookmark: _Ref464432380]

[bookmark: _Toc464558968]Experimental Evaluation
We evaluated our certificate generation and checking techniques on a set of academic benchmarks and a smaller set of industrial-grade benchmarks.[footnoteRef:6] They come from different sources (academic and industrial users, published case studies, etc.) and are of various nature (memory coherence protocols, reactive controllers from railway and aerospace industry, counter systems, simulation of systems, …). We selected only benchmark problems consisting of a Lustre model with properties that Kind 2 could prove with a 5 minutes timeout. [6: The benchmarks are available at https://github.com/kind2-mc/kind2-benchmarks/tree/fmcad16.]

We first focus on the effect of minimization on intermediate certificate checking by the SMT solver CVC4 and then evaluate our complete certification chain, including front end certification and LFSC proof checking.

We ran our tests on a Linux machine with two 12-core 64-bits AMD Opteron processors and 32GB of memory. We used a certifying version of Kind 2 based on Kind 2 v0.8. The CVC4 binary was from version 1.5-prerelease (git proofs 7ba546df). Tools were given a timeout of 5 minutes.
[bookmark: certificate-simplification][bookmark: _Toc464558969]Certificate Simplification

[image: benchs/fmcad08-comp.pdf]
[bookmark: _Ref464431305]Figure 7. Overhead and improvements of minimization.
The plot in Figure 7 focuses on the effects of the certificate simplification techniques presented in Section 3.1.2. It shows how many problems a particular configuration can cumulatively process within a certain amount of time. We compare various measures: measures the time needed by Kind 2 to solve the model checking problem and generate an initial safety certificate, i.e., before certificate simplification;[footnoteRef:7] measure the time to reduce the safety certificate using the easy simplification technique (i.e., only in Algorithm 1); is the time to do the full simplification (i.e. both trim and cherry_pick); finally, measures the time necessary for CVC4 to check the safety certificate—we exclude front end certificates in this analysis. [7: We do not show the time to just solve the problem because its difference with is negligible.]

We can see from the plot that without any simplification (S+cvc4) we check a lot less certificates and take much more time than with simplification. We can also see that, even if the full simplification process is more expensive (S+m vs. S+mE), it yields a larger number of checked certificates within the time limit (S+m+cvc4 vs. S+mE+cvc4). The superiority of full simplification is confirmed by an analysis of the full results. It reduces the size of the invariants on average by 74% (removing on average 19 invariants per certificate) for 42% of the benchmarks. For one benchmark, it removes 236 invariants out of 243. The value of is reduced in 11% of the benchmarks, by 10 on average, the maximum being a reduction from 36 down to 2. The bump at 428 is due to the simplification overhead for a single benchmark, which is larger than the solving time. However, even with this outlier, the cumulative benefit of full simplification on certificates is clear.
[bookmark: checking-full-certificates][bookmark: _Toc464558970]Checking Full Certificates

[image: benchs/lfsc_only_checked.pdf]
[bookmark: _Ref464431435]Figure 8. Evaluation of proof certification chain.
The plot in Figure 8 refers to the complete proof certification chain. The measurements show the time necessary up to produce the proofs (S+m+cvc4) (which involve an intermediate checking phase, cvc4, with CVC4) and to check them with the LFSC proof certificate checker (p). The second and third curves are for the invariance property, while the last two also include the overhead for the front end proof (l+F). The latter includes the time to: prove the input property; fully minimize its safety certificate and generate the corresponding proof; construct the equivalence observer, including the time to call JKind and extract its transition system; model check the observer with Kind 2; minimize and produce the proof for the front end certificate; and finally check the combined resulting proof with LFSC.

We are able to generate and check the proof of invariance for around 80% of benchmarks that Kind 2 succeeds in verifying; we produce and check a complete proof including the front end for 60% of them. Most of the cases where we fail to generate the proof are due to CVC4’s current limitations in its proof producing capabilities. In terms of runtime, the biggest bottlenecks are the model checking of the equivalence observer and the simplification of certificates. A large percentage of this time, especially on simpler problems, is taken by the call to JKind, which incurs a constant overhead (of about 1s per problem) to start the JVM. Despite that, the time cost of the full certification chain is overall within one order of magnitude of the cost of just proving the input property. We find the overall level of performance, which we think we could improve further, already rather good, especially considering that a lot of the benchmarks we used are non-trivial.
[bookmark: related-work]

[bookmark: _Toc464558971]Related Work
[bookmark: formally-verified-checkers-and-verifiers][bookmark: _Toc464558972]Formally Verified Checkers and Verifiers
A natural approach to the certification of verification tools consists in proving the program (here the model checker) correct once and for all. This is possible to a large extent for programs written in programming languages with (largely automated) verification toolsets such as ESC Java 2, Frama-C, VCC, F* etc. Proving full functional correctness of a model checker, however, is currently a very challenging job because tools like these are often rather complex and tend to evolve quickly with the ongoing advances in the field. When feasible, one great advantage of this approach is of course that the performances of the model checker is minimally impacted by the verification process. One example of this kind of certification effort is the modern SAT solver versat which was developed and verified using the programming language GURU [24]. We are, however, not aware of similar results for model checkers.

Another possibility is to prove the underlying algorithms of a model checker correct in a descriptive language of interactive proof assistants such as Coq or Isabelle, and obtain an executable program from these tools through a refinement process or code extraction mechanism. In the recent years, certified software of this category has gained interest. Worth mentioning is the C compiler CompCert [25] or the operating system micro-kernel seL4 [26]. CompCert is written entirely in Coq and uses external oracles in some of the compilation passes. These oracles provide solutions (e.g., a coloring of a graph) that can be verified by a certified checker.

Although the first formal verification of a model checker in Coq for the modal -calculus [27] goes back to 1998, only recently have certified verification tools started to emerge. Blazy et al. have verified a static analyzer for C programs [28] to be used inside CompCert. Although this static analyzer is not on par with the performances of commercial tools, it is sufficient to enable safely some of the optimizations of a compiler.

The most relevant work recent work on verified model checking is probably that by Amjad [29] and by Esparza et al. [5]. Amjad shows how to embed BDD-based symbolic model checking algorithms in the HOL theorem prover so that results are returned as theorems. This approach relies on the correctness of the backend BDD implementation. Esparza et al. fully verify an automata-based model checker for finite state systems with the Isabelle theorem prover. Using successive refinements, they built a correct by construction model checker from high-level specifications down to functional (SML) code. Clearly, the advantage here is that the model checker is proven correct once and for all. Usually, a trade-off exists between an efficient program from a precise algorithm working on complex data structures and a less concrete program from an algorithm where some data structures and operations are abstracted.

A recent approach for the certification of SAT and SMT solvers [20] consists in having the solver produce a detailed certificate in which each rule is read and verified by a combination of several small certified checkers, written and proved correct in Coq. This approach also allows one to import inside Coq proof terms from these solvers [30], [31].
[bookmark: certifying-model-checkers][bookmark: _Toc464558973]Certifying Model Checkers
A number of techniques have been proposed to produce certifying model checkers. Earlier solutions (e.g., [6], [32], [33]) were limited to finite-state systems. The first certifying model checker for infinite-state systems was perhaps the C model checker BLAST [34], which produced certificates for a control flow automaton internally generated from an input C program. BLAST provided proof certificates in the Edinburgh Logical Framework (LF) [23], which limits the scalability of certificate checking when proofs involve reasoning modulo the theory of C’s data types.

A more recent certifying model checker is SLAB [35], which produces certificates in the form of inductive verification diagrams to be checked by SMT solvers. We go one step further by relying on SMT solvers that are in turn proof producing. Also, we address the issue of certifying the translation from the input model to the internal representation.

For model checking of parameterized systems, the model checker Cubicle [18] generates certificates as Why3 files that can be independently checked by several SMT solvers and automated theorem provers, where trust is claimed through the redundant use of multiple solvers.

There is a long line of research on the minimization of proof certificates of all sorts. Recent work by Ivrii et al. [21] is the most closely related to ours as it concerns the minimization of inductive invariants, although in the context of SAT-based model checking. Some of the techniques used there are applicable in principle in our case as well; however, experimental evidence of their effectiveness in an SMT setting is needed, as SAT and SMT solvers typically suffer from different performance bottlenecks.
[bookmark: proof-producing-solvers][bookmark: _Toc464558974]Proof-producing Solvers
Logic-based model checkers, which utilize SAT or SMT solvers as internal reasoning engines, can eliminate these large and complex tools from their trusted core by using proof-producing solvers. A recent approach for the certification of SAT and SMT solvers [20] consists in having the solver produce a detailed certificate in which each rule is read and verified by the composition of several small certified checkers, written and proved correct in Coq. This approach also allows one to import inside Coq proof terms from these solvers [30]. The SMT solvers CVC3 and CVC4 are able to produce proof objects in LFSC, an extension of LF with computational side conditions [19]. The computational power brought by the use of side conditions allows the efficient checking of very large proofs. The work described in this report directly capitalizes and builds on these features.
[bookmark: sec:concl]

[bookmark: _Toc464558975]Conclusion and Future Work
We have presented a dual technique for generating and checking proof certificates for SMT-based model checkers and applied it to the model checker Kind 2. Given a Lustre model and one or more invariance properties for it, Kind 2 generates LFSC proofs for the properties it can verify. These proofs have two parts. The first attests that the model and the properties are encoded correctly in Kind 2’s internal representation format. It does that by proving the observational equivalence, with respect to the properties, between the internal system and another one produced from the same Lustre input by an independent, third-party tool. The second part attests that the encoded properties are invariants of the internal transition system encoding the Lustre model. Initial certificates, which we call safety certificates, are generated as (possibly combined) -inductive invariants, and simplified before being verified by the CVC4 SMT solver. The eventual proof certificates, in LFSC format, are assembled from the proofs generated by CVC4 after verifying these safety certificates.
The trusted core of our approach consists in:

1. The LFSC checker (about 5,300 lines of C++ code).
1. The LFSC signatures comprising the overall proof system in LFSC (CVC4’s sat.plf, smt.plf, th_base.plf, th_int.plf, th_real.plf and our own kind.plf, for -induction and safety), for a total of 444 lines of LFSC code.
1. The assumption that Kind 2 and JKind do not have identical defects that could escape the observational equivalence check.
A current but temporary limitation of our certificate generation process is that LFSC proofs may contain an unsound proof rule, trust_f, which derives any formula. This rule is used by the current version of CVC4 to fill in present gaps in its proof generation code. However, its use will be progressively phased out as the instrumentation of CVC4 to produce full proofs is completed.
Kind 2 has the ability to do compositional and modular analyses of Lustre models extended with assume-guarantee-style contracts. A possible line of future research is to extend the work described here to apply to such analyses by incorporating their underlying abstraction mechanisms.

[bookmark: _Toc464558976]References

[1] [bookmark: _Ref464510219]K. Havelund and T. Pressburger, “Model checking Java programs using Java PathFinder,” International Journal on Software Tools for Technology Transfer, vol. 2, no. 4, pp. 366–381, 2000.
[2] [bookmark: _Ref464510263]S. P. Miller, M. W. Whalen, and D. D. Cofer, “Software model checking takes off,” Commun. ACM, vol. 53, no. 2, pp. 58–64, Feb. 2010.
[3] [bookmark: _Ref464510276]N. Shankar, “Combining theorem proving and model checking through symbolic analysis,” in CONCUR, Springer, 2000, pp. 1–16.
[4] [bookmark: _Ref464510288]T. Bochot, P. Virelizier, H. Waeselynck, and V. Wiels, “Model checking flight control systems: The Airbus experience,” in ICSE, 2009, pp. 18–27.
[5] [bookmark: _Ref464510306]J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G. Smaus, “A fully verified executable LTL model checker,” in CAV, 2013, vol. 8044, pp. 463–478.
[6] [bookmark: _Ref464510321]K. S. Namjoshi, “Certifying model checkers,” in CAV, 2001, pp. 2–13.
[7] [bookmark: _Ref464510335]H. Barendregt and F. Wiedijk, “The challenge of computer mathematics,” Philos Trans A Math Phys Eng Sci, vol. 363, no. 1835, pp. 2351–2375, 2005.
[8] [bookmark: _Ref464510349]C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability modulo theories,” in Handbook of satisfiability, vol. 185, A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds. IOS Press, 2009, pp. 825–885.
[9] [bookmark: _Ref464510369]C. Barrett, “CVC4,” in CAV, 2011, pp. 171–177.
[10] [bookmark: _Ref464510382] A. Stump, “Proof checking technology for satisfiability modulo theories,” ENTCS, vol. 228, pp. 121–133, 2009.
[11] [bookmark: _Ref464510399]A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The Kind 2 model checker,” in CAV, 2016, pp. 510–517.
[12] [bookmark: _Ref464510411]N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow programming language Lustre,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.
[13] [bookmark: _Ref464510423]M. Petit-Doche, N. Breton, R. Courbis, Y. Fonteneau, and M. Güdemann, “Formal verification of industrial critical software,” in FMICS, Springer, 2015, pp. 1–11.
[14] [bookmark: _Ref464510435]Prover Technology, “Prover tools.”.
[15] [bookmark: _Ref464510460]C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” in Proceedings of the 8th international workshop on satisfiability modulo theories (edinburgh, uk), 2010.
[16] [bookmark: _Ref464510499]M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties using induction and a SAT-solver,” in FMCAD, 2000, pp. 108–125.
[17] [bookmark: _Ref464510520]A. R. Bradley, “SAT-based model checking without unrolling,” in VMCAI, 2011, vol. 6538, pp. 70–87.
[18] [bookmark: _Ref464510551]S. Conchon, A. Mebsout, and F. Zaïdi, “Certificates for parameterized model checking,” in FM, 2015, pp. 126–142.
[19] [bookmark: _Ref464510714]A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli, “SMT proof checking using a logical framework,” FMSD, vol. 42, no. 1, pp. 91–118, 2013.
[20] [bookmark: _Ref464510563]M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Wener, “Verifying SAT and SMT in Coq for a fully automated decision procedure,” in PSATTT, 2011.
[21] [bookmark: _Ref464510592]A. Ivrii, A. Gurfinkel, and A. Belov, “Small inductive safe invariants,” in FMCAD, 2014, pp. 115–122.
[22] [bookmark: _Ref464510644]Rockwell Collins, “JKind - a Java implementation of the KIND model checker.”.
[23] [bookmark: _Ref464510696]R. Harper, F. Honsell, and G. Plotkin, “A framework for defining logics,” Journal of the ACM (JACM), vol. 40, no. 1, pp. 143–184, 1993.
[24] [bookmark: _Ref464510789]D. Oe, A. Stump, C. Oliver, and K. Clancy, “Versat: A verified modern SAT solver,” in VMCAI, vol. 7148, Springer, 2012, pp. 363–378.
[25] [bookmark: _Ref464510806]X. Leroy, “A formally verified compiler back-end,” J. Autom. Reason., vol. 43, no. 4, pp. 363–446, Dec. 2009.
[26] [bookmark: _Ref464510818]G. Klein, “seL4: Formal verification of an OS kernel,” in ACM sigops, 2009, pp. 207–220.
[27] [bookmark: _Ref464510834]C. Sprenger, “A verified model checker for the modal -calculus in coq,” in TACAS, 1998, pp. 167–183.
[28] [bookmark: _Ref464510847]S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie, “Formal verification of a c value analysis based on abstract interpretation,” in SAS, 2013, vol. 7935, pp. 324–344.
[29] [bookmark: _Ref464510861]H. Amjad, “Programming a symbolic model checker in a fully expansive theorem prover,” in TPHOL, Springer, 2003, pp. 171–187.
[30] [bookmark: _Ref464510884]M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner, “A modular integration of SAT/SMT solvers to Coq through proof witnesses,” in CPP, Springer, 2011, pp. 135–150.
[31] [bookmark: _Ref464510894]B. Ekici, G. Katz, C. Keller, A. Mebsout, A. J. Reynolds, and C. Tinelli, “Extending SMTCoq, a certified checker for smt (extended abstract),” in Proceedings first international workshop on hammers for type theories, coimbra, portugal, 2016, vol. 210, pp. 21–29.
[32] [bookmark: _Ref464510918]D. Peled and L. Zuck, “From model checking to a temporal proof,” in SPIN, 2001, pp. 1–14.
[33] [bookmark: _Ref464510931]O. Kupferman and M. Y. Vardi, “From complementation to certification,” Theor. Comput. Sci., vol. 345, pp. 83–100, November 2005.
[34] [bookmark: _Ref464510944]T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer, “Temporal-safety proofs for systems code,” in CAV, 2002, pp. 526–538.
[35] [bookmark: _Ref464510998]K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim, “SLAB: A certifying model checker for infinite-state concurrent systems,” in TACAS, 2010, vol. 6015, pp. 271–274.
[bookmark: kind-2s-proofs-and-certificates-in-pract]

[bookmark: _Ref464432399][bookmark: _Toc464558977]Kind 2’s Proofs and Certificates in Practice
We describe in this section a more hands-on perspective on how certificates and proofs are produced in the model checker Kind 2.
[bookmark: input][bookmark: _Toc464558978]Input
Kind 2’s input language to describe reactive systems is Lustre [12]. Certificates and proofs are produced only for the fragment that is supported by Kind 2 (a large subset of Lustre V6), and in addition, front end certificates and proofs are produced only for the subset of Lustre that is both supported by Kind 2 and JKind.

In particular, this means that Kind 2 will produce full proofs when properties are represented as annotations using the keyword --%PROPERTY but will only produce proofs of invariance when the specification is written as contract annotations (this feature is not supported by JKind).

To illustrate the full chain of proof production, we take a somewhat simplistic example (from a model checking perspective) but that is enough to describe our approach in its entirety.

[image:]
[bookmark: _Ref464432060]Figure 9. Lustre code of a node that detects rising edges on its input.
This node detects rising edges on its input x, a Boolean stream. Every time x goes from false to true, the output Boolean stream y will be true, and false otherwise. A simple property is to check that when x is false, then so is y. The local variable OK is a Boolean stream that embodies this property. We want to check that OK = true is an invariant of this system.
A typical execution of this system is given as a graph in Figure 10 below. Notice that the stream OK is always true here. We want to make sure it is the case for any possible input sequence and for any number of steps.
[image:]
[bookmark: _Ref464432046]Figure 10. Example execution of rising edge detection system.
[bookmark: remark.]Remark. A textual output for simulating systems can be obtained from Kind 2 itself. Suppose we have a file ex.input containing the values for the inputs (in CSV format), then the following invocation will print the values of the other variables in the system:

> kind2 --enable interpreter --interpreter_input_file ex.input ex.lus
[bookmark: sec:proofskind2][bookmark: _Toc464558979]Generating Proofs and Certificates with Kind 2
Proof and certificate generation is controlled by two main flags in Kind 2:

--certif true
to produce intermediate SMT-LIB 2 certificates (and associated scripts);

--proof true
to produce a self contained (minus the signatures) proof in LFSC format.

Brief descriptions of other Kind 2 options specific to proof production can be obtained by calling Kind 2 with the option --help_of certif. Those are:

--certif_abstr <bool>
Use abstract type indexes in certificates and proofs . Default: false

--log_trust <bool>
Log trusted parts of the proof in a separate file for users to fill. Default: false

--certif_mink <string>
where <string> is no, fwd, bwd, dicho, frontierdicho or auto. Select strategy for minimizing k of certificates
no for no minimization
fwd for a search starting at up to
bwd for a search starting at and going down to
dicho for a binary search of the minimum
frontierdicho tries the frontier then employs the dicho strategy
auto to heuristically select the best strategy among the previous ones (default)

--certif_mininvs <string>
where <string> is easy, medium, mediumonly, hard, hardonly. Select strategy for minimizing the invariants of certificates
easy to only do unsat-core based trimming
medium does easy + coarse couter-example based minimization (default)
mediumonly does only coarse couter-example based minimization
hard does easy + cherry-pick invariants based on counter-examples
hardonly only cherry-picks invariants based on couter-examples

--jkind_bin <string>
Executable of JKind for frontend certificates. Default: jkind

--only_user_candidates <bool>
Only use user-provided candidates for invariants. Default: false
[bookmark: intermediate-smt-lib-2-certificates][bookmark: _Toc464558980]Intermediate SMT-LIB 2 Certificates

The directory structure of the output directory of Kind 2 is the following when asking for only intermediate SMT-LIB 2 certificates.

ex.out/
`-- certificates.0
 |-- FEC.kind2
 |-- FECC.smt2
 |-- FECC_checker
 |-- FECC_prelude.smt2
 |-- certificate.smt2
 |-- certificate_checker
 |-- certificate_prelude.smt2
 |-- jkind_sys.smt2
 |-- jkind_sys_lfsc_trace.smt2
 |-- kind2_sys.smt2
 |-- observer.smt2
 |-- observer_lfsc_trace.smt2
 `-- observer_sys.smt2
In particular the file certificate.smt2 contains this intermediate certificates (it also depends and some common definitions and declarations that are present in a prelude). The different satisfiability checks correspond to the ones described in Section Verifying Certificates. A script which takes as argument an SMT solver is provided and can be called as below to check this intermediate certificate (notice that at this point the SMT solver is trusted):

> ex.out/certificates.0/certificate_checker z3
Checking base case
unsat
Checking 1-inductive case
unsat
Checking property subsumption
unsat
This script call the SMT solver Z3 to check the intermediate certificate. If it produce three unsat results if and only if the intermediate certificate is correct.
[bookmark: intermediate-smt-lib-2-certificate]Intermediate SMT-LIB 2 Certificate
Here is what the intermediate certificate looks like for the node in Figure 9:

;---
; Function symbols for Logical transition system generated by Kind2
;---
(define-fun __node_init_edge_0
 ((edge.usr.x@0 Bool)
 (edge.usr.y@0 Bool)
 (edge.res.init_flag@0 Bool)
 (edge.impl.usr.OK@0 Bool)) Bool
 (and
 (= edge.usr.y@0 false)
 (= edge.impl.usr.OK@0 (=> (not edge.usr.x@0) (not edge.usr.y@0)))
 edge.res.init_flag@0))

(define-fun __node_trans_edge_0
 ((edge.usr.x@1 Bool)
 (edge.usr.y@1 Bool)
 (edge.res.init_flag@1 Bool)
 (edge.impl.usr.OK@1 Bool)
 (edge.usr.x@0 Bool)
 (edge.usr.y@0 Bool)
 (edge.res.init_flag@0 Bool)
 (edge.impl.usr.OK@0 Bool)) Bool
 (and
 (= edge.usr.y@1 (and edge.usr.x@1 (not edge.usr.x@0)))
 (= edge.impl.usr.OK@1 (=> (not edge.usr.x@1) (not edge.usr.y@1)))
 (not edge.res.init_flag@1)))

;---
; State variables :
;---
(declare-fun edge.usr.x (Int) Bool)
(declare-fun edge.usr.y (Int) Bool)
(declare-fun edge.res.init_flag (Int) Bool)
(declare-fun edge.impl.usr.OK (Int) Bool)

;---
; Initial states :
;---
(define-fun I ((i Int)) Bool
 (__node_init_edge_0 (edge.usr.x i) (edge.usr.y i) (edge.res.init_flag i) (edge.impl.usr.OK i)))

;---
; Transition_relation :
;---
(define-fun T ((i Int) (j Int)) Bool
 (__node_trans_edge_0
 (edge.usr.x j)
 (edge.usr.y j)
 (edge.res.init_flag j)
 (edge.impl.usr.OK j)
 (edge.usr.x i)
 (edge.usr.y i)
 (edge.res.init_flag i)
 (edge.impl.usr.OK i)))

;---
; Original property :
;---
(define-fun P ((i Int)) Bool (edge.impl.usr.OK i))

;---
; 1-Inductive invariant :
;---
(define-fun PHI ((i Int)) Bool (edge.impl.usr.OK i))

;===
; CERTIFICATE CHECKER :
;===

;---
; Base case :
;---
(echo "Checking base case")

(push 1)
(assert (and (I 0) (not (PHI 0))))
(check-sat)
(pop 1)

;---
; 1-Inductiveness :
;---
(echo "Checking 1-inductive case")

(push 1)
(assert (and (PHI 0) (T 0 1)))
(assert (not (PHI 1)))
(check-sat)
(pop 1)

;---
; Property subsumption :
;---
(echo "Checking property subsumption")

(push 1)
(declare-fun __C0 () Int)
(assert (not (=> (PHI __C0) (P __C0))))
(check-sat)
(pop 1)

(exit)
[bookmark: lfsc-proofs-1][bookmark: _Toc464558981]LFSC Proofs
The directory structure of the output directory of Kind 2 is the following when asking for LFSC proofs.

ex.out/
|-- certificates.0
| |-- FEC.kind2
| |-- base.smt2
| |-- frontend_base.smt2
| |-- frontend_implication.smt2
| |-- frontend_induction.smt2
| |-- frontend_proof.lfsc
| |-- implication.smt2
| |-- induction.smt2
| |-- jkind_sys.smt2
| |-- jkind_sys_lfsc_trace.smt2
| |-- kind2_phi.smt2
| |-- kind2_phi_lfsc_trace.smt2
| |-- kind2_sys.smt2
| |-- kind2_sys_lfsc_trace.smt2
| |-- obs_phi.smt2
| |-- obs_phi_lfsc_trace.smt2
| |-- observer.smt2
| |-- observer_lfsc_trace.smt2
| `-- proof.lfsc
`-- ex.lus.0.lfsc
File ex.lus.0.lfsc contains the final LFSC proof of safety for the whole system (including the frontend proof). The output directory also contains intermediate SMT-LIB 2 certificates and some files that register traceability information between SMT-LIB 2 symbols and LFSC names. The final proof can be checked using the LFSC checker and the appropriate signatures with the following command:

> lfsc-checker path/to/signatures/{sat,smt,th_base,th_int,th_real,kind}.plf ex.out/ex.lus.0.lfsc
File ex.out/ex.lus.0.lfsc, line 149, character 17: Check successful
File ex.out/ex.lus.0.lfsc, line 585, character 18: Check successful
> echo $?
0
If the return code is 0 (which it is in this example) all the LFSC proofs, terms and commands were processed and type checked correctly. This means that our final proof is correct.

The full proof file for this system, in concrete LFSC syntax, is given below for completeness. It spans several pages (even though the system itself is small). Although it is not meant to be processed by a human it is in human-readable format, so parts of it can still be manually inspected.

For instance, I1 and T1 are the (LFSC) logical representations of the original Lustre system, while P1 is the property. The first proof derives that P1 ins invariant in this system:

[image:]
The command check makes sure that term proof_inv has the type (invariant I1 T1 P1).

The overall proof states that the system (I1, T1) is safe with respect to P1. This includes a subproof that there exists another system which is weak-observationally equivalent to this one.

[bookmark: complete-lfsc-proof][image:]

Complete LFSC proof

;;--
;; LFSC proof produced by kind2 v1.0.1-7-g47f3320 and
;; CVC4 version 1.5-prerelease [git master 5f415d45]
;; from original problem ex.lus
;;--

;; System generated by Kind 2

(declare edge.usr.x (term (arrow Int Bool)))
(declare edge.usr.y (term (arrow Int Bool)))
(declare edge.res.init_flag (term (arrow Int Bool)))
(declare edge.impl.usr.OK (term (arrow Int Bool)))

(define P1
 (: (! _ mpz formula) (\ P1%1 (p_app (apply _ _ edge.impl.usr.OK (ind P1%1))))))

(define T1
 (: (! _ mpz (! _ mpz formula))
 (\ T1%1
 (\ T1%2
 (and (iff (p_app (apply _ _ edge.usr.y (ind T1%2))) (and (p_app (apply _ _ edge.usr.x (ind T1%2))) (not (p_app (apply _ _ edge.usr.x (ind T1%1)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind T1%2))) (impl (not (p_app (apply _ _ edge.usr.x (ind T1%2)))) (not (p_app (apply _ _ edge.usr.y (ind T1%2)))))) (not (p_app (apply _ _ edge.res.init_flag (ind T1%2))))))))))

(define I1
 (: (! _ mpz formula)
 (\ I1%1
 (and (iff (p_app (apply _ _ edge.usr.y (ind I1%1))) false) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind I1%1))) (impl (not (p_app (apply _ _ edge.usr.x (ind I1%1)))) (not (p_app (apply _ _ edge.usr.y (ind I1%1)))))) (p_app (apply _ _ edge.res.init_flag (ind I1%1))))))))

;; k-Inductive invariant for Kind 2 system
(define PHI1
 (: (! _ mpz formula)
 (\ PHI1%1 (p_app (apply _ _ edge.impl.usr.OK (ind PHI1%1))))))

;; Additional symbols

;; Proof of base case
(define base_proof_1
 (: (! A0 (th_holds (and (and (iff (p_app (apply _ _ edge.usr.y (a_int 0))) false) (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 0))) (impl (not (p_app (apply _ _ edge.usr.x (a_int 0)))) (not (p_app (apply _ _ edge.usr.y (a_int 0)))))) (p_app (apply _ _ edge.res.init_flag (a_int 0))))) (not (p_app (apply _ _ edge.impl.usr.OK (a_int 0)))))) (holds cln))
 (\ A0
 (@ let1 (a_int 0) (@ let2 (p_app (apply _ _ edge.impl.usr.OK let1)) (@ let3 (p_app (apply _ _ edge.usr.y let1)) (@ let4 (p_app (apply _ _ edge.res.init_flag let1)) (@ let5 (p_app (apply _ _ edge.usr.x let1)) (@ let6 (not let5) (@ let7 (not let3) (@ let8 (impl let6 let7) (th_let_pf _ (trust_f (iff true (and (not let2) (and let7 (and (iff let2 let8) let4))))) (\ .PA290 (decl_atom let2 (\ .v2 (\ .a2 (decl_atom let3 (\ .v3 (\ .a3 (decl_atom let4 (\ .v6 (\ .a6 (decl_atom let8 (\ .v5 (\ .a5 (satlem _ _ (ast _ _ _ .a2 (\ .l5 (clausify_false (contra _ .l5 (and_elim_1 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA290))))))) (\ .pb4 (satlem _ _ (ast _ _ _ .a3 (\ .l7 (clausify_false (contra _ .l7 (and_elim_1 _ _ (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA290)))))))) (\ .pb5 (satlem _ _ (asf _ _ _ .a5 (\ .l10 (asf _ _ _ .a3 (\ .l6 (clausify_false (contra _ (not_not_elim _ (and_elim_2 _ _ (not_impl_elim _ _ .l10))) .l6)))))) (\ .pb7 (satlem _ _ (ast _ _ _ .a5 (\ .l11 (asf _ _ _ .a2 (\ .l4 (clausify_false (contra _ (or_elim_1 _ _ .l4 (iff_elim_2 _ _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA290))))))) (not_not_intro _ .l11))))))) (\ .pb8 (satlem_simplify _ _ _ (R _ _ .pb7 .pb5 .v3) (\ .cl9 (satlem_simplify _ _ _ (R _ _ (Q _ _ .pb8 .cl9 .v5) .pb4 .v2) (\ empty empty)))))))))))))))))))))))))))))))))))))

;; Additional symbols

;; Proof of inductive case
(define induction_proof_1
 (: (! A0 (th_holds (and (and (p_app (apply _ _ edge.impl.usr.OK (a_int 0))) (and (iff (p_app (apply _ _ edge.usr.y (a_int 1))) (and (p_app (apply _ _ edge.usr.x (a_int 1))) (not (p_app (apply _ _ edge.usr.x (a_int 0)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 1))) (impl (not (p_app (apply _ _ edge.usr.x (a_int 1)))) (not (p_app (apply _ _ edge.usr.y (a_int 1)))))) (not (p_app (apply _ _ edge.res.init_flag (a_int 1))))))) (not (p_app (apply _ _ edge.impl.usr.OK (a_int 1)))))) (holds cln))
 (\ A0
 (@ let1 (a_int 1) (@ let2 (p_app (apply _ _ edge.impl.usr.OK let1)) (@ let3 (p_app (apply _ _ edge.usr.x let1)) (@ let4 (p_app (apply _ _ edge.usr.y let1)) (@ let5 (p_app (apply _ _ edge.res.init_flag let1)) (@ let6 (a_int 0) (@ let7 (p_app (apply _ _ edge.impl.usr.OK let6)) (@ let8 (p_app (apply _ _ edge.usr.x let6)) (@ let9 (not let8) (@ let10 (and let3 let9) (@ let11 (not let3) (@ let12 (not let4) (@ let13 (impl let11 let12) (th_let_pf _ (trust_f (iff true (and (not let2) (and let7 (and (iff let4 let10) (and (iff let2 let13) (not let5))))))) (\ .PA299 (decl_atom let2 (\ .v2 (\ .a2 (decl_atom let3 (\ .v5 (\ .a5 (decl_atom let4 (\ .v4 (\ .a4 (decl_atom let5 (\ .v9 (\ .a9 (decl_atom let7 (\ .v3 (\ .a3 (decl_atom let10 (\ .v7 (\ .a7 (decl_atom let13 (\ .v8 (\ .a8 (satlem _ _ (ast _ _ _ .a2 (\ .l5 (clausify_false (contra _ .l5 (and_elim_1 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA299))))))) (\ .pb4 (satlem _ _ (ast _ _ _ .a7 (\ .l15 (asf _ _ _ .a5 (\ .l10 (clausify_false (contra _ (and_elim_1 _ _ .l15) .l10)))))) (\ .pb6 (satlem _ _ (asf _ _ _ .a7 (\ .l14 (ast _ _ _ .a4 (\ .l9 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l9) (iff_elim_1 _ _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA299))))))) .l14)))))) (\ .pb9 (satlem _ _ (ast _ _ _ .a5 (\ .l11 (asf _ _ _ .a8 (\ .l16 (clausify_false (contra _ .l11 (and_elim_1 _ _ (not_impl_elim _ _ .l16)))))))) (\ .pb12 (satlem _ _ (asf _ _ _ .a4 (\ .l8 (asf _ _ _ .a8 (\ .l16 (clausify_false (contra _ (not_not_elim _ (and_elim_2 _ _ (not_impl_elim _ _ .l16))) .l8)))))) (\ .pb13 (satlem _ _ (ast _ _ _ .a8 (\ .l17 (asf _ _ _ .a2 (\ .l4 (clausify_false (contra _ (or_elim_1 _ _ .l4 (iff_elim_2 _ _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA299)))))))) (not_not_intro _ .l17))))))) (\ .pb14 (satlem_simplify _ _ _ (R _ _ .pb14 .pb4 .v2) (\ .cl15 (satlem_simplify _ _ _ (R _ _ .pb12 .cl15 .v8) (\ .cl16 (satlem_simplify _ _ _ (R _ _ .pb6 .cl16 .v5) (\ .cl17 (satlem_simplify _ _ _ (R _ _ .pb13 .cl15 .v8) (\ .cl18 (satlem_simplify _ _ _ (Q _ _ (R _ _ .pb9 .cl17 .v7) .cl18 .v4) (\ empty
 empty)))

;; Additional symbols

;; Proof of implication
(define implication_proof_1
 (: (! %%k mpz
 (! A0 (th_holds (not (impl (p_app (apply _ _ edge.impl.usr.OK (ind %%k))) (p_app (apply _ _ edge.impl.usr.OK (ind %%k)))))) (holds cln)))
 (\ %%k
 (\ A0
 (@ let1 (ind %%k) (@ let2 (p_app (apply _ _ edge.impl.usr.OK let1)) (decl_atom let2 (\ .v2 (\ .a2 (satlem _ _ (asf _ _ _ .a2 (\ .l4 (clausify_false (contra _ (and_elim_1 _ _ (not_impl_elim _ _ A0)) .l4)))) (\ .pb4 (satlem _ _ (ast _ _ _ .a2 (\ .l5 (clausify_false (contra _ .l5 (and_elim_2 _ _ (not_impl_elim _ _ A0)))))) (\ .pb5 (satlem_simplify _ _ _ (Q _ _ .pb5 .pb4 .v2) (\ empty empty)))))))))))))))

;; Proof of invariance by 1-induction
(define proof_inv
 (: (invariant I1 T1 P1)
 (invariant-implies I1 T1 PHI1 P1 implication_proof_1 (kinduction 1 I1 T1 PHI1
 _ _ base_proof_1 induction_proof_1))))

(check proof_inv)

;;--
;; LFSC proof produced by kind2 v1.0.1-7-g47f3320 and
;; CVC4 version 1.5-prerelease [git master 5f415d45]
;; for frontend observational equivalence and safety
;; (depends on proof.lfsc)
;;--

;; System generated by JKind

(declare JKind.__init_flag (term (arrow Int Bool)))
(declare JKind.x (term (arrow Int Bool)))
(declare JKind.y (term (arrow Int Bool)))
(declare JKind.OK (term (arrow Int Bool)))

(define P2
 (: (! _ mpz formula) (\ P2%1 (p_app (apply _ _ JKind.OK (ind P2%1))))))

(define T2
 (: (! _ mpz (! _ mpz formula))
 (\ T2%1
 (\ T2%2
 (and (not (p_app (apply _ _ JKind.__init_flag (ind T2%2)))) (and (iff (p_app (apply _ _ JKind.y (ind T2%2))) (and (p_app (apply _ _ JKind.x (ind T2%2))) (not (p_app (apply _ _ JKind.x (ind T2%1)))))) (iff (p_app (apply _ _ JKind.OK (ind T2%2))) (impl (not (p_app (apply _ _ JKind.x (ind T2%2)))) (not (p_app (apply _ _ JKind.y (ind T2%2))))))))))))

(define I2
 (: (! _ mpz formula)
 (\ I2%1
 (and (p_app (apply _ _ JKind.__init_flag (ind I2%1))) (and (iff (p_app (apply _ _ JKind.y (ind I2%1))) false) (iff (p_app (apply _ _ JKind.OK (ind I2%1))) (impl (not (p_app (apply _ _ JKind.x (ind I2%1)))) (not (p_app (apply _ _ JKind.y (ind I2%1)))))))))))

;; System generated for Observer

(define same_inputs
 (: (! _ mpz formula)
 (\ same_inputs%1
 (iff (p_app (apply _ _ edge.usr.x (ind same_inputs%1))) (p_app (apply _ _
 JKind.x (ind same_inputs%1)))))))

(define PO
 (: (! _ mpz formula)
 (\ PO%1
 (iff (p_app (apply _ _ edge.impl.usr.OK (ind PO%1))) (p_app (apply _ _
 JKind.OK (ind PO%1)))))))

(define TO
 (: (! _ mpz (! _ mpz formula))
 (\ TO%1
 (\ TO%2
 (and (iff (p_app (apply _ _ edge.usr.x (ind TO%2))) (p_app (apply _ _ JKind.x (ind TO%2)))) (and (and (iff (p_app (apply _ _ edge.usr.y (ind TO%2))) (and (p_app (apply _ _ edge.usr.x (ind TO%2))) (not (p_app (apply _ _ edge.usr.x (ind TO%1)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind TO%2))) (impl (not (p_app (apply _ _ edge.usr.x (ind TO%2)))) (not (p_app (apply _ _ edge.usr.y (ind TO%2)))))) (not (p_app (apply _ _ edge.res.init_flag (ind TO%2)))))) (and (not (p_app (apply _ _ JKind.__init_flag (ind TO%2)))) (and (iff (p_app (apply _ _ JKind.y (ind TO%2))) (and (p_app (apply _ _ JKind.x (ind TO%2))) (not (p_app (apply _ _ JKind.x (ind TO%1)))))) (iff (p_app (apply _ _ JKind.OK (ind TO%2))) (impl (not (p_app (apply _ _ JKind.x (ind TO%2)))) (not (p_app (apply _ _ JKind.y (ind TO%2))))))))))))))

(define IO
 (: (! _ mpz formula)
 (\ IO%1
 (and (iff (p_app (apply _ _ edge.usr.x (ind IO%1))) (p_app (apply _ _ JKind.x (ind IO%1)))) (and (and (iff (p_app (apply _ _ edge.usr.y (ind IO%1))) false) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind IO%1))) (impl (not (p_app (apply _ _ edge.usr.x (ind IO%1)))) (not (p_app (apply _ _ edge.usr.y (ind IO%1)))))) (p_app (apply _ _ edge.res.init_flag (ind IO%1))))) (and (p_app (apply _ _ JKind.__init_flag (ind IO%1))) (and (iff (p_app (apply _ _ JKind.y (ind IO%1))) false) (iff (p_app (apply _ _ JKind.OK (ind IO%1))) (impl (not (p_app (apply _ _ JKind.x (ind IO%1)))) (not (p_app (apply _ _ JKind.y (ind IO%1)))))))))))))

;; k-Inductive invariant for observer system
(define PHIO
 (: (! _ mpz formula)
 (\ PHIO%1
 (iff (p_app (apply _ _ edge.impl.usr.OK (ind PHIO%1))) (p_app (apply _ _
 JKind.OK (ind PHIO%1)))))))

;; Additional symbols

;; Proof of base case
(define base_proof_2
 (: (! A0 (th_holds (or (and (and (iff (p_app (apply _ _ edge.usr.x (a_int 0))) (p_app (apply _ _ JKind.x (a_int 0)))) (and (and (iff (p_app (apply _ _ edge.usr.y (a_int 0))) false) (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 0))) (impl (not (p_app (apply _ _ edge.usr.x (a_int 0)))) (not (p_app (apply _ _ edge.usr.y (a_int 0)))))) (p_app (apply _ _ edge.res.init_flag (a_int 0))))) (and (p_app (apply _ _ JKind.__init_flag (a_int 0))) (and (iff (p_app (apply _ _ JKind.y (a_int 0))) false) (iff (p_app (apply _ _ JKind.OK (a_int 0))) (impl (not (p_app (apply _ _ JKind.x (a_int 0)))) (not (p_app (apply _ _ JKind.y (a_int 0)))))))))) (not (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 0))) (p_app (apply _ _ JKind.OK (a_int 0)))))) (and (and (and (iff (p_app (apply _ _ edge.usr.x (a_int 0))) (p_app (apply _ _ JKind.x (a_int 0)))) (and (and (iff (p_app (apply _ _ edge.usr.y (a_int 0))) false) (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 0))) (impl (not (p_app (apply _ _ edge.usr.x (a_int 0)))) (not (p_app (apply _ _ edge.usr.y (a_int 0)))))) (p_app (apply _ _ edge.res.init_flag (a_int 0))))) (and (p_app (apply _ _ JKind.__init_flag (a_int 0))) (and (iff (p_app (apply _ _ JKind.y (a_int 0))) false) (iff (p_app (apply _ _ JKind.OK (a_int 0))) (impl (not (p_app (apply _ _ JKind.x (a_int 0)))) (not (p_app (apply _ _ JKind.y (a_int 0)))))))))) (and (iff (p_app (apply _ _ edge.usr.x (a_int 1))) (p_app (apply _ _ JKind.x (a_int 1)))) (and (and (iff (p_app (apply _ _ edge.usr.y (a_int 1))) (and (p_app (apply _ _ edge.usr.x (a_int 1))) (not (p_app (apply _ _ edge.usr.x (a_int 0)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 1))) (impl (not (p_app (apply _ _ edge.usr.x (a_int 1)))) (not (p_app (apply _ _ edge.usr.y (a_int 1)))))) (not (p_app (apply _ _ edge.res.init_flag (a_int 1)))))) (and (not (p_app (apply _ _ JKind.__init_flag (a_int 1)))) (and (iff (p_app (apply _ _ JKind.y (a_int 1))) (and (p_app (apply _ _ JKind.x (a_int 1))) (not (p_app (apply _ _ JKind.x (a_int 0)))))) (iff (p_app (apply _ _ JKind.OK (a_int 1))) (impl (not (p_app (apply _ _ JKind.x (a_int 1)))) (not (p_app (apply _ _ JKind.y (a_int 1))))))))))) (not (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 1))) (p_app (apply _ _ JKind.OK (a_int 1)))))))) (holds cln))
 (\ A0
 (@ let1 (a_int 1) (@ let2 (p_app (apply _ _ edge.impl.usr.OK let1)) (@ let3 (p_app (apply _ _ JKind.OK let1)) (@ let4 (iff let2 let3) (@ let5 (p_app (apply _ _ JKind.x let1)) (@ let6 (p_app (apply _ _ JKind.y let1)) (@ let7 (a_int 0) (@ let8 (p_app (apply _ _ JKind.y let7)) (@ let9 (p_app (apply _ _ JKind.OK let7)) (@ let10 (p_app (apply _ _ JKind.x let7)) (@ let11 (not let10) (@ let12 (and let5 let11) (@ let13 (iff let6 let12) (@ let14 (not let5) (@ let15 (not let6) (@ let16 (impl let14 let15) (@ let17 (iff let3 let16) (@ let18 (p_app (apply _ _ edge.usr.x let1)) (@ let19 (p_app (apply _ _ edge.usr.y let1)) (@ let20 (p_app (apply _ _ edge.usr.y let7)) (@ let21 (p_app (apply _ _ edge.impl.usr.OK let7)) (@ let22 (p_app (apply _ _ edge.usr.x let7)) (@ let23 (not let22) (@ let24 (and let18 let23) (@ let25 (iff let19 let24) (@ let26 (not let18) (@ let27 (not let19) (@ let28 (impl let26 let27) (@ let29 (iff let2 let28) (@ let30 (not let8) (@ let31 (impl let11 let30) (@ let32 (iff let9 let31) (@ let33 (not let20) (@ let34 (impl let23 let33) (@ let35 (iff let21 let34) (@ let36 (iff let21 let9) (@ let37 (not let36) (@ let38 (iff let22 let10) (@ let39 (p_app (apply _ _ edge.res.init_flag let7)) (@ let40 (p_app (apply _ _ JKind.__init_flag let7)) (@ let41 (and let30 let32) (@ let42 (and let40 let41) (@ let43 (and let39 let42) (@ let44 (and let35 let43) (@ let45 (and let33 let44) (@ let46 (and let38 let45) (@ let47 (and let37 let46) (@ let48 (not let4) (@ let49 (iff let18 let5) (@ let50 (p_app (apply _ _ edge.res.init_flag let1)) (@ let51 (not let50) (@ let52 (p_app (apply _ _ JKind.__init_flag let1)) (@ let53 (not let52) (@ let54 (and let13 let17) (@ let55 (and let32 let54) (@ let56 (and let30 let55) (@ let57 (and let53 let56) (@ let58 (and let51 let57) (@ let59 (and let29 let58) (@ let60 (and let25 let59) (@ let61 (and let40 let60) (@ let62 (and let39 let61) (@ let63 (and let35 let62) (@ let64 (and let33 let63) (@ let65 (and let49 let64) (@ let66 (and let38 let65) (@ let67 (and let48 let66) (th_let_pf _ (trust_f (iff true (or let47 let67))) (\ .PA444 (decl_atom let2 (\ .v17 (\ .a17 (decl_atom let3 (\ .v18 (\ .a18 (decl_atom let4 (\ .v19 (\ .a19 (decl_atom let5 (\ .v21 (\ .a21 (decl_atom let6 (\ .v30 (\ .a30 (decl_atom let8 (\ .v13 (\ .a13 (decl_atom let9 (\ .v3 (\ .a3 (decl_atom let12 (\ .v31 (\ .a31 (decl_atom let13 (\ .v32 (\ .a32 (decl_atom let16 (\ .v33 (\ .a33 (decl_atom let17 (\ .v34 (\ .a34 (decl_atom let18 (\ .v20 (\ .a20 (decl_atom let19 (\ .v23 (\ .a23 (decl_atom let20 (\ .v8 (\ .a8 (decl_atom let21 (\ .v2 (\ .a2 (decl_atom let24 (\ .v24 (\ .a24 (decl_atom let25 (\ .v25 (\ .a25 (decl_atom let28 (\ .v26 (\ .a26 (decl_atom let29 (\ .v27 (\ .a27 (decl_atom let31 (\ .v14 (\ .a14 (decl_atom let32 (\ .v15 (\ .a15 (decl_atom let34 (\ .v9 (\ .a9 (decl_atom let35 (\ .v10 (\ .a10 (decl_atom let36 (\ .v4 (\ .a4 (decl_atom let47 (\ .v16 (\ .a16 (decl_atom let67 (\ .v35 (\ .a35 (satlem _ _ (ast _ _ _ .a3 (\ .l7 (asf _ _ _ .a4 (\ .l8 (ast _ _ _ .a2 (\ .l5 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l5) (iff_elim_1 _ _ (not_iff_elim _ _ .l8))) (not_not_intro _ .l7))))))))) (\ .pb6 (satlem _ _ (asf _ _ _ .a9 (\ .l18 (asf _ _ _ .a8 (\ .l16 (clausify_false (contra _ (not_not_elim _ (and_elim_2 _ _ (not_impl_elim _ _ .l18))) .l16)))))) (\ .pb14 (satlem _ _ (ast _ _ _ .a9 (\ .l19 (asf _ _ _ .a2 (\ .l4 (ast _ _ _ .a10 (\ .l21 (clausify_false (contra _ (or_elim_1 _ _ .l4 (iff_elim_2 _ _ .l21)) (not_not_intro _ .l19))))))))) (\ .pb16 (satlem _ _ (asf _ _ _ .a14 (\ .l28 (asf _ _ _ .a13 (\ .l26 (clausify_false (contra _ (not_not_elim _ (and_elim_2 _ _ (not_impl_elim _ _ .l28))) .l26)))))) (\ .pb21 (satlem _ _ (ast _ _ _ .a14 (\ .l29 (asf _ _ _ .a3 (\ .l6 (ast _ _ _ .a15 (\ .l31 (clausify_false (contra _ (or_elim_1 _ _ .l6 (iff_elim_2 _ _ .l31)) (not_not_intro _ .l29))))))))) (\ .pb23 (satlem _ _ (ast _ _ _ .a4 (\ .l9 (ast _ _ _ .a16 (\ .l33 (clausify_false (contra _ .l9 (and_elim_1 _ _ .l33))))))) (\ .pb26 (satlem _ _ (ast _ _ _ .a8 (\ .l17 (ast _ _ _ .a16 (\ .l33 (clausify_false (contra _ .l17 (and_elim_1 _ _ (and_elim_2 _ _
 (and_elim_2 _ _ .l33))))))))) (\ .pb28 (satlem _ _ (asf _ _ _ .a10 (\ .l20 (ast _ _ _ .a16 (\ .l33 (clausify_false (contra _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l33)))) .l20)))))) (\ .pb29 (satlem _ _ (ast _ _ _ .a13 (\ .l27 (ast _ _ _ .a16 (\ .l33 (clausify_false (contra _ .l27 (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l33))))))))))))) (\ .pb32 (satlem _ _ (asf _ _ _ .a15 (\ .l30 (ast _ _ _ .a16 (\ .l33 (clausify_false (contra _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l33))))))) .l30)))))) (\ .pb33 (satlem _ _ (ast _ _ _ .a18 (\ .l37 (ast _ _ _ .a17 (\ .l35 (asf _ _ _ .a19 (\ .l38 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l35) (iff_elim_1 _ _ (not_iff_elim _ _ .l38))) (not_not_intro _ .l37))))))))) (\ .pb37 (satlem _ _ (ast _ _ _ .a24 (\ .l49 (asf _ _ _ .a20 (\ .l40 (clausify_false (contra _ (and_elim_1 _ _ .l49) .l40)))))) (\ .pb43 (satlem _ _ (asf _ _ _ .a24 (\ .l48 (ast _ _ _ .a23 (\ .l47 (ast _ _ _ .a25 (\ .l51 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l47) (iff_elim_1 _ _ .l51)) .l48)))))))) (\ .pb46 (satlem _ _ (ast _ _ _ .a20 (\ .l41 (asf _ _ _ .a26 (\ .l52 (clausify_false (contra _ .l41 (and_elim_1 _ _ (not_impl_elim _ _ .l52)))))))) (\ .pb51 (satlem _ _ (asf _ _ _ .a23 (\ .l46 (asf _ _ _ .a26 (\ .l52 (clausify_false (contra _ (not_not_elim _ (and_elim_2 _ _ (not_impl_elim _ _ .l52))) .l46)))))) (\ .pb52 (satlem _ _ (asf _ _ _ .a17 (\ .l34 (ast _ _ _ .a26 (\ .l53 (ast _ _ _ .a27 (\ .l55 (clausify_false (contra _ (or_elim_1 _ _ .l34 (iff_elim_2 _ _ .l55)) (not_not_intro _ .l53))))))))) (\ .pb54 (satlem _ _ (ast _ _ _ .a31 (\ .l63 (asf _ _ _ .a21 (\ .l42 (clausify_false (contra _ (and_elim_1 _ _ .l63) .l42)))))) (\ .pb57 (satlem _ _ (asf _ _ _ .a31 (\ .l62 (ast _ _ _ .a30 (\ .l61 (ast _ _ _ .a32 (\ .l65 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l61) (iff_elim_1 _ _ .l65)) .l62)))))))) (\ .pb60 (satlem _ _ (ast _ _ _ .a21 (\ .l43 (asf _ _ _ .a33 (\ .l66 (clausify_false (contra _ .l43 (and_elim_1 _ _ (not_impl_elim _ _ .l66)))))))) (\ .pb65 (satlem _ _ (asf _ _ _ .a30 (\ .l60 (asf _ _ _ .a33 (\ .l66 (clausify_false (contra _ (not_not_elim _ (and_elim_2 _ _ (not_impl_elim _ _ .l66))) .l60)))))) (\ .pb66 (satlem _ _ (ast _ _ _ .a33 (\ .l67 (asf _ _ _ .a18 (\ .l36 (ast _ _ _ .a34 (\ .l69 (clausify_false (contra _ (or_elim_1 _ _ .l36 (iff_elim_2 _ _ .l69)) (not_not_intro _ .l67))))))))) (\ .pb68 (satlem _ _ (ast _ _ _ .a19 (\ .l39
 (ast _ _ _ .a35 (\ .l71 (clausify_false (contra _ .l39 (and_elim_1 _ _ .l71))))))) (\ .pb71 (satlem _ _ (ast _ _ _ .a8 (\ .l17 (ast _ _ _ .a35 (\ .l71 (clausify_false (contra _ .l17 (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l71)))))))))) (\ .pb74 (satlem _ _ (asf _ _ _ .a10 (\ .l20 (ast _ _ _ .a35 (\ .l71 (clausify_false (contra _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l71))))) .l20)))))) (\ .pb75 (satlem _ _ (asf _ _ _ .a25 (\ .l50 (ast _ _ _ .a35 (\ .l71 (clausify_false (contra _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l71)))))))) .l50)))))) (\ .pb78 (satlem _ _ (asf _ _ _ .a27 (\ .l54 (ast _ _ _ .a35 (\ .l71 (clausify_false (contra _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l71))))))))) .l54)))))) (\ .pb79 (satlem _ _ (asf _ _ _ .a32 (\ .l64 (ast _ _ _ .a35 (\ .l71 (clausify_false (contra _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l71)))))))))))))) .l64)))))) (\ .pb84 (satlem _ _ (asf _ _ _ .a34 (\ .l68 (ast _ _ _ .a35 (\ .l71 (clausify_false (contra _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ .l71)))))))))))))) .l68)))))) (\ .pb85 (satlem _ _ (asf _ _ _ .a16 (\ .l32 (asf _ _ _ .a35 (\ .l70 (clausify_false (contra _ (or_elim_1 _ _ .l32 (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA444))) .l70)))))) (\ .pb87 (satlem_simplify _ _ _ (R _ _ (Q _ _ (Q _ _ .pb16 .pb14 .v9) .pb29 .v10) .pb28 .v8) (\ .cl88 (satlem_simplify _ _ _ (R _ _ (Q _ _ (R _ _ (Q _ _ (Q _ _ .pb16 .pb14 .v9) .pb75 .v10) .pb74 .v8) .pb87 .v35) .cl88 .v16) (\ .cl89 (satlem_simplify _ _ _ (R _ _ (Q _ _ (R _ _ .pb46 .pb43 .v24) .pb52 .v23) .pb51 .v20) (\ .cl90 (satlem_simplify _ _ _ (R _ _ (Q _ _ (Q _ _ (Q _ _ (Q _ _ (Q _ _ (Q _ _ (R _ _ (R _ _ (R _ _ (Q _ _ (R _ _ .pb60 .pb57 .v31) .pb66 .v30) .pb65 .v21) .pb68 .v33) .pb37 .v18) .pb54 .v17) .cl90 .v26) .pb85 .v34) .pb84 .v32) .pb79 .v27) .pb78 .v25) .pb71 .v19) (\ .cl91 (satlem_simplify _ _ _ (R _ _ .pb87 .cl91 .v35) (\ .cl92 (satlem_simplify _ _ _ (Q _ _ .pb32 .cl92 .v16) (\ .cl93 (satlem_simplify _ _ _ (R _ _ .pb21 .cl93 .v13) (\ .cl94 (satlem_simplify _ _ _ (Q _ _ .pb26 .cl92 .v16) (\ .cl95 (satlem_simplify _ _ _ (Q _ _ (R _ _ .pb6 .cl95 .v4) .cl89 .v2) (\ .cl96 (satlem_simplify _ _ _ (Q _ _ .pb33 .cl92 .v16) (\ .cl97 (satlem_simplify _ _ _ (Q _ _ (R _ _ (Q _ _ .pb23 .cl94 .v14) .cl96 .v3) .cl97 .v15) (\ empty
 empty))
))

;; Additional symbols

;; Proof of inductive case
(define induction_proof_2
 (: (! A0 (th_holds (and (and (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 0))) (p_app (apply _ _ JKind.OK (a_int 0)))) (and (iff (p_app (apply _ _ edge.usr.x (a_int 1))) (p_app (apply _ _ JKind.x (a_int 1)))) (and (and (iff (p_app (apply _ _ edge.usr.y (a_int 1))) (and (p_app (apply _ _ edge.usr.x (a_int 1))) (not (p_app (apply _ _ edge.usr.x (a_int 0)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 1))) (impl (not (p_app (apply _ _ edge.usr.x (a_int 1)))) (not (p_app (apply _ _ edge.usr.y (a_int 1)))))) (not (p_app (apply _ _ edge.res.init_flag (a_int 1)))))) (and (not (p_app (apply _ _ JKind.__init_flag (a_int 1)))) (and (iff (p_app (apply _ _ JKind.y (a_int 1))) (and (p_app (apply _ _ JKind.x (a_int 1))) (not (p_app (apply _ _ JKind.x (a_int 0)))))) (iff (p_app (apply _ _ JKind.OK (a_int 1))) (impl (not (p_app (apply _ _ JKind.x (a_int 1)))) (not (p_app (apply _ _ JKind.y (a_int 1))))))))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 1))) (p_app (apply _ _ JKind.OK (a_int 1)))) (and (iff (p_app (apply _ _ edge.usr.x (a_int 2))) (p_app (apply _ _ JKind.x (a_int 2)))) (and (and (iff (p_app (apply _ _ edge.usr.y (a_int 2))) (and (p_app (apply _ _ edge.usr.x (a_int 2))) (not (p_app (apply _ _ edge.usr.x (a_int 1)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 2))) (impl (not (p_app (apply _ _ edge.usr.x (a_int 2)))) (not (p_app (apply _ _ edge.usr.y (a_int 2)))))) (not (p_app (apply _ _ edge.res.init_flag (a_int 2)))))) (and (not (p_app (apply _ _ JKind.__init_flag (a_int 2)))) (and (iff (p_app (apply _ _ JKind.y (a_int 2))) (and (p_app (apply _ _ JKind.x (a_int 2))) (not (p_app (apply _ _ JKind.x (a_int 1)))))) (iff (p_app (apply _ _ JKind.OK (a_int 2))) (impl (not (p_app (apply _ _ JKind.x (a_int 2)))) (not (p_app (apply _ _ JKind.y (a_int 2)))))))))))) (not (iff (p_app (apply _ _ edge.impl.usr.OK (a_int 2))) (p_app (apply _ _ JKind.OK (a_int 2))))))) (holds cln))
 (\ A0
 (@ let1 (a_int 2) (@ let2 (p_app (apply _ _ edge.impl.usr.OK let1)) (@ let3 (p_app (apply _ _ JKind.OK let1)) (@ let4 (p_app (apply _ _ JKind.__init_flag let1)) (@ let5 (p_app (apply _ _ JKind.x let1)) (@ let6 (p_app (apply _ _ JKind.y let1)) (@ let7 (a_int 1) (@ let8 (p_app (apply _ _ JKind.__init_flag let7)) (@ let9 (p_app (apply _ _ JKind.x let7)) (@ let10 (p_app (apply _ _ JKind.y let7)) (@ let11 (p_app (apply _ _ JKind.OK let7)) (@ let12 (not let9) (@ let13 (and let5 let12) (@ let14 (not let5) (@ let15 (not let6) (@ let16 (impl let14 let15) (@ let17 (p_app (apply _ _ edge.usr.x let1)) (@ let18 (p_app (apply _ _ edge.usr.y let1)) (@ let19 (p_app (apply _ _ edge.res.init_flag let1)) (@ let20 (p_app (apply _ _ edge.usr.x let7)) (@ let21 (p_app (apply _ _ edge.usr.y let7)) (@ let22 (p_app (apply _ _ edge.res.init_flag let7)) (@ let23 (p_app (apply _ _ edge.impl.usr.OK let7)) (@ let24 (not let20) (@ let25 (and let17 let24) (@ let26 (not let17) (@ let27 (not let18) (@ let28 (impl let26 let27) (@ let29 (a_int 0) (@ let30 (p_app (apply _ _ JKind.x let29)) (@ let31 (p_app (apply _ _ JKind.OK let29)) (@ let32 (p_app (apply _ _ edge.usr.x let29)) (@ let33 (p_app (apply _ _ edge.impl.usr.OK let29)) (th_let_pf _ (trust_f (iff true (and (not (iff let2 let3)) (and (iff let33 let31) (and (iff let23 let11) (and (iff let20 let9) (and (iff let17 let5) (and (iff let21 (and let20 (not let32))) (and (iff let23 (impl let24 (not let21))) (and (not let22) (and (not let8) (and (iff let18 let25) (and (iff let2 let28) (and (not let19) (and (not let4) (and (iff let10 (and let9 (not let30))) (and (iff let11 (impl let12 (not let10))) (and (iff let6 let13) (iff let3 let16))))))))))))))))))) (\ .PA455 (decl_atom let2 (\ .v2 (\ .a2 (decl_atom let3 (\ .v3 (\ .a3 (decl_atom let4 (\ .v22 (\ .a22 (decl_atom let5 (\ .v11 (\ .a11 (decl_atom let6 (\ .v27 (\ .a27 (decl_atom let8 (\ .v17 (\ .a17 (decl_atom let9 (\ .v9 (\ .a9 (decl_atom let10 (\ .v23 (\ .a23 (decl_atom let11 (\ .v7 (\ .a7 (decl_atom let13 (\ .v28 (\ .a28 (decl_atom let16 (\ .v29 (\ .a29 (decl_atom let17 (\ .v10 (\ .a10 (decl_atom let18 (\ .v18 (\ .a18 (decl_atom let19 (\ .v21 (\ .a21 (decl_atom let20 (\ .v8 (\ .a8 (decl_atom let21 (\ .v12 (\ .a12 (decl_atom let22 (\ .v16 (\ .a16 (decl_atom let23 (\ .v6 (\ .a6 (decl_atom let25 (\ .v19 (\ .a19 (decl_atom let28 (\ .v20 (\ .a20 (decl_atom let30 (\ .v24 (\ .a24 (decl_atom let31 (\ .v5 (\ .a5 (decl_atom let32 (\ .v13 (\ .a13 (decl_atom let33 (\ .v4 (\ .a4 (satlem _ _ (ast _ _ _ .a3 (\ .l7 (ast _ _ _ .a2 (\ .l5 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l5) (iff_elim_1 _ _ (not_iff_elim _ _ (and_elim_1 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA455)))))) (not_not_intro _ .l7))))))) (\ .pb4 (satlem _ _ (ast _ _ _ .a19 (\ .l39 (asf _ _ _ .a10 (\ .l20 (clausify_false (contra _ (and_elim_1 _ _ .l39) .l20)))))) (\ .pb26 (satlem _ _ (asf _ _ _ .a19 (\ .l38 (ast _ _ _ .a18 (\ .l37 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l37) (iff_elim_1 _ _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA455)))))))))))))) .l38)))))) (\ .pb29 (satlem _ _ (ast _ _ _ .a10 (\ .l21 (asf _ _ _ .a20 (\ .l40 (clausify_false (contra _ .l21 (and_elim_1 _ _ (not_impl_elim _ _ .l40)))))))) (\ .pb32 (satlem _ _ (asf _ _ _ .a18 (\ .l36 (asf _ _ _ .a20 (\ .l40 (clausify_false (contra _ (not_not_elim _ (and_elim_2 _ _ (not_impl_elim _ _ .l40))) .l36)))))) (\ .pb33 (satlem _ _ (asf _ _ _ .a2 (\ .l4
 (ast _ _ _ .a20 (\ .l41 (clausify_false (contra _ (or_elim_1 _ _ .l4 (iff_elim_2 _ _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA455))))))))))))))) (not_not_intro _ .l41))))))) (\ .pb35 (satlem _ _ (ast _ _ _ .a28 (\ .l57 (asf _ _ _ .a11 (\ .l22 (clausify_false (contra _ (and_elim_1 _ _ .l57) .l22)))))) (\ .pb48 (satlem _ _ (asf _ _ _ .a28 (\ .l56 (ast _ _ _ .a27 (\ .l55 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l55) (iff_elim_1 _ _ (and_elim_1 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA455)))))))))))))))))))) .l56)))))) (\ .pb51 (satlem _ _ (ast _ _ _ .a11 (\ .l23 (asf _ _ _ .a29 (\ .l58 (clausify_false (contra _ .l23 (and_elim_1 _ _ (not_impl_elim _ _ .l58)))))))) (\ .pb54 (satlem _ _ (asf _ _ _ .a27 (\ .l54 (asf _ _ _ .a29 (\ .l58 (clausify_false (contra _ (not_not_elim _ (and_elim_2 _ _ (not_impl_elim _ _ .l58))) .l54)))))) (\ .pb55 (satlem _ _ (ast _ _ _ .a29 (\ .l59 (asf _ _ _ .a3 (\ .l6 (clausify_false (contra _ (or_elim_1 _ _ .l6 (iff_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ truth) (iff_elim_1 _ _ .PA455)))))))))))))))))))) (not_not_intro _ .l59))))))) (\ .pb57 (satlem_simplify _ _ _ (R _ _ (Q _ _ (R _ _ .pb29 .pb26 .v19) .pb33 .v18) .pb32 .v10) (\ .cl58 (satlem_simplify _ _ _ (Q _ _ .pb35 .cl58 .v20) (\ .cl59 (satlem_simplify _ _ _ (Q _ _ .pb4 .cl59 .v2) (\ .cl60 (satlem_simplify _ _ _ (R _ _ .pb57 .cl60 .v3) (\ .cl61 (satlem_simplify _ _ _ (R _ _ .pb54 .cl61 .v29) (\ .cl62 (satlem_simplify _ _ _ (R _ _ .pb48 .cl62 .v11) (\ .cl63 (satlem_simplify _ _ _ (R _ _ .pb55 .cl61 .v29) (\ .cl64 (satlem_simplify _ _ _ (Q _ _ (R _ _ .pb51 .cl63 .v28) .cl64
 .v27) (\ empty
 empty)))
)))

;; Additional symbols

;; Proof of implication
(define implication_proof_2
 (: (! %%k mpz
 (! A0 (th_holds (not (impl (iff (p_app (apply _ _ edge.impl.usr.OK (ind
 %%k))) (p_app (apply _ _ JKind.OK (ind %%k)))) (iff (p_app (apply _
 _ edge.impl.usr.OK (ind %%k))) (p_app (apply _ _ JKind.OK (ind
 %%k))))))) (holds cln)))
 (\ %%k
 (\ A0
 (@ let1 (ind %%k) (@ let2 (p_app (apply _ _ JKind.OK let1)) (@ let3 (p_app
 (apply _ _ edge.impl.usr.OK let1)) (decl_atom let2 (\ .v3 (\ .a3 (decl_atom let3 (\ .v2 (\ .a2 (satlem _ _ (asf _ _ _ .a3 (\ .l6 (ast _ _ _ .a2 (\ .l5 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l5) (iff_elim_1 _ _ (and_elim_1 _ _ (not_impl_elim _ _ A0)))) .l6)))))) (\ .pb4 (satlem _ _ (ast _ _ _ .a3 (\ .l7 (asf _ _ _ .a2 (\ .l4 (clausify_false (contra _ (or_elim_1 _ _ .l4 (iff_elim_2 _ _ (and_elim_1 _ _ (not_impl_elim _ _ A0)))) (not_not_intro _ .l7))))))) (\ .pb5 (satlem _ _ (ast _ _ _ .a3 (\ .l7 (ast _ _ _ .a2 (\ .l5 (clausify_false (contra _ (or_elim_1 _ _ (not_not_intro _ .l5) (iff_elim_1 _ _ (not_iff_elim _ _ (and_elim_2 _ _ (not_impl_elim _ _ A0))))) (not_not_intro _ .l7))))))) (\ .pb6 (satlem _ _ (asf _ _ _ .a3 (\ .l6 (asf _ _ _ .a2 (\ .l4 (clausify_false (contra _ (not_not_elim _ (or_elim_1 _ _ .l4 (iff_elim_2 _ _ (not_iff_elim _ _ (and_elim_2 _ _ (not_impl_elim _ _ A0)))))) .l6)))))) (\ .pb7 (satlem_simplify _ _ _ (R _ _ .pb7 .pb5 .v3) (\ .cl8 (satlem_simplify _ _ _ (Q _ _ .pb4 .cl8 .v2) (\ .cl9 (satlem_simplify _ _ _ (Q _ _ (Q _ _ .pb6 .cl9 .v3) .cl8 .v2) (\ empty empty)))))))))))))))))))))))))))

;; Proof of invariance by 2-induction
(define proof_obs
 (: (invariant IO TO PO)
 (invariant-implies IO TO PHIO PO implication_proof_2 (kinduction 2 IO TO PHIO
 _ _ base_proof_2 induction_proof_2))))

;; Proof of observational equivalence
(define proof_obs_eq
 (: (weak_obs_eq I1 T1 P1 I2 T2 P2)
 (obs_eq I1 T1 P1 I2 T2 P2 same_inputs proof_obs)))

;; Final proof of safety
(define proof_safe
 (: (safe I1 T1 P1) (inv+obs I1 T1 P1 I2 T2 P2 proof_inv proof_obs_eq)))

(check proof_safe)
image1.jpeg
Rockwel/
Collins

image2.jpg
Rockwel/
Collins

image3.emf

Lustre	model
+

Property P
Kind	2

JKind	
frontend Obs	Eq

Safety	
Cer8ficate

Kind	2
core

Front	end	
Cer8ficate

CVC4

Proof Proof Proof…

Safety
LFSC	proof

LFSC	
checker

LFSC	proofs	of	subgoals
(unsatis4iability)

image4.emf

Lustre	model
+

Property P
Kind	2

JKind	
frontend Obs	Eq

Safety	
Cer8ficate

Kind	2
core

Front	end	
Cer8ficate

CVC4

Proof Proof Proof…

Safety
LFSC	proof

LFSC	
checker

LFSC	proofs	of	subgoals
(unsatis4iability)

Figure 1.1.: Process for proof certiϐicates generation and veriϐication in Kind 2.

node add_two (a, b : real) returns (c : real) ;
var v : real;

let
v = a + b ;
c = 1.0 -> if (pre c) > v then (pre c) else v

;
--%PROPERTY (a > 0.0 and b > 0.0) => c > 0.0 ;

tel

Figure 1.2.: Lustre model of running example, with safety property.

certiϐicate is generated in the form of observational equivalence between two inter-
nal representations generated by independently developed front ends. Their equiv-
alence is recast as an invariant property; checking that yields itself a second proof
certiϐicate from which a global notion of safety can be derived and incorporated in
the LFSC proof. We improve on similar previous approaches [28, 29] by adopting a
weaker, property-based notion of observational equivalence, which is enough for our
purposes.

3. An implementation of these techniques in Kind 2. The ϐirst certiϐicate summarizes the
work of its different engines which use bounded model checking (BMC), 𝑘-induction,
IC3, as well as additional invariant generation strategies. The certiϐication of the
translation is applied to the Lustre language. The intermediate certiϐicates are SMT-
LIB 2 scripts, which are checked by CVC4. CVC4’s own proof objects are then used to
construct an LFSC proof term providing an overall proof of safety.

The full certiϐication process for Kind 2 is depicted in Figure 1.1. To recap, Kind 2 gen-

3

image5.emf

discarded currently. In the experimental evaluation we discussed later, discarding these
auxiliary invariants did not affect, however, Kind 2’s ability to produce a safety certiϐicate,
and a proof, for the top-level nodes.

CerƟficate CombinaƟon

Kind 2 accepts as input multiple properties for a given model, and attempts to verify them
individually. This means that it normally produces individual certiϐicates for a collection of
user-speciϐied and internally generated properties. These safety certiϐicates are combined
together thanks to the following easily provable result.
Proposition 1. If (𝑘௜, 𝜙௜) is a 𝑘௜-inductive strengthening of property 𝑃௜[𝐱] for 𝑖 = 1, 2, then
(𝑘, 𝜙ଵ ∧ 𝜙ଶ) with 𝑘 = 𝑚𝑎𝑥(𝑘ଵ, 𝑘ଶ) is a 𝑘-inductive strengthening of 𝑃ଵ[𝐱] ∧ 𝑃ଶ[𝐱].

Verifying CerƟficates

Checking a (combined) certiϐicate (𝑘, 𝜙) for a (conjunctive) property𝑃 reduces to verifying
that 𝜙 is indeed a 𝑘-inductive strengthening of 𝑃. This can be done using any tool that can
prove the following entailments:

𝐼[𝐱଴] ∧ 𝑇[𝐱଴, 𝐱ଵ] ∧ … ∧ 𝑇[𝐱௜ିଶ, 𝐱௜ିଵ] ⊧ℒ 𝜙[𝐱௜ିଵ] for 𝑖 ∈ [1, 𝑘] (base௞)
𝑇[𝐱଴, 𝐱ଵ] ∧ … ∧ 𝑇[𝐱௞ିଵ, 𝐱௞] ∧ 𝜙[𝐱଴] ∧ … ∧ 𝜙[𝐱௞ିଵ] ⊧ℒ 𝜙[𝐱௞] (step௞)
𝜙[𝐱] ⊧ℒ 𝑃[𝐱] (implication)

Using an SMT solver to prove (base௞), (step௞), and (implication), effectively moves the bur-
den of trust from the model checker to the solver. As we describe in Section 1.5, the SMT
solver can in turn be removed from the trusted core if it can provide an LFSC proof for each
of the three entailments.

1.3.2. Simplifying CerƟficates
Good certiϐicates need to be simple and easily checkable by an independent tool or method.
In particular, there is an expectation that checking a certiϐicate should not take more time
than proving the original property. A common approach in the certiϐicate production liter-
ature is to simplify and/or reduce the certiϐicate a posteriori [2, 12, 35]. This extra effort
at construction time can pay large dividends at checking time. In our case, a safety certiϐi-
cate (𝑘, 𝜙) can be simpliϐied by reducing the value of 𝑘 or the size/complexity of𝜙, or both.
Currently, Kind 2 tries to reduce 𝑘 before simplifying 𝜙. Empirical evaluation, discussed in
Section 1.6, suggests that this sort of post-processing is always worth the overhead.

Reducing 𝑘
Referring back to the entailments (base௞) and (step௞) from the previous section, because
of the 𝑘 checks in (base௞), checking a certiϐicate (𝑘, 𝜙) requires a number of sub-checks

7

image6.emf

Algorithm 1. Two-phase simpliϐication of invariants
Input: 𝑅 = {𝜓ଵ,… , 𝜓௡}: invariant set to be reduced,

𝑃: input property set, 𝑇: Transition relation
Function trim(𝑅, 𝑃)
if 𝑅(0..𝑘−1)∧𝑃(0..𝑘−1)∧𝑇(0..𝑘) ⊧ℒ 𝑃(𝑘)
then
// 𝑃 is 𝑘-inductive wrt 𝑅
𝑈 = get-unsat-core();
𝑅ᇱ = {𝜓 ∈ 𝑅 ∣ 𝜓 occurs in 𝑈};
if 𝑅ᇱ(0..𝑘 − 1) ∧ 𝑃(0..𝑘 − 1) ∧ 𝑇(0..𝑘) ⊧ℒ
𝑅ᇱ(𝑘) ∧ 𝑃(𝑘) then
// 𝑅ᇱ ∧ 𝑃 is 𝑘-inductive
return 𝑅ᇱ ∪ 𝑃

else // 𝑅ᇱ is not strong enough
trim(𝑅 ⧵ 𝑅ᇱ, 𝑅ᇱ ∪ 𝑃)

else error “Not 𝑘-inductive”;

Function cherry-pick(𝑅, 𝑃)
if 𝑃(0..𝑘 − 1) ∧ 𝑇(0..𝑘) ⊧ℒ 𝑃(𝑘) then
// 𝑃 is 𝑘-inductive
return 𝑃

else
// Find cex to induction
ℳ = get-cex();
// …and a blocking invariant
𝜓 = choose({𝜓 ∈ 𝑅 |ℳ⊧̸𝜓});
cherry-pick(𝑅\{𝜓}, 𝑃 ∪ {𝜓})

cherry-pick(trim({𝜓ଵ, … , 𝜓௡}, 𝑃), 𝑃);

proportional to 𝑘. Each sub-check in turn takes time proportional to 𝑘, making the whole
process quadratic in 𝑘. Due to the concurrent nature of Kind 2, proofs obtained by its 𝑘-
induction engines are not guaranteed to have a minimal 𝑘. Consequently, lowering 𝑘 can
often be the most effective way of simplifying a certiϐicate. To do that, after it constructs
an initial combined certiϐicate (𝑘, 𝜙), Kind 2 will replay the inductive step (step௞) for 𝜙 for
values 𝑘ᇱ smaller than 𝑘, following one of four different strategies, chosen heuristically:

1. forward enumeration: progressively try all values of 𝑘ᇱ from1 to k and stop at the ϐirst
where 𝑘ᇱ-inductiveness holds;

2. backward enumeration: try values of 𝑘ᇱ from k down to 1, stopping as soon as 𝑘ᇱ-
inductiveness is lost;

3. binary search: partition [1, 𝑘] into subintervals [1, 𝑘ᇱ] and [𝑘ᇱ + 1, 𝑘] of similar size
and recursively consider the ϐirst or the second interval depending on whether 𝜑 is
𝑘ᇱ-inductive or not;

4. frontier: start by looking at the frontier 𝑘 − 1/𝑘 and if the bound has not been identi-
ϐied revert to the previously described binary search.

Simplifying 𝜙
Because of how combined certiϐicates (𝑘, 𝜙) are generated, the invariant 𝜙, which is a con-
junction 𝜓ଵ ∧ … ∧ 𝜓௡ of formulas, can contain unnecessary information (redundancy, use-

8

image7.png
| Previous certification chain for Kind 2

CVC4 + LFSC

re—— C(Fps, Pobs)

Native
input

SMT-LIB 2

Front end certificate
(FEC)

image8.emf

erties, this invariance proof can be done by Kind 2 itself without relying on its front end.
Moreover, the proof is provided with its own safety certiϐicate, which we call a front end
certiϔicate, of the sort discussed in Section 1.3.
One possible problemwith this approach is the small likelihood that the property 𝑃୭ୠୱ is

𝑘-inductive for𝒮୭ୠୱ, and for a small 𝑘, so as to be easily provable by Kind 2. Wemitigate this
by identifying pairs of corresponding state variables from 𝐱ଵ and 𝐱ଶ and suggesting their
equality as a candidate auxiliary invariant for Kind 2 to try. Some of these equalities may
indeed be proven invariant and so they can potentially help in the proof of 𝑃୭ୠୱ. Note that
while this harks back to the stronger notion of observational equivalence we mentioned
earlier, it is not the same since the equivalence between certain non-input variables is only
suggested, not required.
Example 1. Consider again the Lustre model and property of Figure 1.2. The systems 𝒮ଵ
and 𝒮ଶ respectively generated by JKind 2.14 and Kind 2 from that model are the following,
in abstract syntax and modulo variable renaming, with ⊤ and ⊥ denoting respectively the
universally true and the universally false formula, and 𝗂𝗍𝖾 denoting the if-then-else operator:

𝒮ଵ 𝒮ଶ
𝐱ଵ = {𝑎ଵ, 𝑏ଵ, 𝑐ଵ, 𝑣ଵ}
𝐼ଵ = 𝑅[⊤, 𝐱ଵ, 𝐱ᇱଵ]
𝑇ଵ = 𝑅[⊥, 𝐱ଵ, 𝐱ᇱଵ]
𝑅[𝑔, 𝐱ଵ, 𝐱ᇱଵ] = (𝑣ᇱଵ ≈ 𝑎ᇱଵ + 𝑏ᇱଵ ∧
𝑐ᇱଵ ≈ 𝗂𝗍𝖾(𝑔, ଵ଴ଵ଴ , 𝗂𝗍𝖾(𝑐ଵ > 𝑣ᇱଵ, 𝑐ଵ, 𝑣ᇱଵ)))
𝑃ଵ = 𝑎ଵ > ଴

ଵ଴ ∧ 𝑏ଵ > ଴
ଵ଴ ⇒ 𝑐ଵ > ଴

ଵ଴

𝐱ଶ = {𝑖, 𝑎ଶ, 𝑏ଶ, 𝑐ଶ, 𝑣ଶ}
𝐼ଶ = (𝑖 ∧ 𝑣ଶ ≈ 𝑎ଶ + 𝑏ଶ ∧ 𝑐ଶ ≈ 1)
𝑇ଶ = (¬𝑖ᇱ ∧ 𝑣ᇱଶ ≈ 𝑎ᇱଶ + 𝑏ᇱଶ ∧

𝑐ᇱଶ ≈ 𝗂𝗍𝖾(𝑐ଶ > 𝑣ᇱଶ, 𝑐ଶ, 𝑣ᇱଶ))
𝑃ଶ = 𝑎ଶ > 0 ∧ 𝑏ଶ > 0 ⇒ 𝑐ଶ > 0

The equivalence observer 𝒮୭ୠୱ is deϔined by

𝐱୭ୠୱ = 𝐱ଵ, 𝐱ଶ 𝐼୭ୠୱ = (𝑎ଵ ≈ 𝑎ଶ ∧ 𝑏ଵ ≈ 𝑏ଶ ∧ 𝐼ଵ ∧ 𝐼ଶ)
𝑃୭ୠୱ = (𝑃ଵ ⇔ 𝑃ଶ) 𝑇୭ୠୱ = (𝑎ᇱଵ ≈ 𝑎ᇱଶ ∧ 𝑏ᇱଵ ≈ 𝑏ᇱଶ ∧ 𝑇ଵ ∧ 𝑇ଶ)

Suggested auxiliary invariants in this case will be the equalities 𝑎ଵ ≈ 𝑎ଶ, 𝑏ଵ ≈ 𝑏ଶ, 𝑐ଵ ≈ 𝑐ଶ,
and 𝑣ଵ ≈ 𝑣ଶ between corresponding state variables in the two systems.

1.5. From CerƟficates to LFSC Proofs
The last step of our approach, once the various safety certiϐicates have been produced and
checked, is to gather the proofs of the various entailment checks performed by the SMT
solver and assemble them into a self-contained overall proof of safety for the original sys-
tem.

4We produce 𝒮భ by having JKind 2.1 write a dump ϐile from which we can extract its internal representation.

12

image9.emf

IēěIĒĕđ
∀𝑘 ∈ ℕ. 𝑃ଵ(𝑘) ⊧ℒ 𝑃ଶ(𝑘) 𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(𝐼, 𝑇, 𝑃ଵ)

𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(𝐼, 𝑇, 𝑃ଶ)

K-Iēĉ
𝑘 ∈ ℕ 𝐵௞ ⊧ℒ ⊥ 𝑆௞ ⊧ℒ ⊥

𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(𝐼, 𝑇, 𝑃) ቈ𝐵௞ = 𝖻𝖺𝗌𝖾(𝐼, 𝑇, 𝑃, 𝑘)
𝑆௞ = 𝗌𝗍𝖾𝗉(𝑇, 𝑃, 𝑘) ቉

OćĘEĖ
𝗌𝗂 ∶ ℕ → 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(𝜆𝑖. 𝗌𝗂(𝑖) ∧ 𝐼ଵ(𝑖) ∧ 𝐼ଶ(𝑖),
𝜆𝑖, 𝑗. 𝗌𝗂(𝑗) ∧ 𝑇ଵ(𝑖, 𝑗) ∧ 𝑇ଶ(𝑖, 𝑗),
𝜆𝑘. 𝑃ଵ(𝑘) ⇔ 𝑃ଶ(𝑘))

𝗐𝗈𝖾(𝐼ଵ, 𝑇ଵ, 𝑃ଵ, 𝐼ଶ, 𝑇ଶ, 𝑃ଶ)

Iēě+OćĘ
𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(𝐼, 𝑇, 𝑃) 𝗐𝗈𝖾(𝐼, 𝑇, 𝑃, 𝐼ᇱ, 𝑇ᇱ, 𝑃ᇱ)

𝗌𝖺𝖿𝖾(𝐼, 𝑇, 𝑃)

Figure 1.4.: A sample of LFSC rules for 𝑘-induction proofs

state property 𝑃. A proof of this judgement is a proof that 𝑃 is invariant for the transition
system represented by 𝐼 and 𝑇.
The signature also contains rules to build proofs of invariance by 𝑘-induction, as illus-

trated in Figure 1.4 in abstract syntax. There, proof rule IēěIĒĕđ states that weakenings of
invariants are invariants. Rule K-Iēĉ encodes the 𝑘-induction principle as presented in Sec-
tion 1.3. It has two side-conditions that compute formulas for the sub-goals of 𝑘-induction.
The deϐinitions of the LFSC side-condition functions 𝖻𝖺𝗌𝖾 and 𝗌𝗍𝖾𝗉 are provided in abstract
syntax in Figure 1.5. They use some a couple of auxiliary functions to compute unrollings
of the transition relation.
This signature also speciϐies how to encapsulate proofs for the front-end certiϐicates by

providing a additional judgment, 𝗌𝖺𝖿𝖾(𝐼, 𝑇, 𝑃, 𝐼ᇱ, 𝑇ᇱ, 𝑃ᇱ), which can be derived only when the
judgemens 𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(𝐼, 𝑇, 𝑃) and𝗐𝗈𝖾(𝐼, 𝑇, 𝑃, 𝐼ᇱ, 𝑇ᇱ, 𝑃ᇱ) are both derivable, where the second
one states the observational equivalence between (𝐼, 𝑇, 𝑃) and (𝐼ᇱ, 𝑇ᇱ, 𝑃ᇱ). Self contained
proofs of safety follow the sketch depicted in Figure 1.6, where SĒę stands for an unsatis-
ϐiability rule whose proof tree is obtained, with minor changes, from a proof produced by
CVC4.
In practice, running Kind 2 in proof production mode on a Lustre model generates an

LFSC proof (in a text ϐile) that can be then fed together with the various signature ϐiles
(sat.plf, smt.plf, th_int.plf, th_real.plf and kind.plf) to the LFSC proof checker.

14

image10.emf

𝗎𝗇𝗋𝗈𝗅𝗅𝗉(𝑇, 𝑃, 𝑘) = match 𝑘 with 𝗎𝗇𝗋𝗈𝗅𝗅𝗂(𝑇, 𝐼, 𝑘) = match 𝑘 with
| 0 ↦ 𝑃(0)
| 1 ↦ 𝑃(0) ∧ 𝑇(0, 1)
| _ ↦ 𝗎𝗇𝗋𝗈𝗅𝗅𝗉(𝑇, 𝑃, 𝑘 − 1) ∧ 𝑃(𝑘 − 1) ∧ 𝑇(𝑘 − 1, 𝑘)

| 0 ↦ 𝐼(0)
| _ ↦ 𝗎𝗇𝗋𝗈𝗅𝗅𝗂(𝑇, 𝐼, 𝑘 − 1) ∧ 𝑇(𝑘 − 1, 𝑘)

𝗌𝗍𝖾𝗉(𝑇, 𝑃, 𝑘) = 𝗎𝗇𝗋𝗈𝗅𝗅𝗉(𝑇, 𝑃, 𝑘) ∧ ¬𝑃(𝑘) 𝖻𝖺𝗌𝖾𝗄(𝐼, 𝑇, 𝑃, 𝑘) = match 𝑘 with

𝖻𝖺𝗌𝖾(𝐼, 𝑇, 𝑃, 𝑘) = 𝖻𝖺𝗌𝖾𝗄(𝐼, 𝑇, 𝑃, 𝑘 − 1)

| 0 ↦ 𝐼(0) ∧ ¬𝑃(0)
| _ ↦ 𝖻𝖺𝗌𝖾𝗄(𝐼, 𝑇, 𝑃, 𝑘 − 1) ∨

(𝗎𝗇𝗋𝗈𝗅𝗅𝗂(𝑇, 𝐼, 𝑘 − 1) ∧ ¬𝑃(𝑘))

Figure 1.5.: Side conditions for 𝑘-induction proof rules

Iēě+OćĘ
IēěIĒĕđ

K-Iēĉ
௞ ∈ ℕ SĒę

⋮
஻ೖ ⊧ℒ ୄ SĒę

⋮
ௌೖ ⊧ℒ ୄ

𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(ூ, ், థ) SĒę
⋮

థ ⊧ℒ ௉
𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(ூ, ், ௉) OćĘEĖ

IēěIĒĕđ
K-Iēĉ

⋮
𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(ூ೚, ்೚, థ೚)

SĒę
⋮

థ೚ ⊧ℒ ௉೚
𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(ூ೚, ்೚, ௉೚)
𝗐𝗈𝖾(ூ, ், ௉, ூᇲ, ்ᇲ, ௉ᇲ)

𝗌𝖺𝖿𝖾(ூ, ், ௉)

Figure 1.6.: Sketch of derivation tree for LFSC proofs of safety produced by Kind 2

1.6. Experimental EvaluaƟon
Weevaluatedour certiϐicate generationandchecking techniquesona set of academicbench-
marks anda smaller set of industrial-gradebenchmarks.6 They come fromdifferent sources
(academic and industrial users, published case studies, etc.) and are of various nature
(memory coherence protocols, reactive controllers from railway and aerospace industry,
counter systems, simulation of systems, …). We selected only benchmark problems consist-
ing of a Lustre model with properties that Kind 2 could prove with a 5 minutes timeout.
We ϐirst focus on the effect of minimization on intermediate certiϐicate checking by the

SMT solver CVC4 and then evaluate our complete certiϐication chain, including front end
certiϐication and LFSC proof checking.
We ran our tests on a Linux machine with two 12-core 64-bits AMD Opteron processors

and 32GB of memory. We used a certifying version of Kind 2 based on Kind 2 v0.8. The
CVC4 binary was from version 1.5-prerelease (git proofs 7ba546df). Tools were given a
timeout of 5 minutes.

15

image11.emf

𝗎𝗇𝗋𝗈𝗅𝗅𝗉(𝑇, 𝑃, 𝑘) = match 𝑘 with 𝗎𝗇𝗋𝗈𝗅𝗅𝗂(𝑇, 𝐼, 𝑘) = match 𝑘 with
| 0 ↦ 𝑃(0)
| 1 ↦ 𝑃(0) ∧ 𝑇(0, 1)
| _ ↦ 𝗎𝗇𝗋𝗈𝗅𝗅𝗉(𝑇, 𝑃, 𝑘 − 1) ∧ 𝑃(𝑘 − 1) ∧ 𝑇(𝑘 − 1, 𝑘)

| 0 ↦ 𝐼(0)
| _ ↦ 𝗎𝗇𝗋𝗈𝗅𝗅𝗂(𝑇, 𝐼, 𝑘 − 1) ∧ 𝑇(𝑘 − 1, 𝑘)

𝗌𝗍𝖾𝗉(𝑇, 𝑃, 𝑘) = 𝗎𝗇𝗋𝗈𝗅𝗅𝗉(𝑇, 𝑃, 𝑘) ∧ ¬𝑃(𝑘) 𝖻𝖺𝗌𝖾𝗄(𝐼, 𝑇, 𝑃, 𝑘) = match 𝑘 with

𝖻𝖺𝗌𝖾(𝐼, 𝑇, 𝑃, 𝑘) = 𝖻𝖺𝗌𝖾𝗄(𝐼, 𝑇, 𝑃, 𝑘 − 1)

| 0 ↦ 𝐼(0) ∧ ¬𝑃(0)
| _ ↦ 𝖻𝖺𝗌𝖾𝗄(𝐼, 𝑇, 𝑃, 𝑘 − 1) ∨

(𝗎𝗇𝗋𝗈𝗅𝗅𝗂(𝑇, 𝐼, 𝑘 − 1) ∧ ¬𝑃(𝑘))

Figure 1.5.: Side conditions for 𝑘-induction proof rules

Iēě+OćĘ
IēěIĒĕđ

K-Iēĉ
௞ ∈ ℕ SĒę

⋮
஻ೖ ⊧ℒ ୄ SĒę

⋮
ௌೖ ⊧ℒ ୄ

𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(ூ, ், థ) SĒę
⋮

థ ⊧ℒ ௉
𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(ூ, ், ௉) OćĘEĖ

IēěIĒĕđ
K-Iēĉ

⋮
𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(ூ೚, ்೚, థ೚)

SĒę
⋮

థ೚ ⊧ℒ ௉೚
𝗂𝗇𝗏𝖺𝗋𝗂𝖺𝗇𝗍(ூ೚, ்೚, ௉೚)
𝗐𝗈𝖾(ூ, ், ௉, ூᇲ, ்ᇲ, ௉ᇲ)

𝗌𝖺𝖿𝖾(ூ, ், ௉)

Figure 1.6.: Sketch of derivation tree for LFSC proofs of safety produced by Kind 2

1.6. Experimental EvaluaƟon
Weevaluatedour certiϐicate generationandchecking techniquesona set of academicbench-
marks anda smaller set of industrial-gradebenchmarks.6 They come fromdifferent sources
(academic and industrial users, published case studies, etc.) and are of various nature
(memory coherence protocols, reactive controllers from railway and aerospace industry,
counter systems, simulation of systems, …). We selected only benchmark problems consist-
ing of a Lustre model with properties that Kind 2 could prove with a 5 minutes timeout.
We ϐirst focus on the effect of minimization on intermediate certiϐicate checking by the

SMT solver CVC4 and then evaluate our complete certiϐication chain, including front end
certiϐication and LFSC proof checking.
We ran our tests on a Linux machine with two 12-core 64-bits AMD Opteron processors

and 32GB of memory. We used a certifying version of Kind 2 based on Kind 2 v0.8. The
CVC4 binary was from version 1.5-prerelease (git proofs 7ba546df). Tools were given a
timeout of 5 minutes.

15

image12.emf

��

�����

�����

�����

�� ��� ���� ���� ���� ���� ���� ���� ���� ����

�
��
�

�
��

�
�

�������������������������

�
����
���
������
���������
�������������

��

�����

���� ����

image13.emf

��

����

����

����

����

�� ��� ���� ���� ���� ���� ����

�
��
�

�
��

�
�

�������������������������

�
��������
����������
�������������
���������������

image14.emf

A. Appendix

A.1. Kind 2’s Proofs and CerƟficates in PracƟce
We describe in this section amore hands-on perspective on how certiϐicates and proofs are
produced in the model checker Kind 2.

A.1.1. Input
Kind 2’s input language to describe reactive systems is Lustre [16]. Certiϐicates and proofs
are produced only for the fragment that is supported by Kind 2 (a large subset of Lustre
V6), and in addition, front end certiϐicates and proofs are produced only for the subset of
Lustre that is both supported by Kind 2 and JKind.
In particular this means that Kind 2 will produce full proofs when properties are rep-

resented as annotations using the keyword --%PROPERTY but will only produce proofs of
invariancewhen the speciϐication is written as contract annotations (this feature is not sup-
ported by JKind).
To illustrate the full chain of proof production, we take a somewhat simplistic example

(from a model checking perspective) but that is enough to describe our approach in is en-
tirety. This node detects rising edges on its input x, a Boolean stream. Every time x goes

node edge (x: bool) returns (y: bool);
var OK: bool;
let
y = false -> x and not pre x;
OK = not x => not y;
--%PROPERTY OK;

tel

Figure A.1.: Lustre code of a node that detects rising edges on its input

from false to true, the output Boolean stream y will be true, and false otherwise. A simple
property is to check that when x is false, then so is y. The local variable OK is a Boolean
stream that embodies this property. We want to check that OK = true is an invariant of
this system.
A typical execution of this system is given as a graph in Figure A.2 below. Notice that the

stream OK is always true here. We want to make sure it is the case for any possible input
sequence and for any number of steps.

24

image15.emf

1

0
x

1

0

y

1

0
OK

Figure A.2.: Example execution of rising edge detection system

Remark. A textual output for simulating systems can be obtained from Kind 2 itself. Sup-
pose we have a ϐile ex.input containing the values for the inputs (in CSV format), then the
following invocation will print the values of the other variables in the system:
> kind2 --enable interpreter --interpreter_input_file ex.input ex.lus

A.1.2. GeneraƟng Proofs and CerƟficates with Kind 2
Proof and certiϐicate generation is controlled by two main ϐlags in Kind 2:
--certif true

to produce intermediate SMT-LIB 2 certiϐicates (and associated scripts);
--proof true

to produce a self contained (minus the signatures) proof in LFSC format.
Brief descriptions of other Kind 2 options speciϐic to proof production can be obtained by
calling Kind 2 with the option --help_of certif. Those are:
--certif_abstr <bool>

Use abstract type indexes in certiϐicates and proofs . Default: false
--log_trust <bool>

Log trusted parts of the proof in a separate ϐile for users to ϐill. Default: false
--certif_mink <string>

where <string> is no, fwd, bwd, dicho, frontierdicho or auto. Select strategy for
minimizing k of certiϐicates

• no for no minimization
• fwd for a search starting at 1 up to 𝑘

25

image16.emf

;; Proof of invariance by 1-induction
(define proof_inv
(: (invariant I1 T1 P1)
(invariant-implies I1 T1 PHI1 P1 implication_proof_1 (kinduction 1 I1 T1 PHI1
_ _ base_proof_1 induction_proof_1))))

(check proof_inv)

The command checkmakes sure that term proof_inv has the type (invariant I1 T1 P1).
The overall proof states that the system (I1, T1) is safewith respect toP1. This includes a subproof

that there exists another system which is weak-observationally equivalent to this one.
;; Proof of invariance by 2-induction
(define proof_obs
(: (invariant IO TO PO)
(invariant-implies IO TO PHIO PO implication_proof_2 (kinduction 2 IO TO PHIO
_ _ base_proof_2 induction_proof_2))))

;; Proof of observational equivalence
(define proof_obs_eq
(: (weak_obs_eq I1 T1 P1 I2 T2 P2)
(obs_eq I1 T1 P1 I2 T2 P2 same_inputs proof_obs)))

;; Final proof of safety
(define proof_safe
(: (safe I1 T1 P1) (inv+obs I1 T1 P1 I2 T2 P2 proof_inv proof_obs_eq)))

(check proof_safe)

Complete LFSC proof
;;--
;; LFSC proof produced by kind2 v1.0.1-7-g47f3320 and
;; CVC4 version 1.5-prerelease [git master 5f415d45]
;; from original problem ex.lus
;;--

;; System generated by Kind 2

(declare edge.usr.x (term (arrow Int Bool)))
(declare edge.usr.y (term (arrow Int Bool)))
(declare edge.res.init_flag (term (arrow Int Bool)))
(declare edge.impl.usr.OK (term (arrow Int Bool)))

(define P1
(: (! _ mpz formula) (\ P1%1 (p_app (apply _ _ edge.impl.usr.OK (ind P1%1))))))

(define T1
(: (! _ mpz (! _ mpz formula))
(\ T1%1
(\ T1%2
(and (iff (p_app (apply _ _ edge.usr.y (ind T1%2))) (and (p_app (apply _ _ edge.usr.x (ind T1%2))) (not (p_app (apply _ _

edge.usr.x (ind T1%1)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind T1%2))) (impl (not (p_app (apply _ _
edge.usr.x (ind T1%2)))) (not (p_app (apply _ _ edge.usr.y (ind T1%2)))))) (not (p_app (apply _ _ edge.res.init_flag (ind
T1%2))))))))))

(define I1
(: (! _ mpz formula)
(\ I1%1
(and (iff (p_app (apply _ _ edge.usr.y (ind I1%1))) false) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind I1%1))) (impl

(not (p_app (apply _ _ edge.usr.x (ind I1%1)))) (not (p_app (apply _ _ edge.usr.y (ind I1%1)))))) (p_app (apply _ _
edge.res.init_flag (ind I1%1))))))))

30

;;Proofofinvarianceby1-induction

(defineproof_inv

(:(invariantI1T1P1)

(invariant-impliesI1T1PHI1P1implication_proof_1(kinduction1I1T1PHI1

__base_proof_1induction_proof_1))))

(checkproof_inv)

Thecommand

check

makessurethatterm

proof_inv

hasthetype

(invariantI1T1P1)

.

Theoverallproofstatesthatthesystem(

I1

,

T1

)issafewithrespectto

P1

.Thisincludesasubproof

thatthereexistsanothersystemwhichisweak-observationallyequivalenttothisone.

;;Proofofinvarianceby2-induction

(defineproof_obs

(:(invariantIOTOPO)

(invariant-impliesIOTOPHIOPOimplication_proof_2(kinduction2IOTOPHIO

__base_proof_2induction_proof_2))))

;;Proofofobservationalequivalence

(defineproof_obs_eq

(:(weak_obs_eqI1T1P1I2T2P2)

(obs_eqI1T1P1I2T2P2same_inputsproof_obs)))

;;Finalproofofsafety

(defineproof_safe

(:(safeI1T1P1)(inv+obsI1T1P1I2T2P2proof_invproof_obs_eq)))

(checkproof_safe)

CompleteLFSCproof

;;--

;;LFSCproofproducedbykind2v1.0.1-7-g47f3320and

;;CVC4version1.5-prerelease[gitmaster5f415d45]

;;fromoriginalproblemex.lus

;;--

;;SystemgeneratedbyKind2

(declareedge.usr.x(term(arrowIntBool)))

(declareedge.usr.y(term(arrowIntBool)))

(declareedge.res.init_flag(term(arrowIntBool)))

(declareedge.impl.usr.OK(term(arrowIntBool)))

(defineP1

(:(!_mpzformula)(\P1%1(p_app(apply__edge.impl.usr.OK(indP1%1))))))

(defineT1

(:(!_mpz(!_mpzformula))

(\T1%1

(\T1%2

(and(iff(p_app(apply__edge.usr.y(indT1%2)))(and(p_app(apply__edge.usr.x(indT1%2)))(not(p_app(apply__

edge.usr.x(indT1%1))))))(and(iff(p_app(apply__edge.impl.usr.OK(indT1%2)))(impl(not(p_app(apply__

edge.usr.x(indT1%2))))(not(p_app(apply__edge.usr.y(indT1%2))))))(not(p_app(apply__edge.res.init_flag(ind

T1%2))))))))))

(defineI1

(:(!_mpzformula)

(\I1%1

(and(iff(p_app(apply__edge.usr.y(indI1%1)))false)(and(iff(p_app(apply__edge.impl.usr.OK(indI1%1)))(impl

(not(p_app(apply__edge.usr.x(indI1%1))))(not(p_app(apply__edge.usr.y(indI1%1))))))(p_app(apply__

edge.res.init_flag(indI1%1))))))))

30

image17.emf

;; Proof of invariance by 1-induction
(define proof_inv
(: (invariant I1 T1 P1)
(invariant-implies I1 T1 PHI1 P1 implication_proof_1 (kinduction 1 I1 T1 PHI1
_ _ base_proof_1 induction_proof_1))))

(check proof_inv)

The command checkmakes sure that term proof_inv has the type (invariant I1 T1 P1).
The overall proof states that the system (I1, T1) is safewith respect toP1. This includes a subproof

that there exists another system which is weak-observationally equivalent to this one.
;; Proof of invariance by 2-induction
(define proof_obs
(: (invariant IO TO PO)
(invariant-implies IO TO PHIO PO implication_proof_2 (kinduction 2 IO TO PHIO
_ _ base_proof_2 induction_proof_2))))

;; Proof of observational equivalence
(define proof_obs_eq
(: (weak_obs_eq I1 T1 P1 I2 T2 P2)
(obs_eq I1 T1 P1 I2 T2 P2 same_inputs proof_obs)))

;; Final proof of safety
(define proof_safe
(: (safe I1 T1 P1) (inv+obs I1 T1 P1 I2 T2 P2 proof_inv proof_obs_eq)))

(check proof_safe)

Complete LFSC proof
;;--
;; LFSC proof produced by kind2 v1.0.1-7-g47f3320 and
;; CVC4 version 1.5-prerelease [git master 5f415d45]
;; from original problem ex.lus
;;--

;; System generated by Kind 2

(declare edge.usr.x (term (arrow Int Bool)))
(declare edge.usr.y (term (arrow Int Bool)))
(declare edge.res.init_flag (term (arrow Int Bool)))
(declare edge.impl.usr.OK (term (arrow Int Bool)))

(define P1
(: (! _ mpz formula) (\ P1%1 (p_app (apply _ _ edge.impl.usr.OK (ind P1%1))))))

(define T1
(: (! _ mpz (! _ mpz formula))
(\ T1%1
(\ T1%2
(and (iff (p_app (apply _ _ edge.usr.y (ind T1%2))) (and (p_app (apply _ _ edge.usr.x (ind T1%2))) (not (p_app (apply _ _

edge.usr.x (ind T1%1)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind T1%2))) (impl (not (p_app (apply _ _
edge.usr.x (ind T1%2)))) (not (p_app (apply _ _ edge.usr.y (ind T1%2)))))) (not (p_app (apply _ _ edge.res.init_flag (ind
T1%2))))))))))

(define I1
(: (! _ mpz formula)
(\ I1%1
(and (iff (p_app (apply _ _ edge.usr.y (ind I1%1))) false) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind I1%1))) (impl

(not (p_app (apply _ _ edge.usr.x (ind I1%1)))) (not (p_app (apply _ _ edge.usr.y (ind I1%1)))))) (p_app (apply _ _
edge.res.init_flag (ind I1%1))))))))

30

;;Proofofinvarianceby1-induction (defineproof_inv (:(invariantI1T1P1) (invariant-impliesI1T1PHI1P1implication_proof_1(kinduction1I1T1PHI1 __base_proof_1induction_proof_1)))) (checkproof_inv) Thecommandcheckmakessurethattermproof_invhasthetype(invariantI1T1P1). Theoverallproofstatesthatthesystem(I1,T1)issafewithrespecttoP1.Thisincludesasubproof thatthereexistsanothersystemwhichisweak-observationallyequivalenttothisone.

;;Proofofinvarianceby2-induction

(defineproof_obs

(:(invariantIOTOPO)

(invariant-impliesIOTOPHIOPOimplication_proof_2(kinduction2IOTOPHIO

__base_proof_2induction_proof_2))))

;;Proofofobservationalequivalence

(defineproof_obs_eq

(:(weak_obs_eqI1T1P1I2T2P2)

(obs_eqI1T1P1I2T2P2same_inputsproof_obs)))

;;Finalproofofsafety

(defineproof_safe

(:(safeI1T1P1)(inv+obsI1T1P1I2T2P2proof_invproof_obs_eq)))

(checkproof_safe)

CompleteLFSCproof

;;--

;;LFSCproofproducedbykind2v1.0.1-7-g47f3320and

;;CVC4version1.5-prerelease[gitmaster5f415d45]

;;fromoriginalproblemex.lus

;;--

;;SystemgeneratedbyKind2

(declareedge.usr.x(term(arrowIntBool)))

(declareedge.usr.y(term(arrowIntBool)))

(declareedge.res.init_flag(term(arrowIntBool)))

(declareedge.impl.usr.OK(term(arrowIntBool)))

(defineP1

(:(!_mpzformula)(\P1%1(p_app(apply__edge.impl.usr.OK(indP1%1))))))

(defineT1

(:(!_mpz(!_mpzformula))

(\T1%1

(\T1%2

(and(iff(p_app(apply__edge.usr.y(indT1%2)))(and(p_app(apply__edge.usr.x(indT1%2)))(not(p_app(apply__

edge.usr.x(indT1%1))))))(and(iff(p_app(apply__edge.impl.usr.OK(indT1%2)))(impl(not(p_app(apply__

edge.usr.x(indT1%2))))(not(p_app(apply__edge.usr.y(indT1%2))))))(not(p_app(apply__edge.res.init_flag(ind

T1%2))))))))))

(defineI1

(:(!_mpzformula)

(\I1%1

(and(iff(p_app(apply__edge.usr.y(indI1%1)))false)(and(iff(p_app(apply__edge.impl.usr.OK(indI1%1)))(impl

(not(p_app(apply__edge.usr.x(indI1%1))))(not(p_app(apply__edge.usr.y(indI1%1))))))(p_app(apply__

edge.res.init_flag(indI1%1))))))))

30

