Analyzing Mode Confusion via Model Checking*

Gerald Liittgen' and Victor Carrefio?

! Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, Virginia 23681-2199, USA, luettgen@icase.edu
2 Assessment Technology Branch, NASA Langley Research Center,
Hampton, Virginia 23681-2199, USA, v.a.carreno@larc.nasa.gov

Abstract. Mode confusion is a serious problem in aviation safety. To-
day’s complex avionics systems make it difficult for pilots to maintain
awareness of the actual states, or modes, of the flight deck automa-
tion. NASA explores how formal methods, especially theorem proving,
can be used to discover mode confusion. The present paper investigates
whether state-ezploration techniques, e.g., model checking, are better able
to achieve this task than theorem proving and also to compare the ver:-
fication tools Murg, SMV, and Spin for the specific application. While all
tools can handle the task well, their strengths are complementary.

1 Introduction

Digital system automation in the flight deck of aircraft has significantly con-
tributed to aviation efficiency and safety. Unfortunately, the aviation commu-
nity is also starting to experience some undesirable side effects as a result of
the high degree of automation. Incidents and accidents in aviation are increas-
ingly attributed to pilot-automation interaction. Although automation has re-
duced the overall pilot workload, in some instances the workload has just been
re-distributed, causing short periods of very high workloads. In these periods,
pilots sometimes get confused about the actual states, or modes, of the flight
deck automation. Mode confusion may cause pilots to inappropriately interact
with the on-board automation, with possibly catastrophic consequences.

NASA Langley explores ways to minimize the impact of mode confusion on
aviation safety. One approach being studied is to identify the sources of mode
confusion by formally modeling and analyzing avionics systems. The mode logic
of a flight guidance system (FGS) was selected as a target system to develop
this approach and to determine its feasibility. The FGS offers a realistic avion-
ics system and has been specified in many notations and languages including
CoRE [12], SCR [12], Z [6], ObjecTime [13], and PVS [2]. In the PVS [16] effort,
the FGS, which is characterized by its synchronous, reactive, and deterministic
behavior, was encoded as a finite state machine. Properties, which were identified

* This work was supported by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-97046 while the first author was in residence at
the Institute for Computer Applications in Science and Engineering (ICASE), NASA
Langley Research Center, Hampton, Virginia 23681-2199, USA.

as possible sources of mode confusion by experts in human factors [9], were also
defined in the PVS language. These properties included inconsistent behavior,
ignored crew inputs, and indirect mode changes. Proofs in the PVS model were
undertaken to either show that a property holds or to discover conditions that
preclude the property from being true. The employed style of theorem proving
resembled a form of state exploration. Hence, the question arises whether state-
exploration and model-checking techniques [3, 5] are better suited for the study
of mode confusion.

In order to answer this question, we model and analyze the mode logic by
applying three popular and publicly available state-exploration/model-checking
tools, namely Murg [4, 14], SMV [11, 17], and Spin [7, 18]. Although all three tools
are appropriate for the task, each one has its own strengths and weaknesses. We
compare the tools regarding (1) the suitability of their languages for modeling the
mode logic, (2) their suitability for specifying and verifying the mode confusion
properties of interest, and (3) their ability to generate and animate diagnostic
information. The first aspect concerns the way in which we model the example
system. The second aspect refers to the adequacy of the language in which
properties are encoded and also to the degree of orthogonality between system
and property specifications. The third aspect is perhaps the most important one
for engineers since system designs are often incorrect in early design stages.

2 Flight Guidance Systems and Mode Logics

The FGS is a component of the flight control system (cf. Fig. 1). It continuously
determines the difference between the actual state of an aircraft — its position,
speed, and attitude as measured by its sensors — and its desired state as in-
putted via the crew interface and/or the flight management system. In response,
the FGS generates commands to minimize this difference, which the autopilot
may translate into movements of the aircraft’s actuators. These commands are
calculated by control law algorithms that are selected by the mode logic.

flight guidance system

- N - flight management
Ceontrol aws)

Fig. 1. Flight control system

In the following we focus on the mode-logic part of the FGS. Especially,
we leave out the modeling of the control laws and, if no confusion arises, use
interchangeably the terms FGS and mode logic. A mode logic essentially acts as
a deterministic machine which is composed of several synchronous sub-machines.

It receives events from its environment and reacts to them by changing its state
appropriately. This reaction may require several simultaneous mode changes.
Fig. 2 shows a typical mode logic consisting of three interacting components:
the lateral guidance, the vertical guidance, and the flight director. The mode of
the flight director determines whether the FGS is used as a navigational aid.
The lateral guidance subsumes the roll mode (Roll), the heading mode (HDG),
the navigation mode (NAV), and the lateral go-around mode (LGA), whereas
the vertical guidance subsumes the pitch mode (Pitch), the vertical speed mode
(VS), and the vertical go-around mode (VGA). Each mode can be either cleared
or active, with the NAV mode having additional sub-states in the active state.

Mode
Logic Lateral Guidance Vertical Guidance
Flight Director

Roll |HDG|NAV |LGA Pitch VS VGA

Fig. 2. Architecture of the model logic of the FGS

The properties of interest regarding the FGS can be classified as mandatory
properties and mode confusion properties. Some of the mandatory properties are:
(i) if the flight director is off, all lateral and vertical guidance modes must be
cleared, (ii) if the flight director is on, then exactly one lateral and one vertical
mode is active, and (iii) a default mode is activated when the flight director is
on and other modes are cleared. Regarding mode confusion, several categories
are identified in [9]. We have selected three categories to use in the analysis of
our system: (1) inconsistent behaviors, i.e., a crew interface input has different
functionality for different system states, (2) ignored operator inputs, i.e., a crew
input does not result in a change of state, and (3) indirect mode changes, i.e., the
system changes its state although no crew input is present. To discover sources of
mode confusion, we formulate the negation of each property and try to prove it.
Conditions that prevent us from successfully completing the proof — manifested
by unprovable subgoals in a theorem prover and error traces in model-checking
tools — are the ones we intend to uncover. This process is interactive and labor
intensive when using theorem proving [13]. Thus, we investigate whether state-
exploration /model-checking tools can perform the analysis more efficiently.

3 Modeling the Mode Logic in Mur¢

Murg [4, 14] is a state-exploration tool developed by David Dill’s group at Stan-
ford University and consists of a compiler and a description language. The com-
piler takes a system description and generates a C++ special-purpose verifier
for it, which can then be used for checking assertions and deadlock behavior.

The Mur¢ description language borrows many constructs found in imperative
programming languages, such as Pascal. System descriptions may include dec-
larations of constants, finite data-types, global and local variables, and unnested
procedures and functions. Moreover, they contain transition rules for describing
system behavior, a definition of the initial states, and a set of state invariants
and assertions. Each transition rule may consist of a guard — which is never
needed here — and an action, i.e., a statement which modifies global variables.
A state in Murg’s execution model is an assignment to all global variables in
the considered description. A transition is determined by a rule which is chosen
nondeterministically from those rules whose guards are true in the current state.
The rule’s execution updates some global variables according to its action.

Table 1. Specification of module simple_guidance in Mur¢

TYPE sg_modes : ENUM { cleared, active };

TYPE sg_events : ENUM { activate, deactivate, switch, clear };

TYPE sg_signals : ENUM { null, activated, deactivated };

PROCEDURE simple_guidance (VAR mode . sg_modes; event : sg_events;
VAR signal : sg_signals);

BEGIN
IF mode=cleared THEN
SWITCH event CASE activate : signal:=activated; mode:=active;
CASE deactivate : signal:=null;
CASE switch . signal:=activated; mode:=active;
CASE clear ¢ signal:=null;
END;
ELSE
SWITCH event CASE activate . signal:=null;
CASE deactivate : signal:=null; mode:=cleared;
CASE switch : signal:=deactivated; mode:=cleared;
CASE clear : signal:=deactivated; mode:=cleared;

END; END; END;

The heart of the Mur¢ model of the FGS is the deterministic procedure fgs
which encodes the system’s reaction to some event entering the mode logic. By
declaring a transition rule for each event env_ev as RULE "rule for_env_event"
BEGIN fgs(env_ev); END, we model the nondeterministic behavior of the en-
vironment which arbitrarily chooses the event entering the system at each syn-
chronous step. Due to space constraints we do not completely present fgs, but
concentrate on modeling the vertical-guidance component of the FGS [10]. Let
us define the modes of this component as instantiations of an abstract data-
type module simple _guidance which encodes each mode’s behavior as a sim-
ple Mealy automaton (cf. Table 1). The module is parameterized by the mode
mode under consideration, the input event event, and the output event signal.
The parameters are of enumeration types sg_mode, sg_events, and sg_signals,
respectively. The body of simple_guidance specifies the reaction of a mode

to event with respect to mode. This reaction is described by an if-statement,
two case-selections, and assignments to mode and signal. The vertical-guidance
component is specified as a procedure, called vertical_guidance (cf. Table 2),
and employs simple guidance for describing the modes pitch, vs, and vga,
which are defined as global variables. The task of vertical guidance is firstly
to recognize whether env_ev refers to mode Pitch, VS, or VGA. This is done by
functions pitch_event, vs_event, and vga_event. Then env_ev is translated to
an event of type sg_events via functions pitch_conv, vs_conv, and vga_conv,
respectively, and passed to the mode to which it belongs. If this mode is ac-
tivated by the event, i.e., simple guidance returns value activated via local
variable sig, then the other two modes must instantly be deactivated by invoking
simple _guidance with the appropriate modes and event deactivate.

Table 2. Specification of module vertical_guidance in Murg

VAR pitch, vs, vga : sg_modes;
PROCEDURE vertical_guidance(env_ev:env_events); VAR sig : sg_signals;
BEGIN CLEAR sig;
IF pitch_event(env_ev) THEN
simple_guidance (pitch, pitch_conv(env_ev), sig);
IF sig=activated THEN simple_guidance(vs, deactivate, sig);
simple_guidance(vga, deactivate, sig);
END;
ELSIF vs_event(env_ev) THEN
simple_guidance(vs, vs_conv(env_ev), sig);
IF sig=activated THEN simple_guidance(pitch, deactivate, sig);
simple_guidance(vga, deactivate, sig);
ELSIF sig=deactivated THEN simple_guidance(pitch, activate, sig);
END;
ELSIF vga_event(env_ev) THEN
simple_guidance(vga, vga_conv(env_ev), sig);
IF sig=activated THEN simple_guidance(pitch, deactivate, sig);
simple_guidance(vs, deactivate, sig);
ELSIF sig=deactivated THEN simple_guidance(pitch, activate, sig);
END; END; END;

We now turn our focus to specifying mode confusion properties. As states
are generated by Murg, assert statements, that were explicitly included in the
action of a rule, are checked. If an assertion is violated — i.e., the assert state-
ment is evaluated to false in some reachable system state — the Mur¢ verifier
halts and outputs diagnostic information which consists of a sequence of states
leading from the initial state to the error state. The verifier also halts if the cur-
rent state possesses no successor states, i.e., if it is deadlocked. Next, we show
how an exemplary property of each category of the mode confusion properties
mentioned in Section 2 can be stated as assertions. We encapsulate these as-
sertions in procedure mode_confusion properties which is invoked as the last

Table 3. Specification of some mode confusion properties in Mur¢

VAR old_pitch, old_vs, old_vga : sg_modes;
PROCEDURE mode_confusion_properties(env_ev:env_events);
BEGIN
ALIAS mode_change : pitch!=old_pitch | vs!=o0ld_vs | vga!=old_vga; DO
-- check for response to pressing VS button
IF env_ev=vs_switch_hit THEN
assert (old_vs=cleared -> vs=active) "vs_toggle_1";
assert (old_vs=active -> vs=cleared) "vs_toggle_2";
END;
-- search for ignored crew inputs (property violated)
assert (crew_input(env_ev) -> mode_change)
"search_for_ignored_crew_inputs";
-- no unknown ignored crew inputs
assert (crew_input(env_ev) & !ignored_crew_input(ev) -> mode_change)
"no_unknown_ignored";
-- search for indirect mode changes (property violated)
assert (!crew_input(env_ev) -> !mode_change)
"search_for_indirect_mode_changes";
-— no unknown indirect mode changes
assert (!crew_input(env_ev) & !indirect_mode_change(env_ev) ->
'mode_change) "no_unknown_indirect_mode_changes";

END;
old_pitch:=pitch; old_vs:=vs; old_vga:=vga;
END;
statement in fgs (cf. Table 3). Here, “- -7 introduces a comment line, !'= de-

notes inequality, and |, &, !, and -> stand for logical disjunction, conjunction,
negation, and implication, respectively. Since all properties of interest concern
the transition from one system state to the next, we need to store the global
variables’ values of the previously visited state. For this purpose we introduce
new global variables old_pitch, old_vs, and old_vga. The need for this over-
head arises because Mur¢ can only reason about simple state invariants and
not about more general “state transition invariants.” Therefore, state transi-
tion invariants need to be encoded as state invariants, which doubles the size of
the state vector for our system description. The first two assertions in Table 3,
belonging to the first category of mode confusion properties, state that envi-
ronment event vs_switch hit acts like a toggle with respect to mode VS, i.e.,
if VS was in state cleared and vs_switch_hit arrived, then it is now in state
active, and vice versa. Regarding the second category, we verify that no crew
inputs are ignored, i.e., whenever an event that originated from the crew enters
the mode logic, then at least one mode changes its value. We specify this prop-
erty as crew_input(env_ev) -> mode_change, where crew_input is a function
determining whether env_ev originates from the crew and where mode_change
is a shortcut introduced as an ALIAS statement. As expected, this property
does not always hold. The error trace returned by Mur¢ helps us in identifying

the cause, as is our objective. We filter out the cause by including a predicate
ignored_crew_input, stating the negation of the cause, in the premise of the
assertion (cf. Table 3). We then re-run Mur¢ and iterate this process until the
assertion becomes true, thereby gradually capturing all crew-input scenarios re-
sponsible for mode confusion. Similarly, we approach the third category of mode
confusion properties. The property we consider is “no indirect mode changes”
which prohibits a system’s state to change if env_ev is not originated by the
crew. Using Mur¢, we discover the conditions that invalidate this property and,
subsequently, weaken it via predicate indirect mode_change. The mandatory
properties mentioned in Section 2 are formalized as invariant statements and
proved. The difference between an assert and an invariant statement is that
the former appears in the system description part of the model, while the latter
does not. The reason for specifying mode confusion properties in the system de-
scription is their reference to old_pitch, old_vs, and old_vga. In order to keep
the state space small, these variables must be re-assigned to the actual values
of pitch, vs, and vga, respectively, before a step of the synchronous system is
completed.

Summarizing, Mur¢’s description language turned out to be very convenient
for our task since the PVS model of the FGS [13] could simply be carried over.
Unfortunately, Mur¢ forces us to encode state transition invariants as state in-
variants, thereby doubling the number of global variables and Mur¢’s memory
requirements. The full Mur¢ model subsumes about 30 assertions and leads to
a finite automaton with 242 states and 3 388 transitions. In each state, any of
the 14 environment events may enter the system (“242 x 14 = 3388”). The
state-space exploration took less than 2 seconds on a SUN SPARCstation 20.

4 Modeling the Mode Logic in SMV

The SMV system [11, 17], originally developed by Ken McMillan at Carnegie-
Mellon University, is a model-checking tool for verifying finite-state systems
against specifications in the temporal logic CTL [3, 5]. SMV implements a sym-
bolic model-checking algorithm based on Binary Decision Diagrams (BDDs) [1].

SMV’s description language is a very simple, yet elegant language for modu-
larly specifying finite-state systems, which has the feel of a hardware description
language. The language’s data types are Booleans (where false and true are
encoded as 0 and 1, respectively), enumeration types, and arrays. Its syntax
resembles a style of parallel assignments, and its semantics is similar to single
assignment data flow languages. In contrast to Murg, SMV descriptions are in-
terpreted. The interpreter makes sure that the specified system is implementable
by checking for multiple assignments to the same variable, circular assignments,
and type errors. The SMV language also includes constructs for stating system
specifications in the temporal logic (fair)CTL [5], which allows one to express a
rich class of temporal properties, including safety, liveness, and fairness proper-
ties. Here, we focus on safety properties to which invariants belong.

Table 4. Specification of module simple_guidance in SMV

MODULE simple_guidance(activate, deactivate, switch, clear)

VAR mode : {cleared, active};
ASSIGN init(mode) := cleared;
next(mode) := case deactivated | deactivate : cleared;
activated : active;
1 : mode;
esac;
DEFINE activated := (mode=cleared) & (activate | switch);
deactivated := (mode=active) & (clear | switch);

A module description in SMV consists of four parts: (1) the MODULE clause,
stating the module’s name and its formal (call-by-reference) parameters, (2) the
VAR clause, declaring variables needed for describing the module’s behavior,
(3) the ASSIGN clause, which specifies the initial value of all variables (cf. init)
and how each variable is updated from state to state (cf. next), and (4) the
DEFINE clause, which allows one to introduce abbreviations for more complex
terms. The main module MAIN of our SMV specification encodes the environ-
ment of the FGS, which nondeterministically sends events to the mode logic.
This is done by defining variable env_ev of enumeration type env_events, which
contains all environment events, and by adding “init(env_ev) :=env_events;
next (env_ev) :=env_events” to the ASSIGN clause. Similar to the Mur¢ model,
we specify a module simple_guidance (cf. Table 4) and, thereby, show how
Mealy machines may be encoded in SMV. Module simple guidance takes the
input events activate, deactivate, switch, and clear — which can be either
absent or present — as parameters. The state associated with simple_guidance
is variable mode which may adopt values cleared and active. The initial value
init(mode) of mode is cleared. The behavioral part of simple guidance is de-
scribed in the next (mode) statement consisting of a case expression. The value
of this expression is determined by the first expression on the right hand side of
the colon such that the condition on the left hand side is true. The symbols =,
&, and | stand for equality, logical conjunction, and logical disjunction, respec-
tively. The terms activated and deactivated, whose values are accessible from
outside the module, are defined in the DEFINE clause.

Before we model module vertical_guidance, we comment on why we have
encoded the input event of simple_guidance using four different signal lines in-
stead of a single event of some enumeration type subsuming all four values. When
activate, deactivate, switch, and clear are combined in an enumeration
type, we need to identify the value of the input event via a SMV case construct.
This induces a circularity which would be detected by the SMV interpreter, i.e.,
our description of the mode logic would be rejected. One difference between
simple_guidance as a module in SMV and as an abstract data-type in Murg is
that the mode variable is encapsulated within the SMV module and is not a
call-by-reference parameter. The behavior of each mode of vertical guidance,
Pitch, VS, and VGA, can now be described by instantiating simple_guidance,

Table 5. Specification of module vertical_guidance in SMV

MODULE vertical_guidance(vs_pitch_wheel_changed, vs_switch_hit,

ga_switch_hit, sync_switch_pressed, ap_engaged_event)
VAR pitch : simple_guidance(pitch_activate, pitch_deactivate, 0, 0);
vs : simple_guidance(o, vs_deactivate, vs_switch_hit, 0);
vga : simple_guidance(0, vga_deactivate, ga_switch_hit, vga_clear);
DEFINE
pitch_activate := (vs_switch_hit & vs.deactivated) | (vga_event &
vga.deactivated) | vs_pitch_wheel_changed;
pitch_deactivate := (vs_switch_hit & vs.activated) |

(vga_event & vga.activated);
(vs_pitch_wheel_changed & pitch.activated) |

vs_deactivate
(vga_event & vga.activated);

vga_deactivate := (vs_pitch_wheel_changed & pitch.activated) |
(vs_switch_hit & vs.activated);
vga_clear := ap_engaged_event | sync_switch_pressed;

vga_event ap_engaged_event | sync_switch_pressed | ga_switch_hit;

as is done in the VAR clause in Table 5. Thereby, global variables pitch.mode,
vs.mode, and vga.mode are created as part of the state vector of our SMV
model. All actual parameters of each simple guidance module can be speci-
fied as terms on the input parameters of vertical guidance. Note that the
functions pitch_event, vs_event, and vga_event used in the Mur¢ description
are encoded here in the DEFINE clause. Our modeling of vertical_guidance is
self-explanatory and visualizes the differences between the SMV and the Mur¢g
languages. While in Mur¢ each synchronous step of the FGS can be modeled by
a sequential algorithm, it must be described by parallel assignments in SMV.

Table 6. Specification of some mode confusion properties in SMV

DEFINE mode_change :=
! (vertical.pitch.mode=cleared <-> AX vertical.pitch.mode=cleared) |
! (vertical.pitch.mode=active <-> AX vertical.pitch.mode=active) |
—-— check for response to pressing VS button
SPEC AG (vertical.vs.mode=cleared & env_ev=vs_switch_hit ->
AX vertical.vs.mode=active)
SPEC AG (vertical.vs.mode=active & env_ev=vs_switch_hit ->
AX vertical.vs.mode=cleared)
—-- search for ignored crew inputs (property violated)
SPEC AG (crew_input -> mode_change)
-- no unknown ignored crew inputs
SPEC AG (crew_input & !ignored_crew_input -> mode_change)
—-- search for indirect mode changes (property violated)
SPEC AG (!crew_input -> !mode_change)
-- no unknown indirect mode changes
SPEC AG ((!crew_input & !indirect_mode_change) -> !mode_change)

In SMV, temporal system properties are specified in the Computational Tree
Logic (CTL) [3, 5] and may be introduced by the keyword SPEC within the same
file as the system description. The properties of interest to us can be specified
as CTL formulas of the form AG¢, where AG stands for “always generally,”
i.e., every reachable state satisfies property ¢. The formula AX¢ expresses that
all successor states of the current state satisfy ¢. In this light, the first for-
mula in Table 6 states: “every reachable state satisfies that, if mode VS in
vertical guidance is currently cleared and event vs_switch hit enters the
system, then VS is active in every successor state of the current state.” The
symbols => and <-> used in Table 6 stand for logical implication and equivalence,
respectively. The identifiers mode _change, crew_input, indirect mode_change,
and ignored crew_input are abbreviations of expressions defined in a DEFINE
clause, as exemplary shown for mode_confusion. The presence of operator AX in
CTL remedies the need to keep track of old values of mode variables. Thereby,
the size of the associated state vector of the SMV model is cut in half when
compared to the Mur¢ model. Moreover, an orthogonal treatment of model and
property specifications is achieved. The SMV system verified about thirty asser-
tions in slightly more than half a second using 438 BDD nodes and allocated less
than 1 MByte memory on a SUN SPARCstation 20. The properties “search for
ignored crew inputs” and “search for indirect mode changes” were invalidated as
in the Mur¢g model. The returned error traces, including the assignments of each
variable in every state of the traces, supported the identification of potential
problems with the FGS model. SMV also includes an interactive mode which
provides a very simple assistant for interactive debugging. The state space of
the SMV model consists of 3 388 states, which corresponds to the 242 states of
the Mur¢ model since the actual environment event, out of 14 possible events,
must be stored in a variable in SMV (“242 x 14 = 3388”).

Summarizing, SMV performed well for our example. CTL supports the con-
venient specification of mode confusion properties. However, SMV’s system de-
scription language is not high-level when compared to Murg.

5 Modeling the Mode Logic in Spin

Last, but not least, we explore the utility of the verification tool Spin [7, 8, 18],
which was developed by Gerard Holzmann at Bell Labs, for our case study. Spin
is designed for analyzing the logical consistency of concurrent systems. It is es-
pecially targeted towards distributed systems, such as communication protocols.
The system description language of Spin, called Promela, allows one to specify
nondeterministic processes, message channels, and variables in a C-like syntax.
Given a Promela description, whose semantics is again defined as a finite au-
tomaton, Spin can perform random or interactive simulations of the system’s
execution. Similar to Mur¢, it can also generate a special-purpose verifier in
form of a C-program. This program performs an exhaustive exploration of the
system’s state space and may check for deadlocks and unreachable code, validate
invariants, and verify properties specified in a linear temporal logic [5].

Table 7. Specification of the main process init in Spin

init{ env_ev=null; do :: atomic{
if /* body encodes 1 synchr. step */
:: env_ev=vs_switch_hit /* nondet. choice of env. event */
R /* 14 cases, for each env. event */
fi; fgs(env_ev); env_ev=null /* perform synchronous step */
od }

Since our FGS is a synchronous system, it falls out of the intended scope
of Spin. Nevertheless, we show that Spin allows us to successfully carry out our
case study. The Promela fragment depicted in Table 7 encodes the main process,
referred to as init in Spin, which is the only process of our model. Here, the
global variable env_ev is of type mtype which contains an enumeration of all
event and signal names that occur in the mode logic. Promela’s type system
supports basic data types (such as bit, bool, and byte), as well as arrays,
structures (i.e., records), and channels. Unfortunately, one may only introduce
a single declaration of enumeration type, which must be named mtype. The
statement atomic in init attempts to execute all statements in its body in
one indivisible step. Especially, it prevents Spin from storing intermediate states
which might arise when executing the body. Thus, we may use this construct
for encoding the complex algorithm of the mode logic that performs a single
synchronous step. The repetition statement do together with the choice statement
if nondeterministically chooses which environment event to assign to env_ev.
The reason that we have not simply spelled out fgs(vs_switch hit), and so on
for each environment event, is that fgs needs to be implemented as an inline.
Expanding this long inline fourteen times turns out to be inefficient.

Table 8. Specification of module simple_guidance in Spin

inline simple_guidance(mode, event, signal)

{ if :: mode==cleared ->
if :: event==activate -> signal=activated; mode=active
:: event==deactivate -> signal=null
:: event==switch -> signal=activated; mode=active
:: event==clear -> signal=null
fi
: mode==active ->
if :: event==activate -> signal=null
:: event==deactivate -> signal=null; mode=cleared
:: event==switch -> signal=deactivated; mode=cleared
:: event==clear -> signal=deactivated; mode=cleared
fi

fi }

Promela does not possess any kind of procedure construct other than the pro-
cess declaration proctype. However, we may not introduce additional processes
to the main process init, since then our model would not reflect a synchronous
system any more. The only construct of Promela, which we can use for resembling
the architecture of the FGS, is inline. This construct may take parameters,
such as mode, event, and signal for component simple_guidance (cf. Table 8).
When compiling a Promela description, each occurrence of simple_guidance in
vertical guidance is replaced with its body. The modes instantiating parame-
ter mode are global variables of type bit, where cleared and active are defined
as constants 0 and 1, respectively, using the preprocessor command #define.
The body of simple _guidance contains the Promela statement if. Its behavior
is defined by a nondeterministic selection of one of its executable options, which
are separated by double colons, and by executing it. In our case, each option
consists of a guarded expression which is executable if the expression on the left
of -> evaluates to true in the current system state and which returns the result
of evaluating the expression on the right hand side. The symbols == and = denote
the equality and the assignment operator, respectively. Using simple_guidance,
we can specify component vertical guidance as another inline (cf. Table 9).
The body of vertical guidance is self-explanatory and similar to the one for
Mur¢. It should only be noted that guard else is always executable and that
expression skip leaves the current system state unchanged. Moreover, functions
pitch_event, vs_event, and vga event are spelled out as inlines here.

The verification technique we employed in Spin for reasoning about the
FGS, namely assertions, is similar to the one we used in Mur¢. More precisely,
Promela’s assertion statement assert aborts the state exploration conducted by
Spin’s verifier whenever its argument expression evaluates to false in some sys-
tem state associated with the assertion statement. Our specification of the mode
confusion properties are depicted in Table 10, where ‘!’, ‘&&’, and ‘| |’ stand for
the logical connectives not, and, and or, respectively. Moreover, the symbols /*
and */ denote the begin and end of comments. In our specification, crew_input,
mode_change, ignored_crew_input, and indirect mode_change, which are de-
fined as Boolean functions in Murg, are simply introduced via #defines. In order
to encode expression mode_change, we have to keep a copy of the ‘old’ values of
all global variables of interest, as in the Mur¢ model. Stating the mode confu-
sion properties in Spin’s version of linear-time logic requires the re-compilation
of Spin with compiler option -DNXT, such that the next-state operator, which
is desired for specifying mode_change, becomes available. Although this would
have allowed us to proceed as described for SMV, we preferred not to do so. The
reason is that Spin does not support the definition of temporal formulas in a
modular fashion, i.e., by composing complex formulas from more simpler ones,
as SMV does. Thereby, temporal formulas related to mode confusion would be
very lengthy and difficult to read. The verification results returned by the Spin
verifier are similar to the ones for Murg. The Spin model of the FGS also pos-
sesses 242 states and 3 388 transitions (+ 1 “dummy” transition). Unfortunately,
Spin crashes and core dumps when analyzing the invalid assertions search for ig-

Table 9. Specification of module vertical_guidance in Spin

inline pitch_event(env_ev) { env_ev==vs_pitch_wheel_changed }

inline vs_event(env_ev) { env_ev==vs_switch_hit }
inline vga_event(env_ev) { env_ev==ga_switch_hit || ... }
inline vertical_guidance(env_ev)
{ if :: pitch_event(env_ev) ->
simple_guidance(activate, pitch_mode, pitch_signal);
if :: pitch_signal==activated ->

simple_guidance(deactivate, vs_mode, vs_signal);
simple_guidance(deactivate, vga_mode, vga_signal)
11 else -> skip
fi
:: vs_event(env_ev) ->
simple_guidance(switch, vs_mode, vs_signal);

if :: vs_signal==activated ->
simple_guidance(deactivate, pitch_mode, pitch_signal);
simple_guidance(deactivate, vga_mode, vga_signal)

:: vs_signal==deactivated ->
simple_guidance(activate, pitch_mode, pitch_signal)

:: else -> skip
fi
:: vga_event(env_ev) ->
if :: env_ev==ga_switch_hit ->
simple_guidance(switch, vga_mode, vga_signal)
:: else ->
simple_guidance(clear, vga_mode, vga_signal)
fi;
if :: vga_signal==activated ->
simple_guidance(deactivate, pitch_mode, pitch_signal);
simple_guidance(deactivate, vs_mode, vs_signal)
. vga_signal==deactivated ->
simple_guidance(activate, pitch_mode, pitch_signal)
11 else -> skip
fi

:: else -> skip
fi}

nored crew inputs and search for indirect mode changes. However, it still writes
an error trace which can be fed into Spin’s simulator. No other violated asser-
tions were detected during the exhaustive state-space search which took under
2 seconds and required about 2.6 MBytes memory on a SUN SPARCstation 20.
It should be mentioned that a previous effort to analyze a FGS using Spin suf-
fered from an intractably large state space [15]. That model was then checked
for invariants using Spin’s bitstate hashing algorithm.

Summarizing, carrying out our case study in Spin was feasible but less elegant
than in Mur¢ due to the lack of procedure and function constructs in Promela,
which had to be encoded using inlines and #defines. We would like to see a

Table 10. Specification of some mode confusion properties in Spin

bit old_pitch_mode=cleared; bit old_vs_mode=cleared;
bit old_vga_mode =cleared;

/* check for response to pressing VS button */
assert (! (old_vs_mode==cleared) || (vs_mode==active));

assert (! (old_vs_mode==active) || (vs_mode==cleared));

/* search for ignored crew inputs (property violated) */
assert (! (crew_input) || mode_change);

/* no unknown ignored crew inputs */
assert (! (crew_input && !(ignored_crew_input)) || mode_change);
/* search for indirect mode changes (property violated) */
assert (! (! (crew_input)) || !(mode_change));

/* no unknown indirect mode changes */
assert (! (! (crew_input) && !(indirect_mode_change)) || !(mode_change));
/* save the current mode values */

old_pitch_mode=pitch_mode; old_vs_mode=vs_mode; old_vga_mode=vga_mode;

richer type system in Spin, which can handle more than one mtype definition.
Especially useful to us were Spin’s capabilities to simulate Promela models and
to feed back error traces into the simulator. Simulations helped us to quickly
identify the causes of ignored crew inputs and indirect mode changes. Beside
monitoring variables, we found it useful that Spin highlights the part of the
Promela description corresponding to the system state under investigation.

6 Discussion

In this section we discuss the strengths and weaknesses of Murg, SMV, and Spin
regarding their system and property description languages and regarding their
capabilities for generating and animating diagnostic information. We restrict our
discussion to the observations we made on the FGS case study and refrain from
a more general comparison or a comparison along the line of a “feature list.”
Not only is our experience with the tools limited, but a single case study will
inevitably give a biased picture since tools are developed with different objectives
and one will be more tailored for an application than another.

The system description languages of all three verification tools allow us to
model the deterministic, synchronous behavior of the FGS, as well as the non-
deterministic behavior of the system’s environment. However, Mur¢’s language
stands out since it (i) implements numerous language constructs and has a rich
type system, as found in imperative programming languages, (ii) supports a
modular programming style via parameterized procedures and functions, and
(iii) permits one to easily adapt the existing PVS specification of the mode
logic [13]. However, SMV’s module concept is slightly more elegant than Murg’s
procedure concept for our application since mode variables can be declared
within the module to which they belong. A major difference between the tools’
languages is that Murg and Spin allow model encoding using sequential algo-

rithms, whereas SMV requires an algorithm description by parallel assignments.
Regarding Promela, one notices that it is designed to specify asynchronous sys-
tems. It only offers the process declaration construct proctype for encapsulating
code fragments. We used inline declarations to work around this problem. How-
ever, an inline construct is no substitute for a procedure mechanism. Although,
depending on the employed parameter mechanism, both constructs may seman-
tically coincide, there is an important practical difference. Inlines may blow-up
system descriptions, thereby making, e.g., syntax checks inefficient. We experi-
enced durations of syntax checks well exceeding ten minutes for some variations
of our Spin model. Finally, all three tools are missing the ability to organize
events in a tazonomy via sub-typing. Such a concept would help us to divide all
events into lateral-mode and vertical-mode events, and further into Pitch events,
HDG events, etc.

Regarding the second issue, we also identified important differences among
the tools. Since all mandatory and mode confusion properties of interest are
invariants, they can be stated as assertions and verified in state-exploration
tools, such as Mur¢, as well as more general model-checking tools, such as SMV
and Spin. When specifying mode confusion properties, a temporal logic is most
convenient since it allows one to implicitly refer to adjacent states in program
paths using the next-state operator. This is important for describing property
mode_change which requires one to access the mode variables of adjacent states.
In contrast to Mur¢, the encoding of mode confusion properties in SMV does
not require the storage of old values of mode variables. Thereby, the size of the
associated state vector is cut in half. Spin can be employed both as an assertion
checker, similar to Mur¢g, and as a model checker, similar to SMV. Especially,
SMV’s BDD-based model checker performed very well in our case study since
mode logics have the characteristics of Boolean terms which can be represented
efficiently using BDDs. However, the small state space of our example system
precludes us from fairly comparing the run times of Murg, SMV, and Spin.

Concerning the third issue, only Spin provides rich features for simulating
and animating diagnostic information. Each tool returns an error trace when-
ever a desired system property is invalidated. Mur¢ and SMV output a textual
description of the error trace, which displays the global variables assignments
at all states of the trace. Spin, however, is able to animate error traces using
message sequence charts, time sequence panels, and data value panels which are
integrated in its graphical user interface, known as Xspin. In our case study in-
volving a synchronous system only the data value panel was of use. This feature
and the ability to highlight the source code line corresponding to the current
state in the simulation enabled us to detect sources of mode confusion quickly.

7 Conclusions and Future Work

This paper advocates the use of state-exploration techniques for analyzing mode
confusion. Compared to theorem provers, model-checking tools are able to verify
the properties of interest automatically. When weighing the strengths of Murg,

SMV, and Spin for our application, it turned out that these are complementary:
Mur¢ has the most pleasant system description language, including a rich type
system; SMV’s way of integrating temporal logics supports the convenient spec-
ification of mode confusion properties; Spin’s capability of animating diagnostic
information enables the fast detection of sources of mode confusion.

Regarding future work, our case study should be extended to include more
components of today’s digital flight decks and, subsequently, to explore other
interesting properties related to mode confusion.

Acknowledgments. We thank Ricky Butler and Steve Miller for many en-
lightening discussions about mode confusion, as well as Ben Di Vito and the
anonymous referees for their valuable comments and suggestions.

References

[1] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8), 1986.

[2] R.W. Butler, S.P. Miller, J.N. Potts, and V.A. Carrefio. A formal methods ap-

proach to the analysis of mode confusion. In DASC 98, 1998. IEEE.
[3] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, 1986.

[4] D.L. Dill. The Murphi verification system. In CAV ’96, vol. 1102 of LNCS, pages
390-393, 1996. Springer-Verlag.

[6] E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, vol. B, pages 995-1072, 1990. North-Holland.

[6] F. Fung and D. Jamsek. Formal specification of a flight guidance system. NASA
Contractor Report NASA/CR-1998-206915, 1998.

[7] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[8] G. Holzmann. The model checker Spin. IEEE Transactions on Software Engi-

neering, 23(5):279-295, 1997.

[9] N.G. Leveson, L.D. Pinnel, S.D. Sandys, S. Koga, and J.D. Reese. Analyzing
software specifications for mode confusion potential. In Workshop on Human
Error and System Development, 1997.

[10] G. Liittgen and V.A. Carrefio. Murphi, SMV, and Spin models of the mode logic.
See http://www.icase.edu/ luettgen/publications/publications.html.

[11] K.L. McMillan. Symbolic Model Checking: An Approach to the State-Ezplosion
Problem. PhD thesis, Carnegie-Mellon University, 1992.

[12] S.P. Miller. Specifying the mode logic of a flight guidance system in CoRE and
SCR. In FMSP ’98, pages 44-53, 1998. ACM Press.

[13] S.P. Miller and J.N.Potts. Detecting mode confusion through formal modeling
and analysis. NASA Contractor Report NASA /CR-1999-208971, 1999.

[14] Mur¢g. Project Page at http://sprout.stanford.edu/dill/murphi.html.

[15] D. Naydich and J. Nowakowski. Flight guidance system validation using Spin.
NASA Contractor Report NASA /CR-1998-208434, 1998.

[16] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant systems: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107-125, 1995.

[17] SMV. Project Page at http://www.cs.cmu.edu/ modelcheck/smv.html.

[18] Spin. Project Page at http://netlib.bell-labs.com/netlib/spin/whatispin.html.

