
Aircraft Trajectory Modeling and Alerting

Algorithm Veri�cation

V��ctor Carre~no1 and C�esar Mu~noz2

1 Assessment Technology Branch
Mail Stop 130, NASA Langley Research Center

Hampton, VA 23681-2199
v.a.carreno@larc.nasa.gov

2 Institute for Computer Applications in Science and Engineering (ICASE)
Mail Stop 132C, 3 West Reid Street
NASA Langley Research Center

Hampton VA 23681-2199
munoz@icase.edu

Abstract. The Airborne Information for Lateral Spacing (AILS) pro-
gram at NASA Langley Research Center aims at giving pilots the infor-
mation necessary to make independent approaches to parallel runways
with spacing down to 2500 feet in Instrument Meteorological Condi-
tions. The AILS concept consists of accurate traÆc information visible
on the navigation display and an alerting algorithm which warns the
crew when one of the aircraft involved in a parallel landing is diverting
from its intended
ight path. In this paper we present a model of air-
craft approaches to parallel runways. Based on this model, we analyze
the alerting algorithm with the objective of verifying its correctness. The
formalization is conducted in the general veri�cation system PVS.

1 Introduction

The Airborne Information for Lateral Spacing (AILS) [12, 3, 6] is a project being
conducted at NASA Langley Research Center. Its objective is to reduce traÆc
delays and increase airport eÆciency by enabling approaches to closely spaced
parallel runways in Instrument Meteorological Conditions.

Approaches to parallel runways are currently limited to 4300 feet in In-
strument Meteorological Conditions. Specially equipped airports with fast scan
radars, high resolution monitoring systems, and approach-speci�c air traÆc con-
trollers can perform parallel approaches to 3400 feet [14, 8]. The AILS project
aims at shifting the responsibility of maintaining separation during parallel ap-
proaches from the air traÆc controller to the aircraft crew. Via the AILS concept,
approaches to parallel runways 2500 feet apart in Instrument Meteorological
Conditions are expected.

AILS eliminates the delay inherent in the communication between air traÆc
controller and crew by displaying parallel traÆc information in the cockpit. The
degree of safety is enhanced by an alerting system which warns the crew when

Aircraft Trajectory Modeling and Alerting Algorithm Veri�cation 91

one of the aircraft involved in a parallel landing is deviating from the intended

ight path. The alerting algorithm is a critical part of the AILS concept. Flaws
in its logic could lead to non-alerted collision incidents. The algorithm has been
extensively tested in simulators and in real
ights.

The objective of this work is to conduct a formal analysis of the alerting algo-
rithm in order to discover any possible errors that have not been detected during
testing and simulation. In particular, we develop a formal model of parallel land-
ing scenarios. Based on this model, we study the behavior of the AILS alerting
algorithm with respect to collision incidents. In particular, we have found max-
imum and minimum times when an alarm will �rst sound prior to a collision.
Indeed, we have proven that for any trajectory leading to a collision, an alarm
is issued at least 4 seconds before the collision. Conversely, we have found that
there exist trajectories leading to a collision where the alarm will not sound be-
fore 11 seconds. We believe that for all cases the largest time prior to a collision
when the alarm will �rst sound is closer to 11 than to 4.

The paper is organized as follows. First, in section 2, we shortly review the
alerting features which are integrated in the AILS concept. Next, in section 3,
we describe in detail the AILS alerting algorithm. We model aircraft trajectories
and collision scenarios in section 4. Section 5 contains the main properties that
we have formally proven. Finally, we conclude with some remarks in section 6.
The formalization presented in this paper has been developed in the general
veri�cation system PVS [11]. We use a stylized-LATEX PVS concrete syntax and
assume the reader is familiar with standard notations of higher-order logic.

2 System Description

x

y

Two Dot Deviation

One Dot Deviation
Localizer Track

wdist

cdist

10 NM

Fig. 1. Parallel runway approach

92 V��ctor Carre~no and C�esar Mu~noz

In a typical independent parallel approach, depicted in Figure 1, aircraft in-
tersect their localizer track (longitudinal runway center) approximately 10 nau-
tical miles from the runway threshold. During localizer intersection, aircraft have
a 1000 feet vertical separation. After the aircraft are established in their localizer
track, vertical separation is eliminated and aircraft start a normal glide path for
landing.

The AILS alerting system starts operating when the aircraft are on their
localizers. At this time the aircraft are approximately at the same altitude. As
explained later, one aircraft is assumed to be the intruder and the other is as-
sumed to be the evader. The scenario is then reversed. When the intruder aircraft
deviates from its airspace, the AILS system provides 6 alert levels, depending
on the severity of the deviation. Table 1 shows an alerting sequence as seen in
the evader and intruder aircraft primary and navigation displays.

Table 1. Alerting sequence

Evader Intruder

1 Localizer alert (one dot deviation)

2 Localizer alert (two dot deviation)

3 Caution alert (traÆc)

4 Caution alert (traÆc)

5 Warning alert (collision)

6 Warning alert (collision)

All alerts in the intruder aircraft are expected to be followed by a corrective
maneuver. The evader aircraft is not expected to perform an evasive maneuver
until a warning alert is issued, at which time landing is aborted and an emergency
escape maneuver is performed. Notice that the intruder aircraft always receives
a caution or warning alert before the respective caution or warning alerts are
issued to the evader.

An algorithm implementing the alerting features explained above runs in-
dependently on each aircraft. It runs twice every 0:5 seconds. The �rst time
the algorithm assumes that the own-ship is the intruder aircraft and the adja-
cent aircraft is the evader. In the next iteration the algorithm assumes that the
own-ship is the evader and the adjacent aircraft is the intruder.

Several assumptions were made by the AILS project researchers in the de-
velopment of the alerting algorithm. These assumptions are justi�ed by physical
characteristics and operational constraints. They are as follows:

{ Time is discrete and divided in increments of 0.5 seconds. In our model, we
call this value tstep.

{ The rate of turn is determined by the bank angle and ground speed.
{ The speeds of the aircraft are constant. Henceforth, we use intruderSpeed
and evaderSpeed as the constant speed values of the intruder and evader
aircraft, respectively.

Aircraft Trajectory Modeling and Alerting Algorithm Veri�cation 93

{ The vertical separation between the aircraft is assumed to be 0 during a
landing approach.

{ Only the intruder aircraft will deviate from its path in a parallel approach.
The evader aircraft is assumed to stay in its localizer with a heading angle
of 0Æ.

It should be noted that the experimental AILS system, as currently designed,
forms part of the TraÆc Alert and Collision Avoidance System (TCAS) [13]. In
this work, we assume that the AILS alerting algorithm is running in isolation
from other aircraft components. In addition, we concentrate on the caution and
warning alerting kernel of the AILS alerting system. The one dot and two dot
deviation alerts present a simple scenario and can be easily added to our model
by a separate function as it is done in the current implementation.

3 The AILS Alerting Algorithm

In this section we describe the alerting algorithm. We start in subsection 3.1 with
a detailed, but informal, description of the actual algorithm. Then, in section 3.2,
we abstract and formalize it in the PVS speci�cation language.

3.1 Detailed description

The alerting algorithm determines when an alarm will be triggered by calculating
possible collision trajectories and comparing the future aircraft locations with
predetermined time and distance thresholds. The algorithm is executed in two
modes every tstep seconds: (1) the �rst mode assumes its own aircraft is a threat
to the adjacent aircraft and the adjacent aircraft is following the localizer; (2)
the second mode assumes the adjacent aircraft is a threat to its own and the
own is following the localizer. In either mode, one aircraft is the intruder and
one is the evader.

The algorithm considers two cases depending on whether the intruder is
changing direction or not. When the intruder aircraft is not changing direction,
i.e., its bank angle is 0, the algorithm determines if the two aircraft are diverging
or converging and the point of closest separation. This is done by obtaining the
derivative of the distance between the aircraft and solving for time when the
derivative equals zero as follows.

�x(t) = xin(t)� xev(t) (1)

�y(t) = yin(t)� yev(t) (2)

d

dt
�x(t) = intruderSpeed� cos(�)� evaderSpeed (3)

d

dt
�y(t) = intruderSpeed� sin(�) (4)

R(t) =

q
�x(t)

2 +�y(t)
2 (5)

94 V��ctor Carre~no and C�esar Mu~noz

d

dt
R(t) =

�x(t)�
d
dt
�x(t) +�y(t)�

d
dt
�y(t)p

R(t)
(6)

For a time t, (xin(t); yin(t)) and (xev(t); yev(t)) are the coordinates of the
intruder and evader aircraft, respectively, and � is the heading angle of the
intruder aircraft. When d

dt
R(t+ �) = 0, we get the time � , relative to t, of the

point of closest separation of the aircraft. Time � has been calculated as

�(t) = �
�x(t)�

d
dt
�x(t) +�y(t)�

d
dt
�y(t)

d
dt
�x(t)2 +

d
dt
�y(t)2

(7)

Equations 3, 4, 6, and 7 were formally deduced by using the computer algebra
tool MuPAD [4]. Notice that � is undetermined when the aircraft are parallel and
the ground speeds are equal. In this case, the alerting algorithm de�nes �(t) = 0
for any t. Since the evader aircraft is assumed to stay in its localizer with a
heading angle of 0Æ, it does not have a y-speed component. This is re
ected in
Equation 4.

For a time t, if �(t) is negative or zero, the tracks are diverging or parallel,
respectively. If �(t) is greater than zero, the tracks are converging and �(t) will be
the time of closest separation (Figure 2). When tracks are diverging or parallel,
the algorithm checks the aircraft separation at the present time against the
threshold distance for warning or caution alert. When tracks are converging, the
algorithm compares the time and distance of closest separation against time and
distance thresholds, respectively. In either case, an alarm is triggered when the
calculated time and distance are within the time and distance alert thresholds.

Time
tau

Closest separation R
(t

)

 D
is

ta
nc

e

Fig. 2. Converging tracks

When the intruder aircraft is changing direction, i.e., its bank angle is not 0,
the algorithm calculates the radius of the turn and the rate of change of direction.
Tangential tracks are calculated from the arc path as to produce tangents which
are 1.5Æ to 3Æ in angular separation (Figure 3). For each of these tangential
tracks the algorithm determines whether the two aircraft tracks are diverging or
converging and performs time and distance comparisons as explained above.

3.2 PVS abstraction

The original AILS algorithm was written in FORTRAN at Langley Research
Center. It has been revised several times and the latest version
own in the Boe-

Aircraft Trajectory Modeling and Alerting Algorithm Veri�cation 95

Tangent
Tracks

1.5 to 3 degrees

circular
arc path
at current
bank angle

Fig. 3. Radial trajectory and tangential tracks

ing 757 experimental aircraft was provided by Honeywell. For the work presented
in this paper, we created a high level abstract model of the alerting algorithm
in the PVS language. The algorithm model uses the same strategy as the FOR-
TRAN algorithm to determine if alarms are triggered, as explained above. All of
the PVS declarations involved in the modeling of the algorithm can be seen in the
theory �le available at http://shemesh.larc.nasa.gov/people/vac/ails.pvs.

The model of the algorithm is a function which takes the states of the aircraft
and returns a Boolean value corresponding to whether the alarm is triggered
or not. The type of the alarm, caution or warning, depends on the threshold
parameters. However, we only consider a generic type of alarm which abstracts
from warning and caution alarms. The state of an aircraft is de�ned by a record
with �elds x, y: the position coordinates; heading: the angles between the
ight
path and the localizer track; and bank: the bank angle which range between
�45Æ and 45Æ (type Bank). In PVS:

Bank : TYPE = fr:real j -45 � r � 45g

State : TYPE =

[# x : real,

y : real,

heading : real,

bank : Bank

#]

Access to records can be written in PVS as function calls, i.e., if s is a State,
x(s) refers to the �eld x of the state s.

The model of the alerting algorithm is given next.

96 V��ctor Carre~no and C�esar Mu~noz

larcalert(intruder,evader:State): bool =

LET phi = bank(intruder) IN

LET trkrate = g�(180/�)�tand(phi)/intruderSpeed IN

IF trkrate = 0 THEN % Direction is not changing.

chktrack(intruder,evader,0) % Check strait tracks.

ELSE % Direction is changing

LET arcrad = % Calculate arc radius.

intruderSpeed2/(g�tand(phi)) IN

LET idtrk =

IF abs(trkrate) � 3 THEN 1 % This determines

ELSIF abs(trkrate) � 1+1/2 THEN 2 % how often

ELSIF abs(trkrate) � 3/4 THEN 4 % tangential

ELSE 8 % tracks are

ENDIF IN % calculated.

arc_loop(intruder,evader,arcrad,trkrate,idtrk,0)

ENDIF

where g is the gravitational acceleration constant (approx. 32:2 feet/seconds2).
The �rst part of the function larcalert is exercised when the track rate

(trkrate) is zero and there is no change in the intruder's heading. In that
case, the function chktrack makes the calculation for converging or diverging
tracks, according to Equations 1 to 7. If the tracks are diverging, the func-
tion chkrange is called to compare present locations against time and distance
thresholds (alertTime and alertRange, respectively). If the tracks are converg-
ing, predicted locations at caution time or time of closest separation, whatever
is smaller, are compared. An alarm is issued when calculated time and distance
values are within the range of time and distance alert thresholds.

The structure of the de�nitions of chkrange and chktrack are given next.

chkrange(range,t:real): bool =

range � alertRange ^ t � alertTime

chktrack(intruder,evader:State,t:real): bool =

LET range = R(t) IN

LET tau = �(t) IN

IF tau � 0 THEN % Tracks are diverging (or parallel).

chkrange(range,t) % Check range at prediction time t.

ELSE % Tracks are converging.

IF t+tau > alertTime THEN % Closest separation beyond alert time.

R(alertTime) � alertRange % Check range at alert threshold.

ELSE % Closest separation within alert time.

R(t+tau) � alertRange % Check range at time of

ENDIF % closest separation.

ENDIF

The second part of the function larcalert handles the case when the in-
truder is changing direction. The arc radius is calculated and the function
arc loop generates the tangential tracks from the arc trajectory. The function

Aircraft Trajectory Modeling and Alerting Algorithm Veri�cation 97

arc loop is a recursive function modeling a DO-LOOP statement. It is used to
iterate the function chktrack on tangential tracks every idtrk time steps. The
actual de�nition of arc loop is too long to be included in the paper and can
also be seen in the theory �le as pointed above. The structure of the function is:

arc_loop(intruder,evader,arcrad,trkrate,idtrk,iarc): RECURSIVE bool =

IF iarc = MaxStep THEN FALSE

ELSE

calculate positions of aircraft

IF not time for a tangential track THEN

IF chkrange(...) THEN % Check range at that point.

TRUE % Trigger an alarm.

ELSE

arc_loop(...,iarc+1) % Go to new iteration.

ENDIF

ELSE % Time for tangential tracks.

IF chktrk(...) THEN % Check track at this point.

TRUE % Trigger an alarm.

ELSE

arc_loop(...,iarc+1) % Go to new iteration.

ENDIF

ENDIF

ENDIF

Based on the idtrk argument and the step in the loop iarc, the function
arc loop determines if a tangential track is calculated or not. If a tangential
track is not calculated, the function chkrange compares the distance between
the calculated positions of the aircraft and the distance threshold. The function
chktrk is used to check for collisions on all the tangential tracks in the loop. The
function arc loop terminates when one of the functions chkrange or chktrack
triggers an alarm or when iarc has reached a constant MaxStep de�ned as
alert time/tstep.

In the PVS model, we are using an axiomatic de�nition of the square root
function (sqrt, see section 5). Trigonometric functions (sind, cosd, and tand,
for sine, cosine, and tangent of angles in degrees, respectively) are de�ned by
series approximations. However, as we will see in section 5, we also provide
axioms about trigonometric functions to facilitate the proofs.

As we have seen, the AILS algorithm considers a limited set of possible tra-
jectories for the intruder aircraft, i.e., assuming a constant radius turn at the
original bank angle, only tangent track escapes to the turn arc are considered.
The developers of the algorithm state that this assumption is reasonable under
normal circumstances, i.e., the intruder aircraft is not intentionally trying to
collide with the evader aircraft. However, to evaluate the behavior of the algo-
rithm in a wider range of possible landing scenarios, a more general model of
trajectories for the intruder aircraft is necessary. In the next section, we develop
such a model.

98 V��ctor Carre~no and C�esar Mu~noz

4 Parallel Landing Scenarios

According to the characteristics and assumptions of the AILS algorithm, we
propose a time-discrete model of trajectories with time increments of tstep

seconds. In that model, as in the case of the alerting algorithm, intrusion paths
are determined by the bank angle and ground speed of the intruder aircraft.
Given a ground speed gs > 0, a bank angle �, the heading turn rate is given by

trkrate(gs; �) =
tand(�)� g � 180

gs� �
;

where g is the gravitational acceleration constant.
Although under normal operation the bank angle of a commercial aircraft

is limited to �30Æ to 30Æ, we allow the bank angle to range from �45Æ to 45Æ.
For a minimum ground speed of 180 feet per second, it means a maximum
heading turn rate of about 6Æ per second. These values produce very aggressive
blundering situations quite consistent with worst cases scenarios tested by the
AILS developing group. Incidentally, the function trkrate is well-de�ned for
bank angles in that range.

De�nition 1 (Intruder trajectory). An intruder trajectory of length n for

an aircraft with state s and ground speed gs is a sequence of states in0 : : : inn
such that in0 = s and for 0 < i � n,

1. jheading(ini)� heading(ini�1)j = tstep� trkrate(gs; bank(ini)),
2. x(ini) = x(ini�1) + gs� tstep� cosd(heading(ini)), and
3. y(ini) = y(ini�1) + gs� tstep� sind(heading(ini)).

In PVS, we de�ne the next state of an intruder aircraft at state s and bank
angle � by the function

next_intruder_state(s:State,�:Bank): State =

s WITH [

x := x(s) + intruderSpeed�tstep�cosd(heading(s)),
y := y(s) + intruderSpeed�tstep�sind(heading(s)),
heading := heading(s) + tstep�trkrate(intruderSpeed,bank(s)),
bank := �

]

The notation WITH is the record (and function) overriding operator in PVS.
We model an intruder trajectory by a recursive function having as parameters

an initial state s, a bank angle assignment for each iteration step tr, and the
iteration step n, as follows

intruder_trajectory(s:State, tr:[posnat ! Bank], n:nat):

RECURSIVE State =

IF n = 0 THEN s

Aircraft Trajectory Modeling and Alerting Algorithm Veri�cation 99

ELSE

next_intruder_state(intruder_trajectory(s, tr, n-1),tr(n))

ENDIF

MEASURE n

For example, given an intruder aircraft at initial state s and bank angle equal
to 0, a trajectory of length n such that the plane follows a straight line to its
current heading angle is given by in0 : : : inn, where in0 = s and for 0 < i � n,

ini = intruder trajectory(s; �(n : posnat) : 0; i):

For the evader aircraft, we assume that it stays in its localizer with a constant
speed and constant heading of 0Æ. Heading and bank angles are irrelevant in the
de�nition of an evader trajectory.

De�nition 2 (Evader trajectory). An evader trajectory of length n for an

aircraft with state s and ground speed gs is a sequence of states ev0 : : : evn such

that ev0 = s and for 0 < i � n,

1. x(evi) = x(evi�1) + gs� tstep and

2. y(evi) = y(ev0).

For an initial state s of an aircraft, its state after n steps in a evader trajectory
is de�ned by evader trajectory(s,n) as follows

evader_trajectory(s:State, n:nat): State =

(#

x := x(s) + evaderSpeed�tstep�n,
y := y(s),

heading := heading(s),

bank := bank(s)

#)

We are interested in trajectories leading to collision incidents. Aircraft are
said to be in collision if the distance between them is less than or equal to
collisionRange. In our development, we consider 200 feet for collisionRange,
which is approximately the wing span of a Boeing 747.

distance(s1,s2:State): real =

sqrt((x(s2)-x(s1))2 + (y(s2)-y(s1))2)

collision(s1,s2:State): bool =

distance(s1,s2) � collisionRange

De�nition 3 (Collision scenario). Given an intruder trajectory in0 : : : inn
and an evader trajectory ev0 : : : evn, we said that they lead to a collision incident
at step i, for 0 � i � n, if collision(ini,evi) holds.

A collision scenario is de�ned in PVS as follows

100 V��ctor Carre~no and C�esar Mu~noz

collision_scenario(intruder,evader:State, tr:[posnat ! Bank],

i:nat):bool =

collision(intruder_trajectory(intruder,tr,i),

evader_trajectory(evader,i))

We have implemented the model of trajectories, together with our high-level
version of the alerting algorithm, in Java. The implementation, available in the
same location as the PVS theory �les, serves a double purpose. First, it allows us
to graphically visualize all the collision trajectories for a given time and initial
values of the intruder and evader aircraft. Trajectories are diÆcult to visualize in
PVS given the huge amount of data generated as output by the model. Second
and more importantly, by studying those trajectories, we were able to extract
conjectures that we have then formally proven in PVS. Conversely, as we will
mention later, we have rejected some conjectures by �nding counter-examples
via simulation of collision trajectories,

In the next section, we formally study in PVS the behavior of the alerting
algorithm with respect to our model of collision trajectories.

5 Main Properties

The objective of this modeling and veri�cation work is (1) to show that the
method implemented in the algorithm to predict trajectories and trigger alarms
is adequate and does not lead to dangerous situations, and (2) to explore possible
trajectory scenarios which lead to unacceptable risk. To this e�ect we created
models of the algorithm and aircraft trajectories in PVS, created simulations
in JAVA to graphically visualize the behavior and characteristics of the land-
ing scenario, and derived in the computer algebra tool MuPAD equations of
section 3.

5.1 Axioms on continuous mathematics

Before stating the main properties, it should be said that most of the proofs
require reasoning on continuous mathematics. We have assumed some uninter-
preted functions and axioms in PVS, for instance

sqrt(x:real) : fz:real | z2 = x and z � 0g

sin_cos_sq_one : AXIOM

8 (x:real): sind(x)2 + cosd(x)2 = 1

More involved properties, grounded on Equations 1 to 7, are also necessary,
e.g.,

derivative_eq_zero_min : AXIOM

Aircraft Trajectory Modeling and Alerting Algorithm Veri�cation 101

8 (t1,t2:real): R(t1+�(t1)) � R(t1+t2)

decrease_zero_to_tau : AXIOM

8 (t,t1,t2:real) :

�(t) � 0 ^ t2 � �(t) ^ t1 � t2

)
R(t+t1) � R(t+t2)

increase_tau_to_zero : AXIOM

8 (t,t1,t2:real) :

�(t) � 0 ^ t2 � �(t) ^ t1 � t2

)
R(t+t1) � R(t+t2)

Axiom derivative eq zero min states that at time t, �(t) would be the
time of closest separation between the aircraft. Axioms decrease zero to tau

and increase tau to zero state that function R asymptotically decreases for
times less than �(t) and asymptotically increases for times greater than �(t),
respectively.

5.2 Finding a time prior to a collision

Our intention is to show that for all aircraft trajectories which lead to a collision
and all initial states1, an alarm is issued time seconds before a collision. In our
formal development, we have found maximum and minimum bounds for the
values of time.

In �rst place, we have proven that an alarm (it can be caution or warning)
is triggered when the distance between the aircraft is within the alerting range
(alertRange). This property holds independently of the values of any other state
variables of the aircraft.

alarm_when_alerting_distance : THEOREM

8 (evader,intruder:State) :

alerting_distance(evader,intruder)) larcalert(evader,intruder)

The theorem above establishes the largest lower bound on the elapsed time
between an alert and a collision that we have found so far. For an alerting
distance of 1400 feet and an intruder ground speed of 250 feet per second this
results in an alarm at least 4 seconds before collision.

An e�ort to prove that a caution is issued for a value of (alertTime-1)
(alertTime being de�ned as 19 seconds) failed. Indeed, we have found a collision
trajectory which allows two aircraft to
y from a 2500 feet y-separation to a
distance of less than 1900 feet, without triggering an alarm 11 seconds before
the collision.

1 Recall from section 2 that initial states are when the aircraft are on their localizers.

102 V��ctor Carre~no and C�esar Mu~noz

move_2500_to_1900_no_alarm_before_11_seconds : THEOREM

9 (intruder,evader:State, tr:[posnat ! Bank], n:nat) :

collision_scenario(intruder,evader,tr,n+11/tstep) ^
abs(y(intruder)-y(evader)) = 2500 ^
distance(intruder_trajectory(intruder,tr,n),

evader_trajectory(evader,n)) < 1900 ^
8 (i:[0...n]):

: larcalert(evader_trajectory(evader,i),

intruder_trajectory(intruder,tr,i))

Intruder and evader trajectories that satisfy the above property are in0 : : : inn,
ev0 : : : evn, where

in0 = (# x := 860, y := 0, heading := 3, bank := 0 #)

ev0 = (# x := 0, y := 2500, heading := 0, bank := 0 #)

tr = �(n : posnat) : IF n � 122 THEN 0 ELSE 45 ENDIF

and for 0 < i � n,

ini = intruder trajectory(in0; tr; i)

evi = evader trajectory(ev0; i)

By combining these theorems, we can state that (1) there is a trajectory for
which an alarm will not sound before 11 seconds and (2) for all trajectories an
alarm will sound at least 4 seconds before a collision. We believe that for all cases
the largest time prior to a collision when the alarm will �rst sound is closer to
11 than to 4.

5.3 Closing the gap

In order to �nd a largest time prior to a collision, we need to �nd strong invariants
on collision trajectories. Notice, for example, that for an intruder trajectory
in0 : : : inn and an evader trajectory ev0 : : : evn, it cannot be the case that they
lead to a collision incident at step n when distance(in0,evn) > R, where

R = collisionRange+intruderSpeed�n�tstep:

Indeed, any intruder aircraft out of the circle of center (x(evn),y(evn)) and
radius R, needs a larger time than n�tstep to reach any point of the circle of
center (x(evn),y(evn)) and radio collisionRange. The property above can
be expressed in PVS as follows.

collision_invariant : LEMMA

8 (intruder,evader:State, tr:[posnat ! Bank], n:nat) :

collision_scenario(intruder,evader,tr,n)

)

Aircraft Trajectory Modeling and Alerting Algorithm Veri�cation 103

8 (i:[0...n]):

distance(intruder_trajectory(intruder,tr,i),

evader_trajectory(evader,n)) �
collisionRange+intruderSpeed�(n-i)�tstep

The proof of the invariant above requires the following lemma.

distance_invariant : LEMMA

8 (intruder,evader:State, tr:[posnat ! Bank], n:nat) :

distance(intruder_trajectory(intruder,tr,n),evader) �
distance(intruder_trajectory(intruder,tr,n+1),evader) +

intruderSpeed�tstep

Lemma distance invariant states that with respect to a �x evader position,
one step in a straight trajectory leads farther than one step in any other direction.

We intend to use the above invariant and lemmas, together with properties
derived from the physical trajectories, to �nd a bound greater than 4 seconds
for any collision scenario. Under the assumption that the intruder bank angle is
zero, we have proven that an alarm is issued 19 seconds before a collision. That
property is experessed in PVS as follows

alarm_before_19_seconds_to_collision : THEOREM

bank(intruder) = 0 ^
collision_scenario(intruder,evader,straight_trajectory,m+38)

)
(8 (i:subrange(m,m+38)):

larcalert(intruder_trajectory(intruder,straight_trajectory,i),

evader_trajectory(evader,i)))

We are trying to generalize the proof for an arbitrary trajectory and a time of 9
seconds.

6 Conclusion

Several case studies have been performed on the application of hybrid automata
to the modeling of systems which include continuous and discrete domains.
In particular, a simpli�ed TCAS system was modeled in [9] using hybrid au-
tomata. That work focuses on establishing a hybrid model of the closed loop
system formed by several aircrafts
ying under TCAS assumptions. Although
it is claimed that the model is suitable for formal analysis, there is no explicit
attempt to automate the proof process. On the other hand, state exploration
techniques have been used to analyze the system requirements speci�cation of
TCAS II written in RSML [7]; we refer for instance to [5, 2]. These works focus
on the reactive aspect of the whole system.

In the work presented in this paper, we constructed a formal model of the
kernel of an alerting algorithm and we studied its behavior with respect to a

104 V��ctor Carre~no and C�esar Mu~noz

model of collision trajectories. We defer the integration of the alerting algorithm
with rest of the system, for example TCAS, for future research.

An abstract model of the algorithm and its properties were developed in the
general veri�cation system PVS. We complemented the prover capabilities with
computer algebra tools. Indeed, di�erential equations, resulting from physical
phenomena, were mechanically veri�ed in MuPAD. Models of the algorithm and
collision trajectories were implemented in Java. The implementation allowed us
to graphically explore collision scenarios before performing rigorous attempts to
prove properties.

Although we have con�dence in the conjectures that have been declared as
axioms, work is being performed [10] in the development of a PVS library on
transcendental functions which complements a previous work on mathematical
analysis in PVS [1]. Hence, it might be possible in the near future to replace the
axiomatic de�nitions with theorems.

Lower and upper bounds for a time when an alarm will be issued before a col-
lision were found. Our immediate goal, in the veri�cation of the AILS algorithm,
is to prove certain facts about the characteristics of the aircraft trajectories. We
hope that these facts allow us to prove the adequacy of the alerting algorithm
for a time large enough to avoid any possible collision incident.

References

1. B. Dutertre. Elements of mathematical analysis in PVS. In J. Von Wright, J.
Grundy, and J. Harrison, editors, Ninth international Conference on Theorem
Proving in Higher Order Logics TPHOL, volume 1125 of Lecture Notes in Com-
puter Science, pages 141{156, Turku, Finland, August 1996. Springer Verlag.

2. W. Chan, R. Anderson, P. Beame, and D. Notkin. Improving eÆciency of symbolic
model checking for state-based system requirements. Technical Report TR-98-01-
03, University of Washington, Department of Computer Science and Engineering,
January 1998.

3. T. Doyle and F. McGee. Air traÆc and operational data on selected u.s. airports
with parallel runways. Technical Report NASA/CR-1998-207675, NASA, May
1998.

4. B. Fuchssteiner. MuPAD User's Manual. John Wiley and Sons, Chichester, New
York, �rst edition, March 1996. Includes a CD for Apple Macintosh and UNIX.

5. M.P.E. Heimdahl and N.G. Leveson. Completeness and Consistency Analysis of
State-Based Requirements. In Proceedings of the 17th International Conference on
Software Engineering, pages 3{14, April 1995.

6. S. Koczo. Coordinated parallel runway approaches. Technical Report NASA-CR-
201611, NASA, October 1996.

7. N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements spec-
i�cation for process-control systems. Technical Report ICS-TR-92-106, University
of California, Irvine, Department of Information and Computer Science, November
1992.

8. A.M. Lind. Two simulation studies of precision runway monitoring of independent
approaches to closely spaced parallel runways. Technical Report AD-A263433
ATC-190 DOT/FAA/NR-92/9, NASA, March 1993.

Aircraft Trajectory Modeling and Alerting Algorithm Veri�cation 105

9. J. Lygeros and N. A. Lynch. On the formal veri�cation of the TCAS con
ict reso-
lution algorithms. In Proceedings 36th IEEE Conference on Decision and Control,
San Diego, CA, pages 1829{1834, December 1997. Extended abstract.

10. U. Martin and H. Gottliebsen. Computational logic support for di�erential equa-
tions and mathematical modeling. Personal communication, 2000.

11. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752,
Saratoga, NY, June 1992. Springer-Verlag.

12. L. Rine, T. Abbott, G. Lohr, D. Elliott, M. Waller, and R. Perry. The
ight deck
perspective of the NASA Langley AILS concept. Technical Report NASA/TM-
2000-209841, NASA, January 2000.

13. RTCA. Minimum operational performance standards for traÆc alert and collision
avoidance system (TCAS) airborne equipment { consolidated edition. Guideline
DO-185, Radio Technical Commission for Aeronautics, One McPherson Square,
1425 K Street N.W., Suite 500, Washington DC 20005, USA, 6 September 1990.

14. G. Wong. Development of precision runway monitor system for increasing capac-
ity of parallel runway operations. AGARD, Machine Intelligence in Air TraÆc
Management, page 12, October 1993.

