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Abstract 

 

A loss-of-separation (LOS) is said to occur when two aircraft are spatially too close to one another.  A 

LOS is the fundamental unsafe event to be avoided in air traffic management and conflict detection (CD) 

is the function that attempts to predict these LOS events.  In general, the effectiveness of conflict detection 

relates to the overall safety and performance of an air traffic management concept.  An abstract, parametric 

analysis was conducted to investigate the impact of surveillance quality, level of intent information, and 

quality of intent information on conflict detection performance.  Surveillance quality was represented by a 

surveillance error model of current and proposed surveillance technologies through a set of position and 

velocity state accuracy standard deviations.  Level of intent information was represented by an intent time 

horizon and quality of intent information was represented by various levels of intent data, each providing 

incrementally more information to define the vertical and horizontal components of a kinematic trajectory. 

CD performance was measured using the primary metrics of false alert probability, missed alert probability, 

missed detection probability, and mean time-to-LOS at first detection.  Two complementary analysis 

methods were used to conduct the analysis runs; one method used time-shifted, recorded traffic data from 

the National Airspace System (NAS) as the source for scenarios while the second used circular traffic 

scenarios with flight plans randomly-generated using the characteristics observed in the NAS traffic data.  

Three surveillance quality test matrices were implemented to investigate: (1) the CD performance impact 

of a set of surveillance technologies and several variations of conflict detection and trajectory prediction 

parameters, (2) the sensitivity of the performance metrics to each of the surveillance error and trajectory 

prediction and conflict detection parameters, and (3) the variability of the performance metrics to different 

random traffic scenarios and to Monte Carlo sampling.  Two level and quality of intent information test 

matrices were implemented to investigate: (1) the CD performance impact of different levels of intent and 

different qualities of intent information with several variations of trajectory prediction and conflict detection 

parameters, (2) the variability of the performance metrics to different random traffic scenarios and the 

sensitivity of the performance metrics to the time and altitude interval parameters used to represent the 

highest quality of intent information modeled.   

The surveillance quality analysis runs quantified the conflict detection performance of some expected 

trends.  State-projection trajectory prediction, used in the surveillance quality runs, exhibits poor 

performance, even in the presence of no surveillance error and with a short trajectory prediction and CD 

horizon.  As the trajectory prediction and CD horizon increases, the false alert probability, missed alert 

probability, and mean time-to-LOS increase while the missed detection probability decreases.  Surveillance 

technologies with high position and velocity state accuracies result in better CD performance than those 

with low position and velocity state accuracies.  The sensitivity curves indicate that false alert and missed 

alert probabilities are most sensitive to CD and trajectory prediction horizon and vertical speed errors.  

Missed detection probability is sensitive to most of the parameters tested, with the lowest sensitivity being 

due to vertical position error.  The mean time-to-LOS metric is most sensitive to CD cycle period, CD and 

trajectory prediction horizon, and surveillance range.  The variability of the CD performance metrics to 

different traffic scenarios with the same input parameters and to Monte Carlo sampling is small based on 

the parameters and scenarios tested. 

The conflict detection performance generally improves as the level and quality of intent information is 

increased.  The level of intent trends indicate that conflict detection performance is improved as the intent 

horizon approaches the trajectory prediction and CD horizon.  When the CD horizon is equal to the intent 

horizon, CD performance is improved by a shorter detection horizon for the metrics of false alerts, missed 

alerts, and missed detections but there is a negative impact on the mean time-to-LOS metric.  The use of 

shorter conflict detection cycle periods has a positive impact on CD performance, primarily by reducing 

the missed detection rate.  The variability of the CD performance metrics due to different traffic scenarios 

in the presence of intent information is small based on the parameters and scenarios tested.  

The data collected in this parametric analysis can be used to estimate the conflict detection performance 

under alternative future scenarios or alternative allocations of the conflict detection function, based on the 

quality of the surveillance and intent data under those conditions.  Alternatively, this data could also be 
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used to estimate the surveillance and intent information quality required to achieve some desired CD 

performance as part of the design of a new separation assurance system.   
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I. Introduction 

Separation Assurance (SA) has been an area of study for government agencies, research institutions, 

and Universities for a few decades [1].  The motivation for that work stems from the need to provide higher 

levels of automation for the separation assurance functions in order to increase the capacity of the National 

Airspace System, while retaining or increasing the level of safety of the system.  Some research has 

explored the potential allocation of the separation assurance functions amongst different agents in the 

system, including air traffic controllers, flight crews, and automation systems.  In a broader sense, this area 

of research is called Function Allocation. 

 Function Allocation research is focused on understanding the impacts of allocating the separation 

assurance functions between air and ground agents and between human and automation systems in different 

ways.  All separation assurance systems are comprised of two primary functions: conflict detection and 

conflict resolution.  However, other functions may also be provided, such as conflict prioritization, conflict 

prevention, complexity avoidance, etc.  The performance of a specific allocation of the separation assurance 

functions has typically been studied as a complete system.  In this work, the performance impact of only 

one of the primary functions is investigated, namely, the performance of the conflict detection function.  

More specifically, this work is focused on measuring the performance of conflict detection as a function of 

parameters directly related to the air-ground allocation. 

The objective of this work was to develop a set of data characterizing the performance of conflict 

detection in a parametric way as a function of the quantity and quality of data available to perform that 

function.  Differences in the quantity and quality of data available to the conflict detection function could 

be considered the primary distinguishing features between an airborne or ground-based allocation of that 

function.  Thus, the parametric set of data generated by this work can be used to support the analysis of the 

performance of a complete separation assurance function allocation scheme, or to make recommendations 

regarding the quantity and quality of data that should be used to perform conflict detection with some 

required minimum level of performance. 

The organization of this document is as follows:  Section II provides some background on conflict 

detection and prior work as it relates to the current work.  Section III describes the analysis models used to 

collect the parametric performance data and the specifics of some of the modeling elements.  Section IV 

describes the input data used in the analysis and the method used for creating traffic scenarios.  Section V 

presents the metrics and definitions used to characterize conflict detection performance.  In section VI, the 

analysis test matrices are presented.  The results of the analysis runs are presented and discussed in section 

VII.  Finally, the Appendix describes additional modeling details. 

II. Background 

Conflict detection refers to the identification or prediction of a future loss-of-separation between two 

aircraft based on the predicted futures states of those aircraft.  The conflict detection function is a core 

function of any separation assurance system, as shown in the simplified separation assurance system 

diagram in Figure 1.  Its performance has a direct impact on the effectiveness of the conflict resolution 

function.  If the CD function provides an alert to a conflict that does not exist (false alert), then the conflict 

resolution function may compute an unnecessary resolution maneuver.  If the CD function does not provide 

an alert for a LOS that does exist (missed alert), then safety issues may result.  For these reasons, it is 

important to understand the performance characteristics of the conflict detection function independent from 

other separation assurance functions. 

The conflict detection function is often tightly integrated with a trajectory prediction function, which 

can be considered to be the largest contributor to CD performance.  The trajectory prediction function and 

the CD performance function define the domain for analysis in this work.  The inputs to this sub-system 

are the surveillance information for relevant traffic, the intent information that may be available for that 

traffic, and any other sources of information relevant to trajectory prediction, such as wind information or 

aircraft performance parameters.  The outputs of this sub-system are the detected conflicts.  Figure 1 shows 
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the input/output diagram and the trajectory prediction and conflict detection relationship in a separation 

assurance system and also highlights the CD performance analysis domain explored here. 

 
An abstract, parametric approach to analyze conflict detection performance aids in the analysis of 

fundamental large-scale system trade studies of air traffic management concepts.  Thus, general trends can 

be evaluated without requiring the detail of particular algorithms, communication technologies, etc.  This 

type of analysis is particularly appropriate for analyzing different conflict detection function allocations.  

For example, airborne allocation of conflict detection may have very good information about the ownship’s 

current state and intent but little information about the surrounding traffic’s intent.  Similarly, an automated 

conflict detection system running on a centralized server may have a good level of intent information about 

all nearby traffic, based on flight plan information, but may have less accurate current state information for 

any single aircraft.  Rather than studying only two specific allocation schemes, an abstract, parametric 

analysis enables the estimation of conflict detection performance for many allocation schemes.  Data 

interpolation is one possible approach that can be used when the input data characteristics can be cast into 

a parameterization consistent with that used in this analysis. 

A. Prior Conflict Detection Research 
An extensive body of work exists in the literature with respect to trajectory prediction [2, 3] and conflict 

detection [4-6].  A large portion of prior work is focused on the design of conflict detection algorithms and 

the performance of those implementations in simulation.  Additionally, a significant amount of work has 

been done to study human performance in performing separation assurance functions in the face of different 

conflict alerting systems [7, 8].   

The performance of various conflict detection algorithms (sometimes called alerting algorithms) has 

been analyzed in prior work [9-13].  Paglione [9] evaluated the performance of the Federal Aviation 

Administration’s (FAA) Host computer detection algorithms while Bilimoria [10] performed a similar 

evaluation for the NASA Center/TRACON Automation System’s (CTAS) detection algorithms.  Prior work 

has also studied conflict detection independent of an algorithm.  This research has shown that a conflict 

detection algorithm can be developed that is correct, within a given approximation bound, for an arbitrary 

trajectory [14].  Therefore, if a correct algorithm is used, the performance of the CD function is dominated 

by factors such as trajectory prediction sophistication, alerting buffers, and other heuristics. 

The impact of data quality (described in terms of surveillance quality and navigation error) and data 

content have been discussed in prior work [15, 16].  The impact of intent availability has also been studied 

[17-20] in the context of separation assurance.  Chung [15] discusses the implication of surveillance delays 

and how these could be used to determine buffers for the trajectory prediction of future states.  Finkelsztein 

[18] has looked at the sensitivity of the range at closest point of approach in a parametric analysis.   

 
Figure 1. Simplified separation assurance diagram and the CD performance analysis domain for this work. 
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Our investigation of the prior work in conflict detection performance revealed that more work was 

needed to provide a parametric and broadly-applicable characterization of conflict detection performance, 

which was the focus of this work.  In much of the prior work, it is difficult to separate the performance of 

the entire SA system, which is typically measured by observed losses-of-separation, from the performance 

of conflict detection alone, which is typically characterized by false and missed alert rates.  Many of these 

studies were performed using a conflict resolution algorithm which had the consequence of directly 

impacting the key performance metrics.  Also, prior work consisted of algorithm design, human factors 

implications, and full SA system performance, whereas this work is focused on the performance of conflict 

detection as a function of the quality and content of the input data. 

B. Research Questions 
This study was focused on collecting the data needed to answer two fundamental questions: 

 

1. What are the impacts of surveillance quality on conflict detection performance? 

2. What are the impacts of level and quality of intent information on conflict detection 

performance? 

 

Surveillance quality has a direct impact on the accuracy of the flight state estimate available for 

trajectory prediction.  Flight state information received from a radar system will have different accuracy 

than that received from an ADS-B system, primarily due to the differences in the sensing and transmission 

mechanisms.  To answer question 1, the parametric impact of flight state accuracy on conflict detection was 

analyzed in a way that allows for the evaluation of the performance under various surveillance systems and 

data exchange scenarios.   

Flight intent information can have an even more significant impact on trajectory prediction accuracy 

and conflict detection performance.  To answer question 2, the impact of the amount of intent information 

available for trajectory prediction and the quality of that intent information on conflict detection 

performance was analyzed.  The level of intent information is related to the time horizon for which intent 

information is provided while the quality of intent information is related to the amount of information that 

is contained in that intent for the purposes of re-creating a trajectory.  Quality of intent information can 

range from simple target-state information to a more detailed kinematic representation of the trajectory.  

III. Analysis Model 

The conflict detection performance analysis was completed using two analysis methods.  The first 

analysis methodology (Method 1) involved the use of recorded traffic tracks time-shifted to create NAS-

wide scenarios with losses-of-separation.  Similar analysis approaches with time-shifted recorded data have 

been used in the past by other researchers [21].  The recorded traffic data contains much of the complexity 

that is typically difficult to replicate in a fast-time simulation, such as the airspace structure and routings, 

the varying performance of many aircraft types, and step climbs and descents.  The primary disadvantage 

of using real aircraft traces is that losses of separation are rare events in the airspace system.  The only 

appropriate modification that can increase the number of LOS events while maintaining the real-world 

nature of this data is temporal shifting.  Method 1 leverages this temporal shifting to create losses-of-

separation that did not exist in the as-flown track data as targets for the conflict detection function. 

The second analysis methodology (Method 2) uses randomly generated flight plan scenarios over a 

generic volume of airspace.  A circular region of airspace is defined and flight plans are randomly generated 

using a set of distributions for parameters such as track angle change, flight segment length, average 

groundspeed, and others, to traverse the circular region.  To retain some level of credibility for the flight 

plans randomly generated, the sampling distributions used for the parameters were derived from the 

observed characteristics in the NAS-recorded traffic data.  The advantage of using this second analysis 

methodology is that scenarios can be simulated with conditions that can further stress test the conflict 

detection function, such as with geometries or conditions that may not be present in the time-shifted, 
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recorded data.  Also, method 2 had shorter scenario execution times that allowed analysis runs to be 

completed more quickly. 

The two analysis methods had the same basic functionality: traffic simulation/playback, trajectory 

prediction, conflict detection, and metrics collection.  A scenario of traffic was simulated within some 

airspace region (NAS-wide for method 1 and regional for method 2) and conflict detection and trajectory 

prediction was executed at a given interval or period within that simulation.  For method 1, the simulation 

was simply a time-shifted play-back of the recorded track data while in method 2 a kinematic trajectory 

generation step was used to simulate the flight plan prescribed in the scenario.  During each CD cycle, a 

trajectory prediction was created for each aircraft using the quantity and quality of data specified by a set 

of input parameters, the predictions were compared pair-wise to determine a set of predicted conflicts, the 

true or simulated aircraft tracks were compared pair-wise to determine the set of true conflicts, and, finally, 

the comparison of the true versus predicted conflicts constituted the metrics collection.   

The use of two analysis methods allowed for the cross-validation of results and for balancing of the 

advantages and disadvantages of each method.  The assumptions used in both methods were verified 

through a common set of inputs that produced a comparable set of metrics results.  The impact of modeling 

differences between the two analysis methods are highlighted throughout this document. 

A. Simulation Control 
The traffic simulation was implemented as a simple execution loop that advanced each aircraft to the 

appropriate position in the recorded or emulated track data at each simulation time, until all aircraft tracks 

had completed.  The simulation step size was determined by the desired conflict detection cycle period, 

𝑇𝑑𝑒𝑡.  The simulation times where trajectory prediction, conflict detection, and metrics collection would 

occur were integer multiples of this parameter. 

B. Trajectory Prediction 
Trajectory propagation methods for conflict detection can be classified as deterministic, probabilistic, 

and worst-case.  In a deterministic case, a single trajectory prediction is assumed to have a 100% probability 

of occurring.  In the probabilistic case, each possible trajectory prediction for an aircraft has a probability 

of occurring.  Finally, a worst-case approach assumes 100% probability on any possible trajectory for an 

aircraft, thereby defining a bounded region ahead of the aircraft that encompasses all possible future 

trajectories.  Each of these methods requires its own set of assumptions for implementation; the choice can 

be made based on the use case.  Because, for this study, the results are intended to apply NAS-wide and 

many probabilistic effects are explored through the Monte Carlo approach used, the deterministic trajectory 

propagation method was chosen. 

At each conflict detection time, 𝑡𝑐𝑑, a deterministic trajectory prediction, 𝑻�̂�(𝑡), was created for each 

aircraft 𝑖, for all times, 𝑡, between 𝑡𝑐𝑑 and 𝑡𝑐𝑑 + 𝑇𝑝𝑟𝑒𝑑, where 𝑇𝑝𝑟𝑒𝑑 is the trajectory prediction and CD 

time horizon.  In the case where no intent information was available, a simple state-projection trajectory 

prediction was used whereby, the current position vector of each aircraft was projected from time 𝑡𝑐𝑑 to 

time  𝑡𝑐𝑑 + 𝑇𝑝𝑟𝑒𝑑 using the current velocity vector.  In the runs where intent information was available, 

constant velocity or constant acceleration segments were used to build a piece-wise trajectory prediction 

up to a future time given by 𝑡𝑐𝑑 + 𝑇𝑖𝑛𝑡 (using constant radius turn geometry and constant vertical 

acceleration regions, where 𝑇𝑖𝑛𝑡 is the intent horizon time).  Separate lateral and vertical trajectory profiles 

were generated and these were synchronized using the time elements of the two predictions.  For cases 

where the trajectory prediction horizon was longer than the intent horizon (𝑇𝑝𝑟𝑒𝑑 > 𝑇𝑖𝑛𝑡), a state projection 

was used to estimate the states beyond the intent horizon point. 

Analysis method 1 used a discretized representation for track data and trajectory predictions, with 

discrete state information at every five seconds (∆𝑡𝑡𝑟𝑎𝑗 = 5 s).  In contrast, analysis method 2 used a 

kinematic description of a trajectory, with state information given as the start or end point of a constant 

velocity or constant acceleration segment – a more concise trajectory representation. 
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C. Conflict Detection 
A conflict is a future LOS between two aircraft based on some model of their trajectories.  There are 

two types of conflicts and LOS’s reported in this paper: true and predicted, so careful terminology is 

required.  The major contribution of this paper is a parametric analysis of the information types and error 

sources going into different trajectory predictions and comparing the conflict detection effectiveness based 

on these predictions to the ideal conflict detection effectiveness based on true trajectories.  A predicted LOS 

may never manifest itself because the true trajectories of the aircraft may be different from the trajectory 

predictions.  Or, the LOS may not manifest because of a maneuver issued by a conflict resolution function.  

We do not consider this case, because this work is not concerned with conflict resolution. 

A true conflict, denoted 𝑪𝑚,𝑖,𝑗, is when a future LOS occurs in the true trajectories of the aircraft, 

denoted, 𝑻𝑖(𝑡) and 𝑻𝑗(𝑡).  A predicted conflict, denoted �̂�𝑛,𝑖,𝑗, is when a future LOS occurs in the predicted 

trajectories of the aircraft, denoted, �̂�𝑖(𝑡) and �̂�𝑗(𝑡). Formally, a LOS is when, simultaneously, the 

horizontal distance between the aircraft trajectories (either true or predicted) is less than the horizontal 

separation criterion, 𝐻𝑠𝑒𝑝, and the vertical distance is less than the vertical separation criterion, 𝑉𝑠𝑒𝑝.  Given 

a pair of trajectories (either true or predicted), a conflict (respectively either true or predicted) exists at 𝑡𝑐𝑑 

if there exists some time, 𝑡, within the time horizon (𝑡𝑐𝑑 < 𝑡 ≤ 𝑡𝑐𝑑 + 𝑇𝑝𝑟𝑒𝑑), where those trajectories have 

a LOS.   

Conflict detection was executed at a specified time interval, 𝑇𝑑𝑒𝑡, during the simulation/playback of the 

traffic in a given scenario.  During each conflict detection cycle, the trajectory predictions of all aircraft 

were compared pair-wise to identify the set of predicted conflicts, �̂�, for that detection cycle.  The true 

losses-of-separation between all aircraft, which were pre-processed from the true aircraft tracks at the 

beginning of the scenario run, were used to identify the set of true conflicts, 𝑪, for that conflict detection 

cycle. 

Surveillance range was simulated during each conflict detection cycle by not performing conflict 

detection between specific pairs of aircraft.  If the distance from current position of an aircraft 𝑗 to the 

current position of another aircraft 𝑖 was greater than the surveillance range parameters, 𝑅𝑠, then conflict 

detection was not executed for that aircraft pair. 

In analysis method 1, conflict detection was performed over a discretized trajectory whereas, in analysis 

method 2, conflict detection was performed by comparing linear trajectory segments.  These modeling 

assumptions are one reason for the differences in the results between the two analysis methods, but the 

differences were small.  Method 1 could not identify instances of LOS that last less than the trajectory 

sampling interval (5 seconds) and that occur between trajectory sample points whereas method 2 did not 

have this limitation.  

D. Metrics Collection 
Metrics collection was done during each conflict detection cycle.  The primary metrics (e.g., false alerts 

(FA) and missed alerts (MA)) were collected by comparing the predicted and true conflict sets during each 

detection cycle.  FA and MA counts were aggregated over all conflict detection cycles of a single analysis 

scenario run.  More details on the full set of metrics used in this analysis can be found in section V. 

E. Surveillance Quality 
The impacts of surveillance quality (research question 1) on conflict detection performance were 

analyzed using a surveillance error model.  The model implements an un-compensated surveillance lag time 

parameter, 𝑡𝑠𝑙, as well as a set of standard deviation parameters, (𝜎𝑟, 𝜎𝑎, 𝜎𝑔𝑠, 𝜎𝑣𝑠, 𝜎𝑡𝑟𝑘), for the Gaussian 

distributions of error on the position and velocity states of aircraft.  The position errors were modeled via a 

range error parameter, 𝜎𝑟, and an altitude error parameter, 𝜎𝑎, while the velocity errors were modeled via 

vertical speed, groundspeed, and track angle error parameters, 𝜎𝑔𝑠, 𝜎𝑣𝑠, 𝜎𝑡𝑟𝑘, respectively.  Figure 2 shows 

a graphical representation of the surveillance error modeling approach, while a more detailed description 

of the surveillance error modeling approach can be found in the Appendix. 
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Three surveillance technologies were simulated in the analysis discussed here, as well as the baseline 

case with no added surveillance error.  One of the surveillance technologies analyzed was the current-day 

secondary surveillance radar (SSR).  The parameter values for the modeling of the position error for this 

surveillance technology are described in an ICAO document [22].  The velocity error parameters were 

obtained from a study that compared Data Link-provided (considered truth) state information with that 

being obtained from ATC data feeds [23].   

The second surveillance technology analyzed was Automatic Dependent Surveillance-Broadcast 

(ADS-B), in two variations.  One of the challenges in defining the ADS-B parameters for the surveillance 

error model is the uncertainty of the accuracy of future avionics equipment over a diverse aircraft fleet.  

The Minimum Aviation System Performance Standards (MASPS) for ADS-B, DO-242A [24], defines the 

accuracy levels that the position and velocity values can have in terms of a 95% error bound and the 

associated, reported NACp and NACv values, but does not make recommendations about which accuracy 

levels to use for any given application.  Instead, the MASPS for Airborne Surveillance Applications, DO-

289 [25], was used to select the parameter values for ADS-B.  DO-289 provides a minimum 

recommendation for the position and velocity error bounds (NACp>=5, NACv>=2) as well as desired 

values (NACp>=9, NACv>=3) for conflict detection applications.  For the purposes of this study, we refer 

to the minimum ADS-B requirements as ADSB_1 and the desired requirements as ADSB_2 and both were 

simulated in this analysis. 

Table 1 lists the values chosen for these three technology levels.  The lag time parameter is a fixed 

value that was applied across all surveillance samples in each simulation scenario while the remaining 

parameters are standard deviation of the modeled Gaussian error distributions, each with an assumed zero 

mean value.  The parameter 𝑆𝑄𝑚𝑜𝑑𝑒𝑙 was used to denote a set of surveillance error parameters (the columns 

of Table 1) for each of the three surveillance error models and the baseline case of no surveillance error; 

possible values for this parameters were: None, Radar, ADSB_1, or ADSB_2. 

 

 
Figure 2.  Position and velocity error components for surveillance modeling (horizontal profile). 

Table 1. Surveillance error parameters for the simulated technologies. 
Error Parameter None Radar ADSB_1 

(NACp=5,NACv=2) 

ADSB_2 

(NACp=9,NACV=3) 

lag time (𝑡𝑠𝑙) 0 seconds 12 seconds 1 second 1 second 

horizontal position 

(𝜎𝑟) 

0.0 NM 0.3 NM 0.25 NM 0.0081 NM 

altitude (𝜎𝑎) 0.0 ft 127.5 ft 108.8 ft 73.8 ft 

groundspeed (𝜎𝑔𝑠) 0.0 NM/hr 17.4 NM/hr 2.9 NM/hr 1.0 NM/hr 

vertical speed (𝜎𝑣𝑠) 0 ft/min 495 ft/min 450 ft/min 150 ft/min 

track angle (𝜎𝑡𝑟𝑘) 0 deg 3.73 deg 1 deg 1 deg 
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F. Level and Quality of Intent Information 
The impacts of intent information on conflict detection performance (research question 2) were 

investigated using a representation of level of intent (LOI) and a representation of quality of intent (QOI).  

In this analysis, level of intent refers to the relative time horizon over which intent information is available 

and is denoted by the parameter 𝑇𝑖𝑛𝑡.  For example, intent information may be available for trajectory 

prediction for the next five minutes from the current time.  LOI parameter values for short, medium, and 

long time horizons (5, 10, and 20 minutes) were used in this analysis.  Instead of a time horizon, some 

studies [18] represent the level of intent by the number of communication transmissions, e.g., number of 

trajectory change points [24].  The appeal of using number of communication transmissions is that this 

parameter closely relates to the load on the communication system, which is a significant cost driver. On 

the other hand, the number of conflicts and losses, which are the primary metrics of this study, are more 

closely tied to the time horizon than the number of points; for instance, five trajectory change points could 

represent one minute of a trajectory, or one hour of a trajectory. More pointedly, the number of 

communication transmissions alone cannot be used to determine communication load; the content of the 

message must also be defined.  One message with five points is equivalent to five messages with one point 

each; the content of a message mixes parametric variables.  In our study, the content of a message is 

described as the quality of intent.  To maintain this separation of concerns, only the time horizon is used in 

LOI.  

The quality of intent (QOI) representation refers to the amount of information that is contained in the 

available intent.  This representation was partially inspired by the ADS-B MASPS definition of a trajectory 

change (TC) report [24], whereby a lateral TC point, for example, includes a reference point and may 

contain information about the turn geometry, such as turn radius and the track into and out of that reference 

point.  The representation differs from the ADS-B MASPS definition in the use of five levels that contain 

more or less information than the proposed MASPS.  Quality of intent information was further broken down 

into the vertical and horizontal components and was represented by the parameters 𝐼𝑄𝑉 and 𝐼𝑄𝐻, 

respectively.  The separation of the horizontal and vertical components of intent information allowed us to 

perform analysis runs with a DO-242A-equivalent representation of intent information, specifically, with 

𝐼𝑄𝑉1 and 𝐼𝑄𝐻2.  Table 2 shows the quality of intent representations used in this analysis and the information 

associated with each lateral and vertical intent point. 

The vertical intent information available for trajectory prediction ranges from target altitude only to 

fully-defined altitude change points.  Vertical intent quality of zero (𝐼𝑄𝑉0) specifies that target altitude 

information will be available during an altitude change maneuver.  Vertical quality of one (𝐼𝑄𝑉1) adds to 

the vertical quality of zero by providing 2-dimensional (time and altitude) information for any bottom-of-

climb (BOC) or top-of-climb (TOC) points within the intent horizon, for any climb maneuver.  With vertical 

quality two (𝐼𝑄𝑉2), each BOC and TOC point also contains the target climb rate out-of or into those points, 

respectively.  Vertical quality of three (𝐼𝑄𝑉3) adds a constant acceleration value used to transition from the 

BOC point to the target climb rate or to transition from the target climb rate to the TOC point.  Finally, 

vertical intent quality of four (𝐼𝑄𝑉4) adds additional 2-dimensional vertical profile points at a specified 

altitude interval (∆𝑎𝑙𝑡𝑄4) between any BOC and TOC points.  The same set of information hierarchy applies 

to the top-of-descent (TOD) and bottom-of-descent (BOD) intent points and the vertical profile of any 

descent maneuver. 

A similar quality of intent scheme was used for the lateral intent information that ranged from target 

track to fully-defined track change points.  Lateral/horizontal intent quality of zero (𝐼𝑄𝐻0) specifies the 

target track that is available during a turning maneuver.  Lateral quality of intent one (𝐼𝑄𝐻1) adds the 3-

dimensional reference point (time, latitude, longitude) for the turn, which is assumed to be the equivalent 

of a fly-by waypoint.  With lateral quality level two (𝐼𝑄𝐻2), the radius for an assumed constant radius turn 

for the fly-by maneuver is provided.  The trajectory prediction function uses the turn radius information, 

along with an estimated groundspeed, to determine the turn rate for the turn maneuver. Lateral quality of 

intent three (𝐼𝑄𝐻3) includes a turn rate value which, combined with the turn radius, defines the groundspeed 

for the constant turn rate and constant radius turn.  Finally, lateral intent quality of four (𝐼𝑄𝐻4) adds 
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additional 3-dimensional points at a specified time interval (∆𝑡𝑄4) between subsequent turn reference 

points. 

Additional details regarding the methods used to obtain intent information from the recorded traffic 

data for this study are provided in section IV, sub-section A. 

 

G. Analysis Parameters 
A comprehensive set of the parameters used in this analysis of conflict detection performance is 

presented in Table 3, along with the nominal values used for each parameter.  The nominal values were 

used in each scenario unless otherwise specified in the experiment test matrices in section VI.  Note that 

the horizontal and vertical separation criteria (𝐻𝑠𝑒𝑝 and 𝑉𝑠𝑒𝑝) were held constant for all analysis runs.  

Similarly, all track data and trajectory predictions used a single resolution (∆𝑡𝑡𝑟𝑎𝑗) of five seconds for 

analysis method 1. 

Table 2.  Quality of intent (QOI) values on the horizontal and vertical profiles. 

Horizontal/ 

Vertical Quality 

Target State Position 

2-D/3-D 

Target Rates Acceleration 

𝐼𝑄𝑉0 Target altitude    

𝐼𝑄𝑉1 Target altitude Time, altitude   

𝐼𝑄𝑉2 Target altitude Time, altitude Target climb 

rate 

 

𝐼𝑄𝑉3 Target altitude Time, altitude Target climb 

rate 

Vertical acceleration 

𝐼𝑄𝑉4 Includes all 𝐼𝑄𝑉3 points plus additional 𝐼𝑄𝑉1 points added based on refined vertical profile 

requirements (∆𝑎𝑙𝑡𝑄4) 

𝐼𝑄𝐻0 Target track    

𝐼𝑄𝐻1 Target track Time, latitude, longitude1   

𝐼𝑄𝐻2 Target track Time, latitude, longitude Turn radius2  

𝐼𝑄𝐻3 Target track Time, latitude, longitude Turn radius Turn rate3 

𝐼𝑄𝐻4 Includes all 𝐼𝑄𝐻3 points plus additional 𝐼𝑄𝐻1 points added based on refined horizontal 

profile requirements (∆𝑡𝑄4) 

Notes: 1 Track in and track out are available with all intent waypoints for horizontal quality levels of 1 and above. 
2Combine with estimated turn speed to estimate turn rate. 3Combined with radius provides turn speed and 

centripetal acceleration.   
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H. Assumptions and Scope 
The scope and assumptions used in this analysis help to define the realm of applicability of the results 

obtained.  The scope of this analysis was limited to the evaluation of en-route conflict detection performance 

in an architecture- and algorithm-agnostic way.  The analysis does not include conflict resolution nor does 

it explore the development of any new, or the refinement of any existing, conflict detection algorithms.  

The primary assumptions used in the analysis modeling are listed below.  Note that some assumptions 

are also inherent to the data processing algorithms used and are described later in this document. 

 Conflict detection is being performed by automation 

 Conflict detection uses deterministic trajectory predictions 

 Conflict detection performance is dependent on the assumptions used in trajectory prediction 

 The true trajectory flown by each aircraft is known perfectly and a priori 

 No added atmospheric disturbances, such as wind, are used in simulation or in trajectory prediction 

 Only trajectory data above flight level (FL) 180 are used for the recorded traffic tracks 

 A horizontal separation criterion of 5 nautical miles is used for CD 

 A vertical separation criterion of 800 feet is used for CD1 

 The surveillance range is assumed to be aircraft-centric with respect to the first aircraft in the 

aircraft pair 

 The surveillance error model assumes zero-mean, Gaussian error distributions 

                                                      
1 This value was used instead of 1000 ft to prevent spurious detections caused by small fluctuations and noise in the 

altitude data. 

 

Table 3. Analysis input parameters. 

Parameter Description Nominal 

Value 

Units 

𝑇𝑑𝑒𝑡 conflict detection cycle period 60 seconds (s) 

𝑇𝑝𝑟𝑒𝑑 trajectory prediction and conflict detection time horizon 1200 seconds (s) 

∆𝑡𝑡𝑟𝑎𝑗 trajectory sampling interval 5 seconds (s) 

𝐻𝑠𝑒𝑝 horizontal separation criterion 5 nautical miles (NM) 

𝑉𝑠𝑒𝑝 vertical separation criterion 800 feet (ft) 

𝑅𝑠 surveillance range 1500 nautical miles (NM) 

𝑆𝑄𝑚𝑜𝑑𝑒𝑙  surveillance quality parameter set None - 

𝑡𝑠𝑙 surveillance lag time 0 seconds (s) 

𝜎𝑟 surveillance horizontal position error standard deviation 0 nautical miles (NM) 

𝜎𝑎 surveillance altitude error standard deviation 0 feet (ft) 

𝜎𝑔𝑠 surveillance groundspeed error standard deviation 0 knots (kn) 

𝜎𝑣𝑠 surveillance vertical speed error standard deviation 0 feet/minute (ft/min) 

𝜎𝑡𝑟𝑘 surveillance track angle error standard deviation 0 degrees (deg) 

𝑇𝑖𝑛𝑡  intent horizon time (level of intent) 0 seconds (s) 

𝐼𝑄𝑉 vertical quality of intent None - 

𝐼𝑄𝐻  horizontal quality of intent None - 

∆𝑡𝑄4 time interval for intent quality 4 horizontal points 120 seconds (s) 

∆𝑎𝑙𝑡𝑄4 altitude interval for intent quality 4 vertical points 1000 feet (ft) 

𝛿𝑡 time tolerance for conflict comparison criteria1 120 seconds (s) 

𝛿𝐻 horizontal distance tolerance for conflict comparison 

criteria1 

10 nautical miles (NM) 

𝛿𝑉 vertical distance tolerance for conflict comparison criteria1 2000 feet (ft) 

Note:  1 See Section V, Sub-section B for a detailed description of the conflict comparison approach. 
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 The intent information was inferred from the track data using a custom curve-fitting algorithm 

developed for this project2 

 There is no lag in the intent information at conflict detection time 

 Blunders in the form of missing intent or non-conformance to intent are not considered 

 An intent point is added at the intent horizon time if another intent point does not already exist 

close to that horizon 

IV. Input Data 

The CD performance analysis leveraged a set of recorded traffic tracks from the NAS.  The source data 

is a fused, NAS-wide data set that covers 45 days in 2013 and is stored in the Data Warehouse at the NASA 

Ames Research Center.  Surveillance radar and ADS-B feeds from multiple facilities are fused to create 

full visual- and instrument-flights-rules (VFR and IFR) track profiles (latitude, longitude, altitude, and time) 

for flights within the Continental United States (CONUS), and partial track profiles for flights entering and 

exiting the NAS.   

A representative day of traffic was chosen from this data set for use in this analysis.  Figure 3 shows 

the Federal Aviation Administration’s Aviation System Performance Metrics (ASPM77) database [26] 

values for total daily operations and total daily delayed operations for one portion of the available data days.  

The representative day of traffic was chosen to be March 28th, 2013 due to the high demand and low level 

of delayed operations, likely indicating a day with low weather impacts on the flown tracks.  A 36-hour 

window was selected to capture 6 hours of traffic prior to and 6 hours of traffic after the selected date.  This 

allowed for the inclusion of the complete track profile for flights that were already airborne before the start 

of the selected date and those that were still airborne at the conclusion of the selected date.   

 
The sample set of traffic tracks were used in three different ways within this analysis, after some initial 

processing and conditioning.  First, the traffic tracks were used in analysis method 1 as the playback or true 

tracks flown by aircraft within those scenarios.  Second, the conditioned track data was processed within a 

custom algorithm to process or infer the intent information for each track.  Third, the inferred intent 

                                                      
2  The extraction of intent information from track data was much more difficult than originally envisioned.  Several 

different algorithms were created and compared.   We note that our intent results are strongly connected to the 

goodness of the fit of the intent model to the track data.   

 
Figure 3. ASPM77 daily total operations (top), and ASPM daily delayed operations (bottom). March 28, 

2013 was chosen as a high volume and low delay day from the recorded traffic data available. 
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information was used to build distributions of parameters such as track angle change, average groundspeed, 

average climb rates, and others that were used in the generation of random flight plans for the circular 

scenarios used in analysis method 2.  A total of 30,799 recorded flight tracks (time, latitude, longitude, 

altitude) for flights into, within, and out of the Continental United States were used in this analysis. 

A. Data Processing 

Track Data Processing 
The raw track data required pre-conditioning and filtering before it could be used to conduct this 

analysis.  The tracks inherently contain the noise from the surveillance sensors that captured the data.  

Additionally, the fusion of multiple data sources can introduce an artificial noise due to the various sampling 

frequencies and timestamps.  Figure 4 and Figure 5 show the track and altitude profiles, respectively, for a 

randomly selected flight before and after data processing.  Note that, using these figures alone, it is difficult 

to spot the noisy characteristics of the data.  However, an inspection of the velocity profiles for this example 

flight computed using a simple finite difference (estimating the derivative) reveals the noise characteristics. 

Figure 6-Figure 8 show the groundspeed, vertical speed, and track angle profiles, respectively, for the same 

sample flight before and after the processing step.  Note the high level of noise in these velocity profiles.  

In each of the figures for the sample flight, the raw track data is shown in blue and the final processed track 

data for use in this analysis is shown in red.  

            

            

 
Figure 4. Raw and processed track profile for a 

randomly-selected sample flight. 

 
Figure 5. Raw and processed altitude profile for a 

randomly-selected sample flight. 

 
Figure 6. Raw and processed groundspeed profile 

for a randomly-selected sample flight. 

 
Figure 7. Raw and processed vertical speed profile 

for a randomly-selected sample flight. 
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The processing of the track data was completed in three basic steps.  First, a pre-screening step was 

used to discard flights that did not have sufficient data useful for this analysis.  This included discarding 

flights with no track data above FL180, discarding flights fully outside the time window of interest, and 

discarding flights with anomalous track data.  Next, a conditioning step was used to correct any data drop-

outs and to trim the flight track data to the portion above FL180.  Flight segments below FL180 include 

VFR flights with altitude separations in 500 foot increments and traffic entering or exiting the terminal 

airspace environment where the separation standards are different from the en-route environment and 

special separation rules exist; these conditions were observed in a few preliminary test runs of the analysis 

model.  Finally, a filtering step was used to remove the surveillance and data fusion noise in order to create 

a baseline set of track data.  A combination of excessive groundspeed and vertical speed data point removal, 

followed by a one-dimensional Kalman Filter [27], generated the final processed track data that can be seen 

in Figure 4-Figure 8.  The thresholds and algorithms used for the processing of the raw data were developed 

largely by observations drawn from the raw data.  The following is a list of the pre-processing and filtering 

steps that were applied to the raw data:  

Pre-screening:  

 Discard all flights with no data points above FL180 

 Discard all flights with the same origin and destination airport 

 Discard flights with un-identified origin or destination airport 

 Discard any flights already airborne at the beginning of the 36 hour sample window 

 Discard any flights still airborne at the end of the 36 hour sample window 

 Discard any flights with data gaps in time greater than 5 minutes 

 Discard any flights with a processed track time less than 10 minutes 

 Discard any flights with incomplete track data (missing descent or climb portion but fully 

within the CONUS) 

Conditioning: 

 Trim all track data to retain only the portion above FL180 

 Remove any duplicated time data points 

 Remove any data drop-outs (identified via vertical speeds in excess of 10,000 ft/min) 

Filtering: 

 Remove any data points producing excessive groundspeeds and vertical speeds 

o Groundspeeds greater than 590 knots 

o Vertical speeds greater than 10,000 ft/min 

 Remove any data points with large groundspeed and vertical speed deviations away from a 9-

point centered moving average 

o Groundspeed differences larger than 100 knots 

 
Figure 8. Raw and processed track angle profile for 

a randomly-selected sample flight. 
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o Vertical speed differences larger than 100 ft/min 

 Interpolate the track data for a uniform time sampling of 5 seconds 

 Apply a one-dimensional Kalman Filter to the track data (altitude, latitude, and longitude)  

      

The selected traffic demand day of March 28th, 2013, with the additional 6 hours of pre- and 6 hours of 

post-traffic, contained a total of 72,769 recorded traffic tracks.  After the processing steps above were 

implemented, the remaining traffic set contained 30,799 recorded traffic tracks.   

Intent Information Processing 
The intent information used in the conflict detection performance study was inferred from the recorded 

track data using a custom curve-fitting program developed for this project.  Flight plan and flight plan 

amendment information was available for the recorded tracks but using that information as source for intent 

would likely lead to un-realistic intent information.  For example, if an aircraft had been vectored for traffic, 

or some other reason, for a brief period of time, that vector information would not have been present in the 

flight plan amendments.  It was decided that the scope of this analysis should not include erroneous intent 

information or blunder scenarios, which led to the decision to infer the intent information from the track 

data. 

The vertical and lateral components of intent information were identified separately.  The lateral intent 

was identified by searching for the start and end of non-turning flight segments using significant changes 

in track rate as the trigger.  The track angle was computed using the track positions and the track rate was 

computed as the differential of the track angle.  Moving average filters were used to mitigate the noisy 

differential derivatives.  A tuned threshold limit for track rate of +/-0.03 deg/s was used to identify the 

lateral states (turning, not turning) of each track data point, thereby creating the boundaries between straight 

and turning flight segments, or the estimated beginning-of-turn (BOT) and end-of-turn (EOT) locations.  

By considering only the non-turning flight segments, the projected intersection of subsequent segments 

constituted the notion of a fly-by waypoint along a flight plan.  These identified waypoints are the lateral 

intent points inferred from the track data.  Figure 9 shows an example of a recorded lateral profile and the 

identified lateral intent points; note that these waypoints are the intersections of the non-turning segments 

and, thus, do not overlay on the track data. 

Inferring the vertical intent information involved identifying the level flight segments from each 

vertical profile (time, altitude).  The differential vertical speed was first used to initialize the states (climb, 

descent, level) at each track data point using a threshold limit of +/-100 ft/min.  Moving average filters were 

used to mitigate the noisy differential vertical speed while heuristics were used to handle consecutive 

segments of the same type and to fine tune the location of the start and end points of the level flight 

segments.  Finally, the start and end of each level flight segment was labeled as a BOC, TOC, TOD, or 

BOD altitude intent point based on the preceding or subsequent segment type.  Figure 10 shows a sample 

vertical profile with and the identified altitude change points. 

The intent information generation process also included the identification of the data elements required 

to support the various qualities of intent modeled in this study.  For the lateral intent points, the turn radius 

was determined using the distance from the identified waypoint to the BOT or EOT, whichever was 

smallest, and the track angle change from the BOT to the EOT.  The average groundspeed between the 

BOT and EOT, the track angle change, and the radius were then used to compute a constant turn rate for 

the turn.  Figure 11 shows a sample lateral profile, including the constant rate turns that were estimated for 

those track changes.  Note that the BOT and EOT points are not part of the intent information that was 

available for trajectory prediction and are just depicted here for reference3.  For the vertical data elements, 

an optimization routine was used to fit two acceleration regions and a constant vertical rate region for any 

altitude change maneuver by minimizing the mean squared error between the recorded data and the modeled 

                                                      
3 We decided to follow DO-242 as much as possible.   The DO-242 approach uses other parameters which enable a 

calculation of the BOT and EOT locations.  With full information, the BOT and EOT locations can be accurately 

calculated.  With less information, they can only be estimated. 
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maneuver.  Figure 12 shows a sample altitude change with the TOD point, a constant vertical acceleration 

region, followed by a constant vertical rate region, then another constant vertical acceleration region, and 

finally the BOD point.  Note that the acceleration regions are properties of the intent point that they begin 

from or end at and that each intent point has a vertical rate into and a vertical rate out of that point. 

    

   
Table 4 shows the identified horizontal intent information that was available for trajectory prediction 

for the sample track shown in Figure 9 at the horizontal quality level of three. Similarly, Table 5 shows the 

identified vertical intent information that was available for trajectory prediction for the sample vertical 

profile shown in Figure 10 at the vertical quality level of three.  These two tables constitute one kinematic 

representation of the recorded track data that was estimated or fitted algorithmically and was used as the 

method for describing intent information in this analysis. 

 
Figure 9.  Sample recorded track horizontal profile 

with identified waypoints. 

 

 
Figure 10.  Sample recorded track vertical profile 

with identified altitude change points. 

 
Figure 11.  Example identified turn intent and fitted 

constant radius turns. 

 

 
Figure 12.  Example identified vertical intent points 

with vertical acceleration zones and constant vertical 

speed segments. 
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B. Scenarios 

Scenarios for Analysis Method 1 
The traffic scenarios for this analysis were generated in two ways.  For method 1, scenario generation 

was done by randomly time-shifting the original start time of each flight track within some specified limits.  

A test set of ten different scenarios using the full recorded traffic data were generated with a maximum time 

shift parameter, 𝑡𝑠ℎ𝑖𝑓𝑡,𝑚𝑎𝑥, of zero, two, five, and fifteen minutes, and one, two, four, six, twelve, and 

twenty-four hours.  These scenarios were analyzed with the nominal analysis model parameter values and 

helped to identify the time shift that produced the highest number of true losses-of-separation.  As seen in 

Figure 13, the peak number of true LOS was achieved with a time shift close to fifteen minutes or one hour.  

At these time shift values, the full day of time-shifted traffic produced over 15,000 true LOS.  The increase 

followed by a decrease in the number of true LOS is the result of the small increase in time shift values that 

increasingly create LOS events in the recorded tracks until such point as the peaks of traffic start to flattens 

out and the density of traffic is reduced, as shown by the number of simulated traffic over the simulation 

time in Figure 14. 

All scenarios for analysis method 1 consisted of the full 30,799 recorded traffic tracks and a random 

time shift of up to one hour for each track.  Ten different randomized scenarios were created and used to 

investigate the variability due to the randomization.  One of these ten scenarios was selected as the baseline 

scenario for all other analysis runs.  

Table 4.  Identified horizontal intent data for sample profile shown in Figure 9. 

time latitude longitude trackIn trackOut turnRadius turnRate type 

[s] [deg] [deg] [deg] [deg] [NM] [deg/s] [unitless] 

0 40.8102 -74.1015 268.6 268.6 0 0 START 

169.7 40.80281 -74.4436 268.4 246.6 32.4 -0.1558 WPT 

810.81 40.34498 -75.8101 245.8 251.8 85.4 0.0755 WPT 

1082.7 40.18667 -76.4341 251.5 267.6 64.3 0.0980 WPT 

2641.5 40.01759 -80.1314 265.5 256.2 72.7 -0.0872 WPT 

2810 39.9442 -80.5185 255.3 255.3 0 0 END 

   Note: trackOut is the same as target track for intent level 0. 

Table 5.  Identified vertical intent data for sample profile shown in Figure 10. 

time altitude targetAltitude climbRateIn climbRateOut verticalAcceleration type 

[s] [ft] [ft] [ft/min] [ft/min] [ft/s2] [unitless] 

0 18028 28000 2664 2973 0.1187 START 

260 28000 28000 2973 0 -0.4385 TOC 

370 28000 35998 0 1459 0.6194 BOC 

765 35998 35998 1459 0 -0.2615 TOC 

1380 36000 32005 0 -2072 -1.0191 TOD 

1550 32005 32005 -2072 0 0.4618 BOD 

2375 32000 18161 0 -1968 -1.4486 TOD 

2810 18161 18161 -1968 -1944 0.0014 END 
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Scenarios for Analysis Method 2 
The scenario generation approach for analysis method 2 was to generate flight plans that traverse a 

circular region of airspace, where the flight plan characteristics were generated using distributions obtained 

from the recorded traffic tracks.  After selecting the number of aircraft and the radius of the circular region 

of airspace, flight plans were randomly generated by sampling from a set of distributions for: initial heading 

angle deviation, groundspeed, horizontal leg time, turn angle magnitude, number of altitude segments, 

vertical speed, and level flight segment time.  Each flight plan was initialized at the boundary of the circular 

region.  An initial heading offset was selected from a uniform distribution and added as a deviation away 

from a heading towards the center of the circular region.  A horizontal profile was created by successively 

sampling from a horizontal leg time and a turn angle until the flight plan exited the circular region.  A 

vertical profile was created by subsequently sampling a level segment time, an altitude change of 1000 or 

2000 feet up or down, and a vertical speed for that altitude change until the time required to exit the circular 

region was achieved.  The fitted distributions derived from the characteristics of the recorded traffic data 

and used in the scenario generation are shown in Figure 16 - Figure 21 below and the associated probability 

density functions defined in equations (1)-(3).  The horizontal profile of a 100 aircraft scenario is shown in 

Figure 15. 

A LOS-maximizing approach was used in creating the set of scenarios for analysis method 2.  A set of 

preliminary runs were used to calibrate the parameters for: number of aircraft, circular region radius, and 

initial heading angle deviation.  The analysis results presented in this paper used a set of scenarios with 

1500 aircraft over a circular region with a radius of 300 nautical miles and a uniform distribution of initial 

heading angle deviation within +/-40 degrees.  

 𝑃𝐷𝐹𝑁𝑜𝑟𝑚𝑎𝑙(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒

−
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2𝜎2  (1) 
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𝑒
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 𝑃𝐷𝐹𝐺𝑎𝑚𝑚𝑎(𝑥|𝑎, 𝑏) =
1

𝑏𝑎Γ(𝑎)
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−𝑥
𝑏⁄  (3) 

 

 
Figure 13. Number of true LOS,  

𝑵𝑪,𝒔𝒊𝒎, created as a function of the maximum time 

shift parameter, 𝒕𝒔𝒉𝒊𝒇𝒕,𝒎𝒂𝒙. 

 

 
Figure 14. Number of flights as a function of the 

simulation clock time for a few of the time shift 

scenarios. 
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Figure 15. Example circular scenario horizontal profile with 100 aircraft. 

 
Figure 16. Distribution of the maximum average 

groundspeed for all recorded traffic tracks. 

 
Figure 17. Distribution of the time for all horizontal 

flight segments over all recorded tracks. 
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V. Metrics 

A. Definitions 
In conflict detection, the primary concern is in the accuracy of the alerts provided.  An alert is a warning 

provided by the conflict detector at some time regarding the potential for a LOS between two aircraft at 

some future time.  The correctness of these alerts has typically been characterized using false alert and 

missed alert statistics.  A false alert is an issued alert where there is no corresponding LOS.  This kind of 

alert is sometimes described as a nuisance alert because it can lead to unnecessary actions by the agent 

receiving it.  A missed alert is the lack of an alert to a LOS that will occur between two aircraft within a 

specified look-ahead time.  In most air traffic concepts, a missed alert means that the action to resolve the 

conflict will be delayed, which could result in significant safety issues.  Correct alerts are alerts that are 

neither missed alerts nor false alerts. 

Table 6 provides a set of definitions for conflict detection-related terms used throughout this document.  

In particular, it’s important to note the difference between an alert and a detection.  An alert is a warning 

provided by the conflict detector at any given time or any conflict detection cycle.  Conversely, a detection 

is the successful identification of a true LOS event over all time or over all conflict detection cycles.  A 

 
Figure 18. Distribution of the magnitude of the turn 

angle between horizontal flight segments for all 

tracks and all segments. 

 

 
Figure 19. Distribution of the time in level flight over 

all tracks and all level altitude segments. 

 

 
Figure 20. Distribution of the average vertical speed 

between vertical level segment changes in climbs for 

all tracks. 

 

 
Figure 21. Distribution of the average vertical speed 

magnitude between vertical level segment changes in 

descents for all tracks. 
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missed detection means that conflict resolution will never occur because the conflict is never detected; this 

is an important safety consideration.  A LOS event in this study is characterized by the position of both 

aircraft at initial entry into LOS and the time at which that entry occurs. 

The idea of a “true conflict” was used in the analysis and is possible because of the availability of truth 

track data that is known a priori.  A true conflict exists if there is a LOS between the true tracks of two 

aircraft; however, in a real world environment, no such true data exists because the future tracks can change 

for a variety of reasons (e.g., to resolve a conflict).  Nonetheless, the idea of a true conflict is a useful 

concept when measuring the performance of trajectory prediction and conflict detection in the absence of 

conflict resolution.  One true LOS can correspond to multiple true conflicts depending on the number of 

conflict detection cycles that contain that LOS within the conflict detection horizon. 

The true and predicted conflicts identified in this study were based on separation criteria that are 

different from the separation standard for en-route airspace [28].  The horizontal separation criterion of 5 

nautical miles was used but a reduced vertical separation criterion of 800 feet was chosen for this study.  In 

the track data processing step, and in preliminary analysis runs, it was observed that the Mode-C resolution 

of +/-100 feet altitude of some of the track data had a significant impact on the number of predicted 

conflicts, thereby justifying the use of a reduced vertical separation criterion. 

 
The metrics for this study were collected in terms of absolute counts, ratios or probabilities, or mean 

values.  Table 7 lists the primary conflict detection metrics for this study while Table 8 lists the secondary 

metrics.  The secondary metrics are absolute counts of quantities such as false alerts and missed alerts and 

are required to compute the observed probabilities and mean values in the primary metrics.  The number of 

false alerts, the number of missed alerts, the number of predicted conflicts, and the number of true conflicts 

were each obtained using the size of the true and predicted conflict sets, 𝑪 and �̂�, respectively, identified 

during each conflict detection cycle and aggregated over all detection cycles in a simulation run.  For each 

simulation run, the total number of LOS and, of those, the number that were never detected in any detection 

cycle (the number of missed detections) were also collected.  Only the primary metrics are reported in the 

results tables for this study. 

The primary metrics collected for this study were: probability of false alert, 𝑃𝐹𝐴, probability of missed 

alert, 𝑃𝑀𝐴, probability of missed detection, 𝑃𝑀𝐷, and mean time-to-LOS at first detection, ∆𝑡𝐿𝑂𝑆,𝑚𝑒𝑎𝑛.  The 

probability of false alert represents the observed ratio of total false conflict alerts to the total number of 

conflict alerts and indicates the likelihood that any alert provided by the conflict detector could be false.  

Missed alert probability represents the observed ratio of the total number of missed alerts to the total number 

Table 6. Conflict detection terms and definitions. 

Term Definition 

loss(es)-of-separation 

(LOS) 

violation(s) of the minimum separation criteria between two aircraft trajectories 

separation criteria vertical and horizontal distances that identify the boundary for a LOS event 

between two trajectories 

conflict two aircraft are in conflict if there exists a time, t, with a LOS in their true or 

predicted trajectories 

detection the identification of a true LOS event 

true conflict a conflict that exists between the true trajectories of two aircraft and that is 

within the conflict detection horizon, in the absence of a resolution maneuver 

predicted conflict a conflict that exists between the predicted trajectories of two aircraft and that 

is within the conflict detection horizon 

alert a warning provided by the conflict detector 

false alert (FA) an alert regarding a LOS that is not present in the true aircraft trajectories within 

the conflict detection horizon 

missed alert (MA) the lack of an alert regarding a LOS that is present in the true aircraft trajectories  

within the conflict detection horizon 

missed detection (MD) over all detection attempts, the absolute failure to detect a true LOS event 
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of true conflicts and indicates the likelihood that, at any detection cycle, there is a true LOS present within 

the conflict detection horizon that is not alerted.  The missed detection probability represents the observed 

ratio of total LOS that were not detected as a true conflict in any detection cycle to the total number of LOS 

present in a given simulation run and indicates the likelihood that the conflict detector will fail to provide 

any alert for a given true LOS.  Finally, the mean time-to-LOS represents the average time to entry into 

LOS at the first successful detection for those losses-of-separation that were successfully detected within a 

simulation run; losses-of-separation that were never detected do not contribute to this mean value. 

 

 

B. Same Conflict Comparison 
The notion of two conflicts being the “same conflict” or not was developed for this study in order to 

properly characterize conflict detection performance.  The traditional definition of a false alert, as it is most 

commonly defined in other examples of conflict detection-related literature, is that, an alert is false when 

there exists a predicted conflict between the predicted trajectories of two aircraft but there does not exist a 

true conflict between the true trajectories of those same two aircraft, within the same time horizon.  

Similarly, the traditional definition of a missed alert is that, an alert is missed when there does not exist a 

predicted conflict between the predicted trajectories of two aircraft but there does exist a true conflict 

between the true trajectories of those same two aircraft, within the same time horizon.  Given that conflict 

detection is done with imperfect trajectory predictions, these definitions can lead to the characterization of 

a conflict alert as a correct alert even if the predicted and true conflicts are far from each other in space 

and/or time.  The false alert and missed alert definitions need to contain criteria to evaluate whether a 

predicted conflict and a true conflict are “the same;” that is, that their respective losses-of-separation occur 

roughly in the same place and at the same time.   

The schematic in Figure 22 depicts two aircraft with both a predicted conflict and a true conflict.  The 

traditional definitions for false alert and missed alert would indicate that there is no false alert and no missed 

alert; that is, this example would be considered a correct alert due to the presence of both a predicted and a 

Table 7. Conflict detection performance primary metrics. 

Metric Definition 

𝑃𝐹𝐴 = 𝑁𝐹𝐴 𝑁�̂�⁄  the false alert ratio or false alert probability 

𝑃𝑀𝐴 = 𝑁𝑀𝐴 𝑁𝑪⁄  the missed alert ratio or missed alert probability 

𝑃𝑀𝐷 = 𝑁𝑀𝐷 𝑁𝑪,𝑠𝑖𝑚⁄  the missed detection ratio or missed detection probability 

∆𝑡𝐿𝑂𝑆,𝑚𝑒𝑎𝑛 = ∑
∆𝑡𝐿𝑂𝑆,𝑚

𝑀

𝑀

𝑚=1,2,…

 
mean time-to loss-of-separation at first detection for all 𝑀 successfully 

detected true conflicts 

 

Table 8. Conflict detection performance secondary metrics. 

Metric Definition 

𝑁𝐹𝐴 = ∑ ∑|�̂� ∖ 𝑪|

𝑡𝑐𝑑𝑠𝑖𝑚_𝑟𝑢𝑛

 
the number of false alerts from the set of predicted conflicts (conflict alerts), 

�̂�, identified during each detection cycle, summed over every detection cycle 

and over an entire simulation run 

𝑁�̂� = ∑ ∑|𝑪|̂

𝑡𝑐𝑑𝑠𝑖𝑚_𝑟𝑢𝑛

 the number of predicted conflicts (conflict alerts), �̂�, identified during each 

detection cycle,  summed over every detection cycle and over an entire 

simulation run 

𝑁𝑀𝐴 = ∑ ∑|𝑪 ∖ �̂�|

𝑡𝑐𝑑𝑠𝑖𝑚_𝑟𝑢𝑛

 the number of missed alerts from the set of true conflicts, 𝑪,  within the time 

horizon of each detection cycle, summed over every detection cycle and over 

an entire simulation run 

𝑁𝑪 = ∑ ∑|𝑪|

𝑡𝑐𝑑𝑠𝑖𝑚_𝑟𝑢𝑛

 
the number of true conflicts present during each conflict detection cycle, 

summed over every detection cycle and over an entire simulation run 

𝑁𝑪,𝑠𝑖𝑚 = |𝑪| the number of unique true conflicts (number of LOS) in a simulation run 

𝑁𝑀𝐷 = |𝑪 ∖ �̂�| the number of missed detections – from the set of all true conflicts, 𝑪, not in 

the set of predicted conflicts (conflict alerts), �̂�, over an entire simulation run 
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true conflict.  However, the scale of the diagram in Figure 22 might be large and the location of the LOS in 

the two conflicts may be many nautical miles apart.  This difference in location is important for functions 

such as conflict resolution where the difference between a conflict ahead-of-track and a conflict to the right-

of-track is important.  Using the traditional definitions for false alert and missed alert results in artificially 

better conflict detection performance.  This is because, if some criteria for evaluating whether two conflicts 

are “the same” is applied to the diagram of Figure 22, either of two conditions would occur: the two conflicts 

are considered to be the same and the false alerts and missed alerts are both zero, just as the traditional 

definitions indicate, or, the two conflict are not the same, in which case, the predicted conflict is considered 

to be a false alert to a non-existent LOS, and the true conflict is considered to be a missed alert of a true 

LOS.  Therefore, using criteria for evaluating whether two conflicts are the same within each conflict 

detection cycle, the revised definitions of a false and a missed alert are: 

 a false alert is a predicted conflict between the predicted trajectories of two aircraft where the same 

true conflict in the true trajectories of those aircraft does not exist, within the conflict detection time 

horizon, and 

 a missed alert is a true conflict between the true trajectories of two aircraft where the same predicted 

conflict in the predicted trajectories of those aircraft does not exist, within the conflict detection 

time horizon. 

 
The criteria chosen to evaluate whether two conflicts are “the same” involves comparing the time and 

position of both aircraft at the entry into LOS.  This is an appropriate method to use, given that a LOS event 

in this study is a reference to the time and position of first entry into LOS for a pair of aircraft.  A conflict 

comparison for an example such as the one in Figure 22 should determine that the two conflicts are not the 

same because, even though the temporal location of the LOS for the predicted and true LOS events may be 

very close, the spatial location of the two LOS is significantly different.  Define a conflict vector, 𝑪𝑚,𝑖,𝑗, 

for conflict 𝑚 between aircraft 𝑖 and aircraft 𝑗 as: 

 𝑪𝑚,𝑖,𝑗 ∶= [𝑡𝐿𝑂𝑆,𝑚, 𝒔𝑖,𝑚(𝑡𝐿𝑂𝑆,𝑚), 𝒔𝑗,𝑚(𝑡𝐿𝑂𝑆,𝑚)] (4) 

where the first element is the absolute entry time into LOS, 𝑡𝐿𝑂𝑆,𝑚, for conflict 𝑚, the next element is the 

3-dimensional position of aircraft 𝑖 at 𝑡𝐿𝑂𝑆,𝑚, and the last element is the 3-dimensional position of aircraft 

𝑗 at 𝑡𝐿𝑂𝑆,𝑚.  Figure 23 shows the actual positions of aircraft 𝑖 and 𝑗 at the time-in to LOS, 𝑡𝐿𝑂𝑆,𝑛, of the true 

conflict 𝑛, and the predicted positions of those aircraft at the time-in to LOS, 𝑡𝐿𝑂𝑆,𝑚, of the predicted conflict 

𝑚. 

 
Figure 22. Example predicted and true conflicts between a pair of aircraft (20 minute long prediction 

arrows). 
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Comparison of two conflicts is done by evaluating the space/time differences between the conflict 

vectors against a set of threshold values. Let, 

 𝐷𝐻,𝑖,𝑚,𝑛 = 𝒅𝐺𝐶𝐷 (𝑙𝑎𝑡𝑖,𝑚(𝑡𝐿𝑂𝑆,𝑚), 𝑙𝑜𝑛𝑖,𝑚(𝑡𝐿𝑂𝑆,𝑚), 𝑙𝑎𝑡𝑖,𝑛(𝑡𝐿𝑂𝑆,𝑛), 𝑙𝑜𝑛𝑖,𝑛(𝑡𝐿𝑂𝑆,𝑛)) (5) 

be the horizontal arc-distance between the positions of aircraft 𝑖 in conflicts 𝑚 and 𝑛, where 𝒅𝐺𝐶𝐷 is a 

function that computes the great-circle distance between two points on a sphere. Let, 

 𝐷𝑉,𝑖,𝑚,𝑛 = |𝑎𝑙𝑡𝑖,𝑚(𝑡𝐿𝑂𝑆,𝑚) − 𝑎𝑙𝑡𝑖,𝑛(𝑡𝐿𝑂𝑆,𝑛)| (6) 

be the magnitude of the difference between the altitude of aircraft 𝑖 in conflict 𝑚, and the altitude of the 

same aircraft 𝑖 in conflict 𝑛.  Then, two conflicts 𝑚 and 𝑛 are said to be the same (𝑪𝑚,𝑖,𝑗 ≈ 𝑪𝑛,𝑖,𝑗) if and 

only if all of the conditions in equations (7)-(11) are satisfied: 

 |𝑡𝐿𝑂𝑆,𝑚 − 𝑡𝐿𝑂𝑆,𝑛| ≤ 𝛿𝑡 (7) 

 𝐷𝐻,𝑖,𝑚,𝑛 ≤ 𝛿𝐻 (8) 

 𝐷𝐻,𝑗,𝑚,𝑛 ≤ 𝛿𝐻 (9) 

 𝐷𝑉,𝑖,𝑚,𝑛 ≤ 𝛿𝑉 (10) 

 𝐷𝑉,𝑗,𝑚,𝑛 ≤ 𝛿𝑉 (11) 

where 𝛿𝑡, 𝛿𝐻, and 𝛿𝑉, are threshold values selected for the maximum allowable time difference between 

two LOS entry times, the maximum allowable horizontal distance between the position of each aircraft in 

both conflicts, and the maximum allowable vertical distance between the altitudes of each aircraft in both 

conflicts, respectively.  The following logic was used in determining a set of reasonable threshold values, 

based on a lateral separation standard of 5 NM and a vertical separation standard of 1000 ft: 

 𝛿𝑡 = 120 s : the time it takes to traverse 10 NM at an assumed groundspeed of 300 knots 

 𝛿𝐻 = 10 NM : the horizontal position of an aircraft 𝑖 can vary by as much as 10 NM and still be in 

LOS with an aircraft 𝑗 

 𝛿𝑉 = 2000 ft : the vertical position of an aircraft 𝑖 can vary by as much as 2000 ft and still be in 

LOS with an aircraft 𝑗 

The comparison criteria defined by equations (7)-(11) lead directly to the computation of the primary 

metrics.  At any conflict detection time, a false alert was identified when a predicted conflict was not the 

same as any true conflict within the same conflict detection horizon.  Similarly, at any conflict detection 

time, a missed alert was identified when a true conflict was not the same as any predicted conflict within 

the same conflict detection horizon.  A missed detection was identified by a true LOS that was not predicted 

 
Figure 23. True aircraft positions at time-in to LOS, 𝒕𝑳𝑶𝑺,𝒏, for a true conflict, 𝒏, and predicted aircraft 

positions at, 𝒕𝑳𝑶𝑺,𝒎, for a predicted conflict, 𝒎. 
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in any conflict detection cycle over an entire simulation run.  The time-to entry into loss-of-separation at 

first detection, ∆𝑡𝐿𝑂𝑆,𝑚, for any true conflict, 𝑚, was given by: 

 ∆𝑡𝐿𝑂𝑆,𝑚 = 𝑡𝐿𝑂𝑆,𝑚 − 𝑡𝑐𝑑 (12) 

and was recorded at the earliest detection cycle in which a correct alert is issued for that LOS. 

VI. Test Matrices 

The analysis runs for conflict detection performance using method 1 were divided into five test 

matrices.  Analysis runs using method 2 were conducted where appropriate for comparison.  In the three 

surveillance quality test matrices, the current state of each aircraft was subjected to the surveillance error 

parameters being analyzed and state-projections were used for trajectory predictions.  In the two level and 

quality of intent test matrices, no surveillance error was added to the aircraft states and the available intent 

information was used to inform the trajectory predictions.   

A. Surveillance Quality Test Matrix 1 (SQ1) 
Surveillance quality test matrix 1 is a full factorial combination of the primary input parameters for 

surveillance quality and conflict detection.  The conflict detection cycle period (𝑇𝑑𝑒𝑡) was tested at 15 and 

60 seconds.  Conflict detection and trajectory prediction horizon (𝑇𝑝𝑟𝑒𝑑) was tested at short, medium, and 

long values of 5, 10, and 20 minutes, respectively.  The surveillance range (𝑅𝑠) was also tested at short, 

medium, and long values of 50, 250, and 1500 (conservative surrogate for infinite surveillance range) 

nautical miles, respectively.  Each combination of the three different surveillance error model parameter 

sets (𝑆𝑄𝑚𝑜𝑑𝑒𝑙), including the baseline model with no surveillance error, was tested.  Trajectory prediction 

was exercised using symmetric and asymmetric approaches where, for the asymmetric cases, perfect 

trajectory prediction was assumed for the first aircraft in the conflict pair where the predicted trajectory was 

equal to the true trajectory of that aircraft, and for the symmetric cases, both aircraft had the same quality 

of imperfect trajectory predictions.  A single, time-shifted, recorded traffic scenario with 30,799 aircraft 

tracks was used for all runs.  Table 9 lists the parameter values analyzed, which correspond to a total of 144 

analysis runs. 

 

B. Surveillance Quality Test Matrix 2 (SQ2) 
Surveillance quality test matrix 2 provides a set of sensitivity data for each of the conflict detection and 

surveillance quality parameters in the model.  The sensitivity runs were conducted with respect to two 

baseline conditions selected from the SQ1 test matrix.  Baseline condition 1 had no surveillance error while 

baseline condition 2 implemented the ADSB_2 surveillance error parameters set.  For each sensitivity run 

only a single parameter value was changed relative to the corresponding baseline run and that parameter 

was constant over the entire run.  Suitable parameter values were selected for conflict detection cycle period, 

detection and prediction horizon, and the various surveillance error model parameters.  The conflict 

comparison criteria (𝛿𝑡 , 𝛿𝐻 , 𝛿𝑉) were investigated at multiplier values of 0.5, 1.0, 2.0, and infinity (disables 

conflict comparison) with respect to their baseline values.  Table 10 lists the parameter values that were 

analyzed in this test matrix for a total of 208 analysis runs. 

Table 9.  Surveillance quality test matrix SQ1 (full-factorial; 144 runs). 

Parameter Values Units 

CD Period (𝑇𝑑𝑒𝑡) 15, 60 sec 

Prediction Horizon (𝑇𝑝𝑟𝑒𝑑) 300, 600, 1200 sec 

Surveillance Range (𝑅𝑠) 50, 250, 1500 NM 

Surveillance Error Source (𝑆𝑄𝑚𝑜𝑑𝑒𝑙) None, Radar, ADSB_1, ADSB_2 - 

Trajectory Prediction Symmetry Symmetric, Asymmetric - 
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C. Surveillance Quality Test Matrix 3 (SQ3) 
Surveillance quality test matrix 3 was implemented to investigate the variability in the analysis metrics 

due to different traffic scenarios and due to Monte Carlo sampling of the surveillance error parameters.  A 

set of 10 different traffic scenario randomizations, each with 30,799 aircraft and using the one hour 

maximum time shift, were used in this test matrix.  For scenario variability, the baseline 1 and 2 case runs 

from the SQ2 test matrix were each analyzed using the 10 different scenarios with symmetric and 

asymmetric trajectory predictions.  For Monte Carlo sampling variability, the baseline 2 case run (with 

ADSB_2) was run with 10 different random seeds and the same traffic scenario both with symmetric and 

asymmetric trajectory predictions.  Table 11 shows the 60 analysis runs conducted to investigate variability. 

 

D. Level and Quality of Intent Information Test Matrix 1 (IQ1) 
Level and quality of intent information test matrix 1 is a partial factorial exploration of the conflict 

detection and level and quality of intent input parameters.  The partial factorial matrix is the result of the 

full-factorial matrix with the reduction of the parameter combinations that do not provide meaningful 

results.  For example, there was no need to analyze a level of intent (intent horizon) parameter of 20 minutes 

if trajectory prediction was only being performed on a 10 minute horizon; intent information beyond 10 

Table 10.  Surveillance quality test matrix SQ2 (sensitivity runs; 208 runs). 

Parameter Values Units 

Nominal Parameter Values baseline 1: 𝑇𝑑𝑒𝑡 = 60, 𝑇𝑝𝑟𝑒𝑑 = 600, 𝑅𝑠 = 1500, 𝑆𝑄𝑚𝑜𝑑𝑒𝑙 = 𝑁𝑜𝑛𝑒 

baseline 2: 𝑇𝑑𝑒𝑡 = 60, 𝑇𝑝𝑟𝑒𝑑 = 600, 𝑅𝑠 = 1500, 𝑆𝑄𝑚𝑜𝑑𝑒𝑙 = 𝐴𝐷𝑆𝐵_2 

- 

CD Period (𝑇𝑑𝑒𝑡) 15, 30, 60, 120, 300 s 

Prediction Horizon (𝑇𝑝𝑟𝑒𝑑) 60, 120, 300, 600, 900, 1200 s 

Surveillance Range (𝑅𝑠) 20, 40, 80, 100, 200, 300, 500, 1500 NM 

Surveillance Lag (𝑡𝑠𝑙) 0, 1, 2, 5, 10, 15 s 

Horizontal Position Error 

(𝜎𝑟) 

0.001, 0.01, 0.1, 0.5 NM 

Vertical Position Error (𝜎𝑎) 1, 10, 25, 50, 100, 150 ft 

Groundspeed Error (𝜎𝑔𝑠) 0.1, 1, 5, 10, 20, 50 NM/hr 

Vertical Speed Error (𝜎𝑣𝑠) 10, 25, 50, 100, 500, 1000 ft/min 

Track Angle Error (𝜎𝑡𝑟𝑘) 0.1, 0.5, 1, 2, 5 deg 

Same Conflict Tolerance 

(𝛿𝑡, 𝛿𝐻 , 𝛿𝑉) Multiplier 

0.5X, 1.0X, 2.0X, Inf - 

Trajectory Prediction 

Symmetry 

Symmetric, Asymmetric - 

 

Table 11.  Surveillance quality test matrix SQ3 (variability; 60 runs). 

Variability Test Baseline Run Trajectory Prediction 

Symmetry 

Number of 

Scenarios 

Number of Runs 

Per Scenario 

Scenario Variability 

baseline 1 Symmetric 10 1 

baseline 1 Asymmetric 10 1 

baseline 2 Symmetric 10 1 

baseline 2 Asymmetric 10 1 

Sampling 

Variability 

baseline 2 Symmetric 1 10 

baseline 2 Asymmetric 1 10 

baseline 1: 𝑇𝑑𝑒𝑡 = 60, 𝑇𝑝𝑟𝑒𝑑 = 600, 𝑅𝑠 = 1500, 𝑆𝑄𝑚𝑜𝑑𝑒𝑙 = 𝑁𝑜𝑛𝑒 

baseline 2: 𝑇𝑑𝑒𝑡 = 60, 𝑇𝑝𝑟𝑒𝑑 = 600, 𝑅𝑠 = 1500, 𝑆𝑄𝑚𝑜𝑑𝑒𝑙 = 𝐴𝐷𝑆𝐵_2 
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minutes would have been ignored.  The purpose of this test matrix was to generate a family of CD 

performance curves for the level of intent information and quality of intent information parameters. 

Table 12 shows the parameter values that were investigated in the IQ1 test matrix.  Conflict detection 

cycle period (𝑇𝑑𝑒𝑡) was analyzed at short and long values of 15 and 60 seconds, respectively.  The conflict 

detection and trajectory prediction horizon (𝑇𝑝𝑟𝑒𝑑), and the level of intent (𝑇𝑖𝑛𝑡), were each examined at the 

short, medium and long horizon levels of 5, 10, and 20 minutes.  The vertical and horizontal quality of 

intent values were combined at the levels that provide equivalent information along the vertical and 

horizontal profiles (e.g., 𝐼𝑄𝑉1+𝐼𝑄𝐻1) with the addition of the 𝐼𝑄𝑉1+𝐼𝑄𝐻2 quality combination that is the 

equivalent of the ADS-B trajectory change report definition in the ADS-B MASPS.  Trajectory prediction 

symmetry was again investigated using the symmetric and asymmetric approaches where, for the 

asymmetric cases, perfect trajectory prediction was assumed for the first aircraft in the conflict pair by 

setting the predicted trajectory equal to the true trajectory of that aircraft, and for the symmetric cases, both 

aircraft had the same quality of imperfect trajectory predictions.  Table 12 lists the test matrix parameters, 

which constitute a total of 132 analysis runs from the meaningful parameter combinations. 

 

E. Level and Quality of Intent Information Test Matrix 2 (IQ2) 
Level and quality of intent information test matrix 2 investigated the impact of different traffic scenarios 

on the variability of the output metrics and the sensitivity of the metrics to the parameters associated with 

vertical and horizontal intent quality 4.  The same set of 10 random traffic scenarios used in the SQ2 test 

matrix were used in test matrix IQ2a to investigate the variability of the output metrics with respect to 3 

baseline scenario runs, with symmetric and asymmetric trajectory predictions.  Baseline runs 3-5 represent 

the conditions of an intent information quality at level 3 and with long, medium, and short intent horizons, 

respectively.  Table 13 lists the details of the scenario variability runs for a total of 60 analysis runs. 

Test matrix IQ2b, shown in Table 14, lists the parameter settings of baseline run 6 with medium 

prediction and medium intent horizons, and the intent information quality 4 parameters variations.  The 

time interval for the horizontal points that the intent information quality 4 adds to the horizontal intent 

information quality 3 points was varied from 15 seconds to 300 seconds.  The altitude interval for the 

vertical points that the vertical intent information quality 4 adds to the intent information quality 3 points 

was varied from 100 feet to 5000 feet.  The analysis runs of test matrix IQ2b were run with symmetric and 

asymmetric trajectory predictions for a total of 36 analysis runs.  

Table 12.  Level and quality of intent test matrix IQ1 (partial-factorial; 132 runs). 

Parameter Values Units 

CD Period (𝑇𝑑𝑒𝑡) 15, 60 s 

Prediction Horizon (𝑇𝑝𝑟𝑒𝑑) 300, 600, 1200 s 

Level of Intent (𝑇𝑖𝑛𝑡) 300, 600, 1200 s 

Quality of Intent 𝐼𝑄𝑉0+𝐼𝑄𝐻0, 𝐼𝑄𝑉1+𝐼𝑄𝐻1, 𝐼𝑄𝑉1+𝐼𝑄𝐻2
1, 𝐼𝑄𝑉2+𝐼𝑄𝐻2, 

𝐼𝑄𝑉3+𝐼𝑄𝐻3, 𝐼𝑄𝑉4+𝐼𝑄𝐻4
2 

- 

Trajectory Prediction 

Symmetry 

Symmetric, Asymmetric - 

Note: 1 Represents the closest equivalent to the ADS-B MASPS definition of a trajectory 

change report. 2 Default quality 4 intervals of 120 seconds and 1000 ft, per Table 3. 
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VII. Results and Discussion 

The use of two separate conflict detection performance analysis methods required that some additional 

steps be taken to reconcile any differences in assumptions inherent in the analysis codes.  Several 

comparison runs were made and the primary metrics compared in order to identify and correct these 

differences.  The two analysis methods were shown to produce nearly identical results when run under the 

same input parameters and the same traffic scenarios.  Table 15 shows the CD performance metrics for 

methods 1 and 2, and their differences, for a sample set of ten traffic scenarios.  Each of the ten traffic 

scenarios is a random sample of 100 aircraft pairs with known LOS events from the set of time-shifted, 

recorded NAS traffic.  Note that analysis method 2 was run with the recorded traffic data for these 

comparisons, as opposed to random circular scenarios. 

 

Table 13.  Level and quality of intent test matrix IQ2a (scenario variability; 60 runs). 

Variability Test Baseline Run Trajectory Prediction 

Symmetry 

Number of 

Scenarios 

Number of Runs 

Per Scenario 

Scenario Variability 

baseline 3 Symmetric 10 1 

baseline 3 Asymmetric 10 1 

baseline 4 Symmetric 10 1 

baseline 4 Asymmetric 10 1 

baseline 5 Symmetric 10 1 

baseline 5 Asymmetric 10 1 

baseline 3: 𝑇𝑑𝑒𝑡 = 60, 𝑇𝑝𝑟𝑒𝑑 = 1200, 𝑇𝑖𝑛𝑡 = 1200, 𝐼𝑄𝑉3, 𝐼𝑄𝐻3 

baseline 4: 𝑇𝑑𝑒𝑡 = 60, 𝑇𝑝𝑟𝑒𝑑 = 1200, 𝑇𝑖𝑛𝑡 = 600, 𝐼𝑄𝑉3, 𝐼𝑄𝐻3 

baseline 5: 𝑇𝑑𝑒𝑡 = 60, 𝑇𝑝𝑟𝑒𝑑 = 1200, 𝑇𝑖𝑛𝑡 = 300, 𝐼𝑄𝑉3, 𝐼𝑄𝐻3 

 

 Table 14.  Level and quality of intent test matrix IQ2b (Q4 sensitivity runs; 36 runs). 

Parameter Values Units 

Nominal Parameter Values baseline 6: 𝑇𝑑𝑒𝑡 = 60, 𝑇𝑝𝑟𝑒𝑑 = 600, 𝑇𝑖𝑛𝑡 = 600, 𝐼𝑄𝑉4, 𝐼𝑄𝐻4 - 

Time Interval for Intent Quality 4 

Horizontal Points (∆𝑡𝑄4) 

15, 30, 45, 60, 75, 90, 120, 180, 300 s 

Altitude Interval for Intent Quality 4 

Vertical Points (∆𝑎𝑙𝑡𝑄4) 

100, 200, 300, 400, 500, 750, 1000, 2000, 5000 ft 

Trajectory Prediction Symmetry Symmetric, Asymmetric - 

 

Table 15.  Comparison results for analysis methods 1 and 2 using the same 10 sample scenarios. 

 

Sample 

Run 

Method 1 Method 2 Difference 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

1 0.068 0.323 0.042 641 0.065 0.316 0.050 644 0.003 0.007 -0.008 -3 

2 0.077 0.287 0.033 650 0.081 0.286 0.010 637 -0.004 0.001 0.023 13 

3 0.081 0.319 0.030 648 0.083 0.321 0.030 632 -0.002 -0.002 0.000 16 

4 0.064 0.296 0.053 661 0.074 0.298 0.040 646 -0.010 -0.002 0.013 15 

5 0.103 0.348 0.043 613 0.098 0.335 0.060 619 0.005 0.013 -0.017 -6 

6 0.083 0.318 0.034 647 0.080 0.307 0.050 658 0.003 0.011 -0.016 -11 

7 0.075 0.339 0.008 649 0.075 0.334 0.010 656 0.000 0.005 -0.002 -7 

8 0.076 0.290 0.016 605 0.077 0.293 0.020 606 -0.001 -0.003 -0.004 -1 

9 0.065 0.305 0.009 678 0.065 0.304 0.020 677 0.000 0.001 -0.011 1 

10 0.091 0.321 0.053 689 0.090 0.317 0.030 678 0.001 0.004 0.023 11 

Note: analysis method 1 and 2 were both run with recorded traffic data scenarios; random circular scenarios were not used 

with analysis method 2 in these comparison runs. 
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Although the two analysis methods produced nearly identical results under the same parameter and 

scenario conditions, the two methods were expected to produce somewhat different results under the same 

parameter conditions when comparing recorded traffic scenarios to circular traffic scenarios.  The primary 

reason for this difference is due to the fact that the recorded data has a small level of surveillance and sensor 

noise remaining even after the processing and filtering steps taken to clean the data.  This small level of 

noise can have a significant impact on trajectory prediction accuracy, particularly in state-projection 

trajectory predictions where the predictions rely on velocity states obtained from differential derivatives.  

The second reason for the differences is that, for the circular scenarios, the intent information is perfect (the 

intent is identical to the kinematic flight plan and it is flown perfectly using kinematics).  The significance 

of these differences is that, in general, the results produced using the circular scenarios of method 2 show 

better CD performance (lower false alert, missed alert, and missed detection probabilities, and higher values 

for mean time-to-LOS) than the results for the scenarios using recorded traffic data and analysis method 1.  

In some sense, the results from method 2 could be considered the upper bounds of CD performance since 

the conditions are more idealized, whereas, the results from method 1 could be considered closer to what 

could be expected in a real environment with noisy or imperfect data. 

The following sections present the full set of results tables for the surveillance quality and intent 

information quality test matrices and the figures for a subset of those results, along with some discussion 

of the results.  Comparison data runs using the analysis method 2 and random circular traffic scenarios are 

also presented and compared where applicable.  

A. Surveillance Quality Results and Discussion 
The results of the analysis runs for surveillance quality test matrix 1 (SQ1) are listed in Table 16-Table 

19.  The figures associated with test matrix SQ1 are Figure 24-Figure 29.  Figure 24 illustrates that the 

absence of intent information, or the reliance on state-projection trajectory predictions, produces poor 

conflict detection performance in all of the primary metrics.  In addition, if surveillance error is present at 

the quality of current surveillance radar technologies, the performance is reduced by 50% or more in terms 

of false alerts and missed detections.  Even at short trajectory prediction and conflict detection horizons of 

5 minutes, the CD performance in the absence of surveillance noise is poor with 48% false alerts, 46% 

missed alerts, 7% missed detections, and 158 seconds average time-to-LOS at first detection (Figure 25).   

There is a trade-off between trajectory prediction and the conflict detection horizon because higher 

detection horizons produce worst false alert, missed alert, and mean time-to-LOS metrics while missed 

detections are reduced.  A surveillance range beyond 250 nautical miles appears to have minimal impact in 

improving the CD performance (Figure 26 and Figure 27), further solidifying the poor quality of state-

projection trajectory predictions.  Conflict detection cycle periods of 15 and 60 seconds (Figure 28) 

produced nearly identical false alert and missed alert metrics for the same input parameters but missed 

detection were reduced by ~60% and mean time-to-LOS at first detection was increased by ~25% by using 

15 seconds instead of 60 seconds.  Conflict detection performance using asymmetric predictions (perfect 

prediction for aircraft 1 in a pair) versus symmetric predictions had a positive impact on CD performance 

for all metrics (Figure 29).  

The results of the analysis runs for surveillance quality test matrix 2 (SQ2) are listed in Table 20-Table 

23.  Table 24 shows the results of a set of comparison runs using circular scenarios and analysis method 2.  

The figures associated with test matrix SQ2 are Figure 30-Figure 40.  The comparison results of Table 24 

are shown in Figure 31 and Figure 33.  The sensitivity curves indicate that false alert and missed alert 

probabilities are most sensitive to conflict detection and trajectory prediction horizon (Figure 31) and 

vertical speed errors (Figure 37).  Missed detection probability, in terms of percent change, is sensitive to 

most of the parameters tested, with the lowest sensitivity being to the vertical position error (Figure 35).  

The mean time-to-LOS metric is most sensitive to CD cycle period (Figure 30), conflict detection and 

prediction horizon (Figure 31), and surveillance range (Figure 32).  The comparison results from analysis 

method 2 for conflict detection and trajectory prediction horizon sensitivity show trends that are in 

agreement with the results of analysis method 1 (Figure 31).  A similar agreement in sensitivity curves 

between the two analysis methods can be seen in Figure 33 for the sensitivity of the metrics to the 
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surveillance lag time parameter.  The impact of the conflict comparison criteria on the CD performance 

metrics versus the conventional metrics definitions is that the conventional measurement would produce a 

less conservative performance (~4% lower false alert probability, ~6% lower missed alerts, ~3% lower 

missed detection, and ~60 second longer mean time-to-LOS metrics).  Figure 40 confirms the improved 

conflict detection performance when using asymmetric trajectory predictions. 

The results of the analysis runs for surveillance quality test matrix 3 (SQ3) are listed in Table 25 and 

Table 26.  Table 27 and Table 28 present the summary statistics for the variability in the metrics due to 

different traffic scenarios and due to Monte Carlo sampling of the surveillance error parameters, including 

one case using analysis method 2.  The variability of the CD performance metrics to different traffic 

scenarios with the same input parameters appears to be small with ~0.33% or less of standard deviation in 

the false alert probability, less than 0.3% of standard deviation in missed alert probability, less than 0.5% 

of standard deviation in the missed detection probability, and approximately 2 seconds of standard deviation 

for the mean time-to-LOS metric (Table 27).  The variability of the CD performance metrics to the Monte 

Carlo sampling of the surveillance error parameters using the same traffic scenario is also small, with less 

than 0.1% of standard deviation in the false and missed alert probabilities, less than 0.25% of standard 

deviation in the missed detection probability, and less than 1.5 seconds of standard deviation for the mean 

time-to-LOS metric (Table 28).  The variability is likely dependent on the number of LOS and the number 

of alerts identified during each scenario run; all of the variability scenario runs using the recorded traffic 

data had ~15,000 true LOS and between 135,000 and 237,000 conflict alerts.  
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Surveillance Quality Results Tables 
 

 
 

Table 16.  Surveillance quality run data with symmetric predictions and 60 second CD cycle period. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑺𝑸𝒎𝒐𝒅𝒆𝒍 𝑹𝒔 

[NM] 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq1_001 60 1200 none 1500 0.752 0.742 0.063 277 

sq1_002 60 1200 radar 1500 0.931 0.905 0.182 134 

sq1_003 60 1200 ADSB_1 1500 0.914 0.878 0.103 172 

sq1_004 60 1200 ADSB_2 1500 0.881 0.810 0.065 259 

sq1_005 60 1200 none 250 0.741 0.743 0.063 275 

sq1_006 60 1200 radar 250 0.929 0.905 0.184 135 

sq1_007 60 1200 ADSB_1 250 0.912 0.879 0.110 169 

sq1_008 60 1200 ADSB_2 250 0.875 0.810 0.061 255 

sq1_009 60 1200 none 50 0.576 0.803 0.069 188 

sq1_010 60 1200 radar 50 0.865 0.910 0.193 109 

sq1_011 60 1200 ADSB_1 50 0.833 0.887 0.115 133 

sq1_012 60 1200 ADSB_2 50 0.734 0.837 0.069 176 

sq1_013 60 600 none 1500 0.647 0.624 0.064 214 

sq1_014 60 600 radar 1500 0.904 0.838 0.186 125 

sq1_015 60 600 ADSB_1 1500 0.879 0.792 0.109 154 

sq1_016 60 600 ADSB_2 1500 0.815 0.687 0.067 211 

sq1_017 60 600 none 250 0.647 0.624 0.064 214 

sq1_018 60 600 radar 250 0.902 0.835 0.191 129 

sq1_019 60 600 ADSB_1 250 0.879 0.793 0.111 156 

sq1_020 60 600 ADSB_2 250 0.815 0.686 0.065 211 

sq1_021 60 600 none 50 0.523 0.677 0.069 172 

sq1_022 60 600 radar 50 0.854 0.844 0.192 109 

sq1_023 60 600 ADSB_1 50 0.815 0.805 0.115 129 

sq1_024 60 600 ADSB_2 50 0.698 0.721 0.070 167 

sq1_025 60 300 none 1500 0.483 0.460 0.069 148 

sq1_026 60 300 radar 1500 0.851 0.708 0.193 104 

sq1_027 60 300 ADSB_1 1500 0.814 0.641 0.118 119 

sq1_028 60 300 ADSB_2 1500 0.703 0.502 0.070 147 

sq1_029 60 300 none 250 0.483 0.460 0.069 148 

sq1_030 60 300 radar 250 0.851 0.710 0.195 103 

sq1_031 60 300 ADSB_1 250 0.812 0.641 0.120 120 

sq1_032 60 300 ADSB_2 250 0.702 0.503 0.072 147 

sq1_033 60 300 none 50 0.433 0.482 0.070 139 

sq1_034 60 300 radar 50 0.830 0.714 0.193 100 

sq1_035 60 300 ADSB_1 50 0.783 0.650 0.118 112 

sq1_036 60 300 ADSB_2 50 0.644 0.522 0.073 137 
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Table 17.  Surveillance quality run data with symmetric predictions and 15 second CD cycle period. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑺𝑸𝒎𝒐𝒅𝒆𝒍 𝑹𝒔 

[NM] 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq1_037 15 1200 none 1500 0.751 0.742 0.003 316 

sq1_038 15 1200 radar 1500 0.929 0.903 0.022 220 

sq1_039 15 1200 ADSB_1 1500 0.914 0.878 0.015 278 

sq1_040 15 1200 ADSB_2 1500 0.880 0.809 0.009 353 

sq1_041 15 1200 none 250 0.739 0.743 0.003 314 

sq1_042 15 1200 radar 250 0.927 0.904 0.022 220 

sq1_043 15 1200 ADSB_1 250 0.911 0.878 0.011 274 

sq1_044 15 1200 ADSB_2 250 0.874 0.809 0.010 347 

sq1_045 15 1200 none 50 0.573 0.803 0.004 215 

sq1_046 15 1200 radar 50 0.863 0.909 0.022 169 

sq1_047 15 1200 ADSB_1 50 0.831 0.886 0.013 203 

sq1_048 15 1200 ADSB_2 50 0.731 0.836 0.008 234 

sq1_049 15 600 none 1500 0.644 0.624 0.003 246 

sq1_050 15 600 radar 1500 0.901 0.834 0.025 202 

sq1_051 15 600 ADSB_1 1500 0.878 0.793 0.014 236 

sq1_052 15 600 ADSB_2 1500 0.815 0.687 0.010 274 

sq1_053 15 600 none 250 0.644 0.624 0.003 246 

sq1_054 15 600 radar 250 0.901 0.835 0.022 203 

sq1_055 15 600 ADSB_1 250 0.879 0.793 0.014 237 

sq1_056 15 600 ADSB_2 250 0.815 0.687 0.010 275 

sq1_057 15 600 none 50 0.519 0.677 0.004 196 

sq1_058 15 600 radar 50 0.852 0.842 0.024 166 

sq1_059 15 600 ADSB_1 50 0.814 0.805 0.012 193 

sq1_060 15 600 ADSB_2 50 0.696 0.721 0.009 214 

sq1_061 15 300 none 1500 0.479 0.460 0.004 171 

sq1_062 15 300 radar 1500 0.849 0.708 0.023 154 

sq1_063 15 300 ADSB_1 1500 0.812 0.640 0.013 173 

sq1_064 15 300 ADSB_2 1500 0.701 0.502 0.010 186 

sq1_065 15 300 none 250 0.479 0.460 0.004 171 

sq1_066 15 300 radar 250 0.849 0.707 0.025 155 

sq1_067 15 300 ADSB_1 250 0.813 0.640 0.015 174 

sq1_068 15 300 ADSB_2 250 0.701 0.503 0.009 184 

sq1_069 15 300 none 50 0.427 0.481 0.004 160 

sq1_070 15 300 radar 50 0.827 0.713 0.024 146 

sq1_071 15 300 ADSB_1 50 0.781 0.649 0.016 163 

sq1_072 15 300 ADSB_2 50 0.639 0.522 0.010 172 
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Table 18.  Surveillance quality run data with asymmetric predictions and 60 second CD cycle period. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑺𝑸𝒎𝒐𝒅𝒆𝒍 𝑹𝒔 

[NM] 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq1_073 60 1200 none 1500 0.557 0.586 0.039 420 

sq1_074 60 1200 radar 1500 0.896 0.850 0.151 303 

sq1_075 60 1200 ADSB_1 1500 0.864 0.797 0.050 354 

sq1_076 60 1200 ADSB_2 1500 0.812 0.696 0.038 420 

sq1_077 60 1200 none 250 0.544 0.589 0.039 416 

sq1_078 60 1200 radar 250 0.892 0.849 0.150 299 

sq1_079 60 1200 ADSB_1 250 0.858 0.797 0.049 350 

sq1_080 60 1200 ADSB_2 250 0.801 0.698 0.039 414 

sq1_081 60 1200 none 50 0.416 0.724 0.042 263 

sq1_082 60 1200 radar 50 0.808 0.872 0.166 198 

sq1_083 60 1200 ADSB_1 50 0.749 0.831 0.056 227 

sq1_084 60 1200 ADSB_2 50 0.612 0.770 0.045 261 

sq1_085 60 600 none 1500 0.446 0.456 0.040 297 

sq1_086 60 600 radar 1500 0.857 0.754 0.157 230 

sq1_087 60 600 ADSB_1 1500 0.814 0.679 0.053 252 

sq1_088 60 600 ADSB_2 1500 0.721 0.543 0.040 294 

sq1_089 60 600 none 250 0.446 0.456 0.040 297 

sq1_090 60 600 radar 250 0.857 0.756 0.159 230 

sq1_091 60 600 ADSB_1 250 0.814 0.679 0.052 253 

sq1_092 60 600 ADSB_2 250 0.721 0.544 0.041 293 

sq1_093 60 600 none 50 0.357 0.569 0.042 227 

sq1_094 60 600 radar 50 0.792 0.784 0.171 177 

sq1_095 60 600 ADSB_1 50 0.725 0.717 0.056 194 

sq1_096 60 600 ADSB_2 50 0.562 0.621 0.043 221 

sq1_097 60 300 none 1500 0.311 0.310 0.043 185 

sq1_098 60 300 radar 1500 0.796 0.614 0.178 148 

sq1_099 60 300 ADSB_1 1500 0.734 0.507 0.061 158 

sq1_100 60 300 ADSB_2 1500 0.589 0.361 0.046 182 

sq1_101 60 300 none 250 0.311 0.310 0.043 185 

sq1_102 60 300 radar 250 0.796 0.614 0.181 149 

sq1_103 60 300 ADSB_1 250 0.736 0.511 0.062 156 

sq1_104 60 300 ADSB_2 250 0.589 0.363 0.046 181 

sq1_105 60 300 none 50 0.278 0.354 0.043 170 

sq1_106 60 300 radar 50 0.766 0.632 0.187 137 

sq1_107 60 300 ADSB_1 50 0.691 0.528 0.064 146 

sq1_108 60 300 ADSB_2 50 0.511 0.400 0.049 167 
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Table 19.  Surveillance quality run data with asymmetric predictions and 15 second CD cycle period. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑺𝑸𝒎𝒐𝒅𝒆𝒍 𝑹𝒔 

[NM] 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq1_109 15 1200 none 1500 0.555 0.585 0.002 458 

sq1_110 15 1200 radar 1500 0.895 0.849 0.049 472 

sq1_111 15 1200 ADSB_1 1500 0.864 0.797 0.007 515 

sq1_112 15 1200 ADSB_2 1500 0.811 0.696 0.006 522 

sq1_113 15 1200 none 250 0.542 0.588 0.002 453 

sq1_114 15 1200 radar 250 0.891 0.848 0.049 464 

sq1_115 15 1200 ADSB_1 250 0.858 0.797 0.007 508 

sq1_116 15 1200 ADSB_2 250 0.800 0.697 0.006 513 

sq1_117 15 1200 none 50 0.414 0.724 0.002 293 

sq1_118 15 1200 radar 50 0.809 0.872 0.051 297 

sq1_119 15 1200 ADSB_1 50 0.748 0.831 0.006 327 

sq1_120 15 1200 ADSB_2 50 0.609 0.769 0.006 324 

sq1_121 15 600 none 1500 0.444 0.455 0.002 325 

sq1_122 15 600 radar 1500 0.856 0.754 0.053 332 

sq1_123 15 600 ADSB_1 1500 0.814 0.679 0.007 351 

sq1_124 15 600 ADSB_2 1500 0.720 0.544 0.006 354 

sq1_125 15 600 none 250 0.444 0.455 0.002 325 

sq1_126 15 600 radar 250 0.856 0.754 0.049 331 

sq1_127 15 600 ADSB_1 250 0.813 0.678 0.007 352 

sq1_128 15 600 ADSB_2 250 0.720 0.544 0.006 353 

sq1_129 15 600 none 50 0.355 0.568 0.002 252 

sq1_130 15 600 radar 50 0.791 0.783 0.052 251 

sq1_131 15 600 ADSB_1 50 0.724 0.716 0.008 269 

sq1_132 15 600 ADSB_2 50 0.562 0.621 0.007 268 

sq1_133 15 300 none 1500 0.308 0.309 0.002 206 

sq1_134 15 300 radar 1500 0.793 0.612 0.067 203 

sq1_135 15 300 ADSB_1 1500 0.734 0.506 0.008 211 

sq1_136 15 300 ADSB_2 1500 0.586 0.361 0.007 214 

sq1_137 15 300 none 250 0.308 0.309 0.002 206 

sq1_138 15 300 radar 250 0.794 0.613 0.064 202 

sq1_139 15 300 ADSB_1 250 0.733 0.506 0.009 212 

sq1_140 15 300 ADSB_2 250 0.587 0.361 0.007 214 

sq1_141 15 300 none 50 0.274 0.353 0.002 191 

sq1_142 15 300 radar 50 0.764 0.630 0.065 187 

sq1_143 15 300 ADSB_1 50 0.690 0.528 0.007 195 

sq1_144 15 300 ADSB_2 50 0.508 0.398 0.007 198 
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Table 20.  Surveillance quality sensitivity run data with symmetric predictions and no baseline surveillance error. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑹𝒔 

[NM] 

𝒕𝒔𝒍 

[s] 

𝝈𝒓 

[NM] 

𝝈𝒂 

[ft] 

𝝈𝒈𝒔 

[knots] 

𝝈𝒗𝒔 

[ft/min] 

𝝈𝒕𝒓𝒌 

[deg] 

Same X 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq2_001 60 600 1500 0 0 0 0 0 0 1 0.647 0.624 0.064 214 

sq2_002 15 600 1500 0 0 0 0 0 0 1 0.644 0.624 0.003 246 

sq2_003 30 600 1500 0 0 0 0 0 0 1 0.645 0.624 0.016 230 

sq2_004 120 600 1500 0 0 0 0 0 0 1 0.650 0.624 0.193 205 

sq2_005 300 600 1500 0 0 0 0 0 0 1 0.666 0.633 0.463 203 

sq2_006 60 60 1500 0 0 0 0 0 0 1 0.146 0.138 0.138 30 

sq2_007 60 120 1500 0 0 0 0 0 0 1 0.257 0.245 0.083 70 

sq2_008 60 300 1500 0 0 0 0 0 0 1 0.483 0.460 0.069 148 

sq2_009 60 900 1500 0 0 0 0 0 0 1 0.712 0.698 0.064 251 

sq2_010 60 1200 1500 0 0 0 0 0 0 1 0.752 0.742 0.063 277 

sq2_011 60 600 20 0 0 0 0 0 0 1 0.478 0.771 0.081 114 

sq2_012 60 600 40 0 0 0 0 0 0 1 0.507 0.699 0.071 158 

sq2_013 60 600 80 0 0 0 0 0 0 1 0.573 0.642 0.067 197 

sq2_014 60 600 100 0 0 0 0 0 0 1 0.601 0.632 0.065 206 

sq2_015 60 600 200 0 0 0 0 0 0 1 0.647 0.624 0.064 214 

sq2_016 60 600 300 0 0 0 0 0 0 1 0.647 0.624 0.064 214 

sq2_017 60 600 500 0 0 0 0 0 0 1 0.647 0.624 0.064 214 

sq2_018 60 600 1500 1 0 0 0 0 0 1 0.647 0.625 0.068 214 

sq2_019 60 600 1500 2 0 0 0 0 0 1 0.649 0.627 0.071 213 

sq2_020 60 600 1500 5 0 0 0 0 0 1 0.659 0.634 0.083 213 

sq2_021 60 600 1500 10 0 0 0 0 0 1 0.670 0.643 0.106 212 

sq2_022 60 600 1500 15 0 0 0 0 0 1 0.680 0.652 0.126 212 

sq2_023 60 600 1500 0 0.001 0 0 0 0 1 0.647 0.624 0.064 214 

sq2_024 60 600 1500 0 0.01 0 0 0 0 1 0.647 0.624 0.064 214 

sq2_025 60 600 1500 0 0.1 0 0 0 0 1 0.648 0.626 0.068 215 

sq2_026 60 600 1500 0 0.5 0 0 0 0 1 0.663 0.642 0.084 217 

sq2_027 60 600 1500 0 0 1 0 0 0 1 0.647 0.624 0.064 213 

sq2_028 60 600 1500 0 0 10 0 0 0 1 0.648 0.624 0.066 213 

sq2_029 60 600 1500 0 0 25 0 0 0 1 0.648 0.625 0.068 214 

sq2_030 60 600 1500 0 0 50 0 0 0 1 0.652 0.626 0.071 215 

sq2_031 60 600 1500 0 0 100 0 0 0 1 0.688 0.625 0.070 220 

sq2_032 60 600 1500 0 0 150 0 0 0 1 0.724 0.626 0.075 223 

sq2_033 60 600 1500 0 0 0 0.1 0 0 1 0.647 0.624 0.065 214 

sq2_034 60 600 1500 0 0 0 1 0 0 1 0.647 0.624 0.065 214 

sq2_035 60 600 1500 0 0 0 5 0 0 1 0.653 0.630 0.066 213 

sq2_036 60 600 1500 0 0 0 10 0 0 1 0.665 0.641 0.069 210 

sq2_037 60 600 1500 0 0 0 20 0 0 1 0.691 0.663 0.073 205 

sq2_038 60 600 1500 0 0 0 50 0 0 1 0.758 0.717 0.091 187 

sq2_039 60 600 1500 0 0 0 0 10 0 1 0.657 0.623 0.064 216 

sq2_040 60 600 1500 0 0 0 0 25 0 1 0.703 0.619 0.057 222 

sq2_041 60 600 1500 0 0 0 0 50 0 1 0.744 0.624 0.054 222 

sq2_042 60 600 1500 0 0 0 0 100 0 1 0.785 0.650 0.052 221 

sq2_043 60 600 1500 0 0 0 0 500 0 1 0.877 0.792 0.090 147 

sq2_044 60 600 1500 0 0 0 0 1000 0 1 0.912 0.860 0.199 101 

sq2_045 60 600 1500 0 0 0 0 0 0.1 1 0.647 0.624 0.064 214 

sq2_046 60 600 1500 0 0 0 0 0 0.5 1 0.648 0.626 0.064 213 

sq2_047 60 600 1500 0 0 0 0 0 1 1 0.653 0.632 0.065 212 

sq2_048 60 600 1500 0 0 0 0 0 2 1 0.664 0.647 0.069 209 

sq2_049 60 600 1500 0 0 0 0 0 5 1 0.706 0.698 0.081 190 

sq2_050 60 600 1500 0 0 0 0 0 0 0.5 0.684 0.664 0.086 188 

sq2_051 60 600 1500 0 0 0 0 0 0 2 0.624 0.595 0.049 234 

sq2_052 60 600 1500 0 0 0 0 0 0 Inf. 0.606 0.560 0.036 277 
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Table 21.  Surveillance quality sensitivity run data with symmetric predictions and ADSB_2 baseline surveillance 

error. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑹𝒔 

[NM] 

𝒕𝒔𝒍 

[s] 

𝝈𝒓 

[NM] 

𝝈𝒂 

[ft] 

𝝈𝒈𝒔 

[knots] 

𝝈𝒗𝒔 

[ft/min] 

𝝈𝒕𝒓𝒌 

[deg] 

Same X 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq2_053 60 600 1500 1 0.0081 73.8 1 150 1 1 0.815 0.684 0.061 211 

sq2_054 15 600 1500 1 0.0081 73.8 1 150 1 1 0.815 0.687 0.008 275 

sq2_055 30 600 1500 1 0.0081 73.8 1 150 1 1 0.814 0.686 0.021 243 

sq2_056 120 600 1500 1 0.0081 73.8 1 150 1 1 0.818 0.689 0.193 182 

sq2_057 300 600 1500 1 0.0081 73.8 1 150 1 1 0.826 0.698 0.496 157 

sq2_058 60 60 1500 1 0.0081 73.8 1 150 1 1 0.416 0.183 0.183 30 

sq2_059 60 120 1500 1 0.0081 73.8 1 150 1 1 0.519 0.275 0.094 69 

sq2_060 60 300 1500 1 0.0081 73.8 1 150 1 1 0.703 0.503 0.070 146 

sq2_061 60 900 1500 1 0.0081 73.8 1 150 1 1 0.858 0.766 0.066 242 

sq2_062 60 1200 1500 1 0.0081 73.8 1 150 1 1 0.881 0.809 0.065 258 

sq2_063 60 600 20 1 0.0081 73.8 1 150 1 1 0.622 0.795 0.092 111 

sq2_064 60 600 40 1 0.0081 73.8 1 150 1 1 0.673 0.737 0.074 153 

sq2_065 60 600 80 1 0.0081 73.8 1 150 1 1 0.754 0.699 0.067 192 

sq2_066 60 600 100 1 0.0081 73.8 1 150 1 1 0.780 0.692 0.066 202 

sq2_067 60 600 200 1 0.0081 73.8 1 150 1 1 0.816 0.687 0.065 212 

sq2_068 60 600 300 1 0.0081 73.8 1 150 1 1 0.816 0.687 0.065 212 

sq2_069 60 600 500 1 0.0081 73.8 1 150 1 1 0.816 0.687 0.064 210 

sq2_070 60 600 1500 1 0.0081 73.8 1 150 1 1 0.816 0.687 0.064 210 

sq2_071 60 600 1500 2 0.0081 73.8 1 150 1 1 0.817 0.689 0.067 209 

sq2_072 60 600 1500 5 0.0081 73.8 1 150 1 1 0.821 0.695 0.077 208 

sq2_073 60 600 1500 10 0.0081 73.8 1 150 1 1 0.827 0.703 0.092 207 

sq2_074 60 600 1500 15 0.0081 73.8 1 150 1 1 0.833 0.712 0.108 205 

sq2_075 60 600 1500 1 0.001 73.8 1 150 1 1 0.815 0.686 0.064 211 

sq2_076 60 600 1500 1 0.01 73.8 1 150 1 1 0.815 0.685 0.064 211 

sq2_077 60 600 1500 1 0.1 73.8 1 150 1 1 0.816 0.687 0.067 211 

sq2_078 60 600 1500 1 0.5 73.8 1 150 1 1 0.825 0.701 0.083 211 

sq2_079 60 600 1500 1 0.0081 1 1 150 1 1 0.812 0.683 0.058 208 

sq2_080 60 600 1500 1 0.0081 10 1 150 1 1 0.814 0.684 0.058 209 

sq2_081 60 600 1500 1 0.0081 25 1 150 1 1 0.814 0.684 0.061 208 

sq2_082 60 600 1500 1 0.0081 50 1 150 1 1 0.813 0.685 0.063 212 

sq2_083 60 600 1500 1 0.0081 100 1 150 1 1 0.818 0.688 0.066 210 

sq2_084 60 600 1500 1 0.0081 150 1 150 1 1 0.820 0.693 0.076 213 

sq2_085 60 600 1500 1 0.0081 73.8 0.1 150 1 1 0.815 0.686 0.063 210 

sq2_086 60 600 1500 1 0.0081 73.8 1 150 1 1 0.817 0.689 0.067 210 

sq2_087 60 600 1500 1 0.0081 73.8 5 150 1 1 0.818 0.690 0.065 209 

sq2_088 60 600 1500 1 0.0081 73.8 10 150 1 1 0.821 0.695 0.065 206 

sq2_089 60 600 1500 1 0.0081 73.8 20 150 1 1 0.830 0.708 0.074 200 

sq2_090 60 600 1500 1 0.0081 73.8 50 150 1 1 0.858 0.747 0.094 180 

sq2_091 60 600 1500 1 0.0081 73.8 1 10 1 1 0.690 0.635 0.072 216 

sq2_092 60 600 1500 1 0.0081 73.8 1 25 1 1 0.725 0.634 0.071 221 

sq2_093 60 600 1500 1 0.0081 73.8 1 50 1 1 0.757 0.638 0.063 222 

sq2_094 60 600 1500 1 0.0081 73.8 1 100 1 1 0.794 0.661 0.063 220 

sq2_095 60 600 1500 1 0.0081 73.8 1 500 1 1 0.881 0.798 0.100 144 

sq2_096 60 600 1500 1 0.0081 73.8 1 1000 1 1 0.915 0.865 0.214 99 

sq2_097 60 600 1500 1 0.0081 73.8 1 150 0.1 1 0.813 0.681 0.060 212 

sq2_098 60 600 1500 1 0.0081 73.8 1 150 0.5 1 0.814 0.684 0.061 212 

sq2_099 60 600 1500 1 0.0081 73.8 1 150 1 1 0.815 0.686 0.066 212 

sq2_100 60 600 1500 1 0.0081 73.8 1 150 2 1 0.820 0.696 0.066 205 

sq2_101 60 600 1500 1 0.0081 73.8 1 150 5 1 0.836 0.733 0.082 184 

sq2_102 60 600 1500 1 0.0081 73.8 1 150 1 0.5 0.847 0.741 0.096 166 

sq2_103 60 600 1500 1 0.0081 73.8 1 150 1 2 0.799 0.656 0.047 240 

sq2_104 60 600 1500 1 0.0081 73.8 1 150 1 Inf. 0.786 0.615 0.026 288 
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Table 22.  Surveillance quality sensitivity run data with asymmetric predictions and no baseline surveillance 

error. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑹𝒔 

[NM] 

𝒕𝒔𝒍 

[s] 

𝝈𝒓 

[NM] 

𝝈𝒂 

[ft] 

𝝈𝒈𝒔 

[knots] 

𝝈𝒗𝒔 

[ft/min] 

𝝈𝒕𝒓𝒌 

[deg] 

Same X 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq2_105 60 600 1500 0 0 0 0 0 0 1 0.446 0.456 0.040 297 

sq2_106 15 600 1500 0 0 0 0 0 0 1 0.444 0.455 0.002 325 

sq2_107 30 600 1500 0 0 0 0 0 0 1 0.445 0.455 0.010 311 

sq2_108 120 600 1500 0 0 0 0 0 0 1 0.450 0.458 0.121 286 

sq2_109 300 600 1500 0 0 0 0 0 0 1 0.465 0.463 0.309 269 

sq2_110 60 60 1500 0 0 0 0 0 0 1 0.087 0.084 0.084 31 

sq2_111 60 120 1500 0 0 0 0 0 0 1 0.158 0.154 0.051 78 

sq2_112 60 300 1500 0 0 0 0 0 0 1 0.311 0.310 0.043 185 

sq2_113 60 900 1500 0 0 0 0 0 0 1 0.511 0.534 0.039 369 

sq2_114 60 1200 1500 0 0 0 0 0 0 1 0.557 0.586 0.039 420 

sq2_115 60 600 20 0 0 0 0 0 0 1 0.338 0.699 0.048 151 

sq2_116 60 600 40 0 0 0 0 0 0 1 0.349 0.602 0.043 207 

sq2_117 60 600 80 0 0 0 0 0 0 1 0.388 0.505 0.041 266 

sq2_118 60 600 100 0 0 0 0 0 0 1 0.409 0.481 0.040 281 

sq2_119 60 600 200 0 0 0 0 0 0 1 0.446 0.456 0.040 297 

sq2_120 60 600 300 0 0 0 0 0 0 1 0.446 0.456 0.040 297 

sq2_121 60 600 500 0 0 0 0 0 0 1 0.446 0.456 0.040 297 

sq2_122 60 600 1500 1 0 0 0 0 0 1 0.449 0.459 0.045 298 

sq2_123 60 600 1500 2 0 0 0 0 0 1 0.455 0.465 0.057 300 

sq2_124 60 600 1500 5 0 0 0 0 0 1 0.482 0.487 0.089 303 

sq2_125 60 600 1500 10 0 0 0 0 0 1 0.523 0.526 0.154 307 

sq2_126 60 600 1500 15 0 0 0 0 0 1 0.561 0.562 0.213 309 

sq2_127 60 600 1500 0 0.001 0 0 0 0 1 0.446 0.456 0.040 297 

sq2_128 60 600 1500 0 0.01 0 0 0 0 1 0.446 0.456 0.040 297 

sq2_129 60 600 1500 0 0.1 0 0 0 0 1 0.448 0.458 0.042 298 

sq2_130 60 600 1500 0 0.5 0 0 0 0 1 0.462 0.471 0.048 300 

sq2_131 60 600 1500 0 0 1 0 0 0 1 0.446 0.456 0.040 297 

sq2_132 60 600 1500 0 0 10 0 0 0 1 0.447 0.456 0.040 297 

sq2_133 60 600 1500 0 0 25 0 0 0 1 0.448 0.457 0.041 298 

sq2_134 60 600 1500 0 0 50 0 0 0 1 0.450 0.459 0.043 299 

sq2_135 60 600 1500 0 0 100 0 0 0 1 0.479 0.461 0.046 301 

sq2_136 60 600 1500 0 0 150 0 0 0 1 0.537 0.464 0.047 303 

sq2_137 60 600 1500 0 0 0 0.1 0 0 1 0.446 0.456 0.040 297 

sq2_138 60 600 1500 0 0 0 1 0 0 1 0.447 0.456 0.040 297 

sq2_139 60 600 1500 0 0 0 5 0 0 1 0.454 0.462 0.040 297 

sq2_140 60 600 1500 0 0 0 10 0 0 1 0.467 0.475 0.040 296 

sq2_141 60 600 1500 0 0 0 20 0 0 1 0.501 0.503 0.043 290 

sq2_142 60 600 1500 0 0 0 50 0 0 1 0.594 0.574 0.052 272 

sq2_143 60 600 1500 0 0 0 0 10 0 1 0.453 0.457 0.039 298 

sq2_144 60 600 1500 0 0 0 0 25 0 1 0.523 0.457 0.035 302 

sq2_145 60 600 1500 0 0 0 0 50 0 1 0.600 0.463 0.033 303 

sq2_146 60 600 1500 0 0 0 0 100 0 1 0.672 0.496 0.032 299 

sq2_147 60 600 1500 0 0 0 0 500 0 1 0.814 0.681 0.043 247 

sq2_148 60 600 1500 0 0 0 0 1000 0 1 0.860 0.772 0.084 199 

sq2_149 60 600 1500 0 0 0 0 0 0.1 1 0.446 0.456 0.040 297 

sq2_150 60 600 1500 0 0 0 0 0 0.5 1 0.449 0.459 0.040 297 

sq2_151 60 600 1500 0 0 0 0 0 1 1 0.456 0.466 0.040 296 

sq2_152 60 600 1500 0 0 0 0 0 2 1 0.472 0.484 0.041 294 

sq2_153 60 600 1500 0 0 0 0 0 5 1 0.527 0.545 0.045 281 

sq2_154 60 600 1500 0 0 0 0 0 0 0.5 0.481 0.491 0.051 278 

sq2_155 60 600 1500 0 0 0 0 0 0 2 0.425 0.432 0.031 312 

sq2_156 60 600 1500 0 0 0 0 0 0 Inf. 0.409 0.400 0.024 341 
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Table 23.  Surveillance quality sensitivity run data with asymmetric predictions and ADSB_2 baseline surveillance 

error. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑹𝒔 

[NM] 

𝒕𝒔𝒍 

[s] 

𝝈𝒓 

[NM] 

𝝈𝒂 

[ft] 

𝝈𝒈𝒔 

[knots] 

𝝈𝒗𝒔 

[ft/min] 

𝝈𝒕𝒓𝒌 

[deg] 

Same X 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq2_157 60 600 1500 1 0.0081 73.8 1 150 1 1 0.720 0.543 0.040 294 

sq2_158 15 600 1500 1 0.0081 73.8 1 150 1 1 0.719 0.543 0.006 353 

sq2_159 30 600 1500 1 0.0081 73.8 1 150 1 1 0.720 0.544 0.014 325 

sq2_160 120 600 1500 1 0.0081 73.8 1 150 1 1 0.721 0.545 0.118 261 

sq2_161 300 600 1500 1 0.0081 73.8 1 150 1 1 0.732 0.555 0.342 220 

sq2_162 60 60 1500 1 0.0081 73.8 1 150 1 1 0.299 0.151 0.151 31 

sq2_163 60 120 1500 1 0.0081 73.8 1 150 1 1 0.406 0.199 0.069 76 

sq2_164 60 300 1500 1 0.0081 73.8 1 150 1 1 0.587 0.362 0.046 181 

sq2_165 60 900 1500 1 0.0081 73.8 1 150 1 1 0.778 0.639 0.040 369 

sq2_166 60 1200 1500 1 0.0081 73.8 1 150 1 1 0.812 0.695 0.038 420 

sq2_167 60 600 20 1 0.0081 73.8 1 150 1 1 0.480 0.728 0.063 151 

sq2_168 60 600 40 1 0.0081 73.8 1 150 1 1 0.534 0.646 0.047 204 

sq2_169 60 600 80 1 0.0081 73.8 1 150 1 1 0.632 0.574 0.042 260 

sq2_170 60 600 100 1 0.0081 73.8 1 150 1 1 0.667 0.560 0.040 275 

sq2_171 60 600 200 1 0.0081 73.8 1 150 1 1 0.721 0.545 0.040 294 

sq2_172 60 600 300 1 0.0081 73.8 1 150 1 1 0.721 0.544 0.039 293 

sq2_173 60 600 500 1 0.0081 73.8 1 150 1 1 0.721 0.544 0.040 294 

sq2_174 60 600 1500 1 0.0081 73.8 1 150 1 1 0.721 0.544 0.040 294 

sq2_175 60 600 1500 2 0.0081 73.8 1 150 1 1 0.724 0.549 0.047 294 

sq2_176 60 600 1500 5 0.0081 73.8 1 150 1 1 0.736 0.567 0.075 296 

sq2_177 60 600 1500 10 0.0081 73.8 1 150 1 1 0.755 0.597 0.134 300 

sq2_178 60 600 1500 15 0.0081 73.8 1 150 1 1 0.774 0.628 0.190 301 

sq2_179 60 600 1500 1 0.001 73.8 1 150 1 1 0.721 0.544 0.041 294 

sq2_180 60 600 1500 1 0.01 73.8 1 150 1 1 0.721 0.543 0.042 295 

sq2_181 60 600 1500 1 0.1 73.8 1 150 1 1 0.722 0.546 0.042 293 

sq2_182 60 600 1500 1 0.5 73.8 1 150 1 1 0.728 0.555 0.045 293 

sq2_183 60 600 1500 1 0.0081 1 1 150 1 1 0.718 0.541 0.038 293 

sq2_184 60 600 1500 1 0.0081 10 1 150 1 1 0.718 0.541 0.038 293 

sq2_185 60 600 1500 1 0.0081 25 1 150 1 1 0.718 0.542 0.038 293 

sq2_186 60 600 1500 1 0.0081 50 1 150 1 1 0.719 0.542 0.040 294 

sq2_187 60 600 1500 1 0.0081 100 1 150 1 1 0.722 0.544 0.043 294 

sq2_188 60 600 1500 1 0.0081 150 1 150 1 1 0.727 0.547 0.045 295 

sq2_189 60 600 1500 1 0.0081 73.8 0.1 150 1 1 0.721 0.543 0.041 294 

sq2_190 60 600 1500 1 0.0081 73.8 1 150 1 1 0.721 0.544 0.042 295 

sq2_191 60 600 1500 1 0.0081 73.8 5 150 1 1 0.723 0.548 0.041 292 

sq2_192 60 600 1500 1 0.0081 73.8 10 150 1 1 0.728 0.555 0.040 291 

sq2_193 60 600 1500 1 0.0081 73.8 20 150 1 1 0.740 0.571 0.045 284 

sq2_194 60 600 1500 1 0.0081 73.8 50 150 1 1 0.778 0.625 0.054 263 

sq2_195 60 600 1500 1 0.0081 73.8 1 10 1 1 0.486 0.473 0.048 300 

sq2_196 60 600 1500 1 0.0081 73.8 1 25 1 1 0.551 0.474 0.045 302 

sq2_197 60 600 1500 1 0.0081 73.8 1 50 1 1 0.617 0.478 0.043 304 

sq2_198 60 600 1500 1 0.0081 73.8 1 100 1 1 0.684 0.510 0.040 299 

sq2_199 60 600 1500 1 0.0081 73.8 1 500 1 1 0.819 0.689 0.052 248 

sq2_200 60 600 1500 1 0.0081 73.8 1 1000 1 1 0.864 0.777 0.096 199 

sq2_201 60 600 1500 1 0.0081 73.8 1 150 0.1 1 0.717 0.538 0.041 295 

sq2_202 60 600 1500 1 0.0081 73.8 1 150 0.5 1 0.718 0.540 0.039 294 

sq2_203 60 600 1500 1 0.0081 73.8 1 150 1 1 0.721 0.545 0.041 294 

sq2_204 60 600 1500 1 0.0081 73.8 1 150 2 1 0.727 0.556 0.041 289 

sq2_205 60 600 1500 1 0.0081 73.8 1 150 5 1 0.750 0.601 0.046 272 

sq2_206 60 600 1500 1 0.0081 73.8 1 150 1 0.5 0.750 0.592 0.059 266 

sq2_207 60 600 1500 1 0.0081 73.8 1 150 1 2 0.706 0.517 0.029 311 

sq2_208 60 600 1500 1 0.0081 73.8 1 150 1 Inf. 0.693 0.482 0.018 340 
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Table 24.  Comparison sensitivity run data from circular scenarios and analysis method 2, with 

symmetric predictions, no baseline surveillance error and with ADSB_2 error (no surveillance lag). 

𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑹𝒔 

[NM] 

𝒕𝒔𝒍 

[s] 

𝝈𝒓 

[NM] 

𝝈𝒂 

[ft] 

𝝈𝒈𝒔 

[knots] 

𝝈𝒗𝒔 

[ft/min] 

𝝈𝒕𝒓𝒌 

[deg] 

Same X 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

60 60 500 0 0 0 0 0 0 1 0.052 0.061 0.062 31 

60 120 500 0 0 0 0 0 0 1 0.107 0.109 0.053 76 

60 300 500 0 0 0 0 0 0 1 0.260 0.229 0.044 157 

60 600 500 0 0 0 0 0 0 1 0.444 0.373 0.039 218 

60 900 500 0 0 0 0 0 0 1 0.560 0.469 0.037 245 

60 1200 500 0 0 0 0 0 0 1 0.638 0.534 0.037 258 

60 600 500 0 0 0 0 0 0 1 0.425 0.361 0.037 227 

60 600 500 1 0 0 0 0 0 1 0.430 0.365 0.041 228 

60 600 500 2 0 0 0 0 0 1 0.436 0.371 0.046 228 

60 600 500 5 0 0 0 0 0 1 0.450 0.385 0.056 228 

60 600 500 10 0 0 0 0 0 1 0.475 0.411 0.073 227 

60 600 500 15 0 0 0 0 0 1 0.499 0.437 0.089 226 

60 60 500 0 0.0081 73.8 1 150 1 1 0.148 0.074 0.077 31 

60 120 500 0 0.0081 73.8 1 150 1 1 0.226 0.117 0.045 75 

60 300 500 0 0.0081 73.8 1 150 1 1 0.376 0.258 0.025 159 

60 600 500 0 0.0081 73.8 1 150 1 1 0.528 0.440 0.019 226 

60 900 500 0 0.0081 73.8 1 150 1 1 0.608 0.545 0.019 256 

60 1200 500 0 0.0081 73.8 1 150 1 1 0.656 0.610 0.018 269 
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Table 25.  Surveillance quality run data with 10 different traffic scenarios, no surveillance error or 

ADSB_2 error, and symmetric and asymmetric predictions. 

Run Scenario Number 𝑺𝑸𝒎𝒐𝒅𝒆𝒍 Symmetric/  

Asymmetric 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq3_001 1 none symmetric 0.644 0.624 0.069 217 

sq3_002 2 none symmetric 0.645 0.620 0.068 217 

sq3_003 3 none symmetric 0.648 0.624 0.062 214 

sq3_004 4 none symmetric 0.641 0.623 0.068 216 

sq3_005 5 none symmetric 0.647 0.624 0.064 214 

sq3_006 6 none symmetric 0.645 0.625 0.066 214 

sq3_007 7 none symmetric 0.651 0.624 0.063 213 

sq3_008 8 none symmetric 0.644 0.619 0.069 218 

sq3_009 9 none symmetric 0.650 0.618 0.059 218 

sq3_010 10 none symmetric 0.648 0.625 0.066 213 

sq3_011 1 none asymmetric 0.450 0.457 0.043 302 

sq3_012 2 none asymmetric 0.448 0.454 0.041 299 

sq3_013 3 none asymmetric 0.450 0.456 0.039 298 

sq3_014 4 none asymmetric 0.446 0.457 0.039 299 

sq3_015 5 none asymmetric 0.446 0.456 0.040 297 

sq3_016 6 none asymmetric 0.448 0.456 0.041 299 

sq3_017 7 none asymmetric 0.453 0.454 0.038 299 

sq3_018 8 none asymmetric 0.449 0.454 0.039 299 

sq3_019 9 none asymmetric 0.453 0.451 0.035 300 

sq3_020 10 none asymmetric 0.451 0.458 0.039 297 

sq3_021 1 ADSB_2 symmetric 0.813 0.688 0.066 212 

sq3_022 2 ADSB_2 symmetric 0.814 0.685 0.070 215 

sq3_023 3 ADSB_2 symmetric 0.814 0.687 0.060 211 

sq3_024 4 ADSB_2 symmetric 0.810 0.686 0.070 214 

sq3_025 5 ADSB_2 symmetric 0.816 0.688 0.064 210 

sq3_026 6 ADSB_2 symmetric 0.814 0.687 0.067 211 

sq3_027 7 ADSB_2 symmetric 0.815 0.684 0.062 214 

sq3_028 8 ADSB_2 symmetric 0.813 0.683 0.072 215 

sq3_029 9 ADSB_2 symmetric 0.814 0.678 0.060 216 

sq3_030 10 ADSB_2 symmetric 0.815 0.687 0.061 210 

sq3_031 1 ADSB_2 asymmetric 0.718 0.544 0.042 300 

sq3_032 2 ADSB_2 asymmetric 0.719 0.542 0.040 297 

sq3_033 3 ADSB_2 asymmetric 0.720 0.544 0.040 295 

sq3_034 4 ADSB_2 asymmetric 0.717 0.544 0.038 296 

sq3_035 5 ADSB_2 asymmetric 0.721 0.545 0.039 294 

sq3_036 6 ADSB_2 asymmetric 0.719 0.544 0.041 295 

sq3_037 7 ADSB_2 asymmetric 0.723 0.544 0.038 296 

sq3_038 8 ADSB_2 asymmetric 0.719 0.542 0.039 295 

sq3_039 9 ADSB_2 asymmetric 0.721 0.539 0.035 298 

sq3_040 10 ADSB_2 asymmetric 0.723 0.546 0.041 295 
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Table 26.  Surveillance quality run data with the same scenario and 10 different random seeds, the 

ADSB_2 error model, and symmetric and asymmetric predictions. 

Run 𝑺𝑸𝒎𝒐𝒅𝒆𝒍 Symmetric/  

Asymmetric 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

sq3_061 ADSB_2 symmetric 0.816 0.688 0.066 209 

sq3_062 ADSB_2 symmetric 0.816 0.688 0.066 209 

sq3_063 ADSB_2 symmetric 0.816 0.688 0.066 209 

sq3_064 ADSB_2 symmetric 0.816 0.687 0.063 211 

sq3_065 ADSB_2 symmetric 0.815 0.686 0.068 212 

sq3_066 ADSB_2 symmetric 0.815 0.686 0.068 212 

sq3_067 ADSB_2 symmetric 0.816 0.688 0.064 210 

sq3_068 ADSB_2 symmetric 0.816 0.687 0.062 209 

sq3_069 ADSB_2 symmetric 0.816 0.688 0.062 210 

sq3_070 ADSB_2 symmetric 0.816 0.687 0.062 211 

sq3_071 ADSB_2 asymmetric 0.721 0.544 0.039 293 

sq3_072 ADSB_2 asymmetric 0.721 0.544 0.039 293 

sq3_073 ADSB_2 asymmetric 0.721 0.544 0.039 293 

sq3_074 ADSB_2 asymmetric 0.720 0.543 0.042 294 

sq3_075 ADSB_2 asymmetric 0.722 0.544 0.041 295 

sq3_076 ADSB_2 asymmetric 0.721 0.543 0.039 295 

sq3_077 ADSB_2 asymmetric 0.721 0.545 0.040 293 

sq3_078 ADSB_2 asymmetric 0.721 0.545 0.043 293 

sq3_079 ADSB_2 asymmetric 0.721 0.544 0.038 295 

sq3_080 ADSB_2 asymmetric 0.722 0.544 0.042 295 

 

Table 27.  CD performance metric variability to different scenario randomizations with no 

surveillance error and with the ADSB_2 error model, symmetric and asymmetric predictions. 

Case 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 [s] 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Std. 

Dev. 

None - Symmetric 0.646 0.00303 0.623 0.00262 0.065 0.00328 215 2.02 

None - Symmetric - 

Circular 0.434 0.00342 0.368 0.00232 0.039 0.00200 223 1.39 

None - Asymmetric 0.449 0.00269 0.455 0.00207 0.039 0.00209 299 1.45 

ADSB_2 - Symmetric 0.814 0.00154 0.685 0.00299 0.065 0.00459 213 2.15 

ADSB_2 - Asymmetric 0.720 0.00192 0.543 0.00190 0.039 0.00202 296 1.71 

 

Table 28.  CD performance metric variability to surveillance error model Monte Carlo sampling with 

the ADSB_2 error model, symmetric and asymmetric predictions. 

Case 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 [s] 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Std. 

Dev. 

ADSB_2 - Symmetric 0.816 0.00055 0.687 0.00090 0.065 0.00243 210 1.27 

ADSB_2 - Asymmetric 0.721 0.00052 0.544 0.00057 0.040 0.00140 294 0.83 
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Surveillance Quality Results Figures 
 

 

 

 
Figure 24. CD performance metrics as a function of the prediction and detection horizon for the 4 

surveillance models, using symmetric predictions and short surveillance range (50 NM). 

 
Figure 25. CD performance metrics as a function of the prediction and detection horizon for the 4 

surveillance models, using symmetric predictions and infinite surveillance range (1500 NM). 
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Figure 26. CD performance metrics as a function of the surveillance range parameter for the 4 

surveillance models, using symmetric predictions and short CD horizon (300 seconds). 

 
Figure 27. CD performance metrics as a function of the surveillance range parameter for the 4 

surveillance models, using symmetric predictions and long CD horizon (1200 seconds). 
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Figure 28. Difference in CD performance metrics between a CD cycle period of 15 seconds and a CD 

cycle period of 60 seconds over all SQ1 surveillance quality analysis runs. 

 
Figure 29. Difference in CD performance metrics between symmetric and asymmetric trajectory 

predictions over all SQ1 surveillance quality analysis runs with CD cycle period of 60 seconds. 
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Figure 30. CD performance metric sensitivities to CD cycle period with no surveillance error (None) 

and with the ADSB_2 surveillance error model. 

 
Figure 31. CD performance metric sensitivities to conflict detection and trajectory prediction time 

horizon with no surveillance error (None), with the ADSB_2 surveillance error model, from a circular 

scenario with no surveillance error (None – Circular), and from a circular scenario with ABDS_2 

surveillance error (ADSB_2 – Circular). 
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Figure 32. CD performance metric sensitivities to the surveillance range parameters with no 

surveillance error (None) and with the ADSB_2 surveillance error model. 

 
Figure 33. CD performance metric sensitivities to the surveillance lag time parameter with no 

surveillance error (None), with the ADSB_2 surveillance error model, and from a circular scenario with 

no surveillance error (None – Circular). 
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Figure 34. CD performance metric sensitivities to surveillance horizontal position error standard 

deviation with no other surveillance error (None) and with the ADSB_2 surveillance error model. 

 
Figure 35. CD performance metric sensitivities to surveillance vertical position error standard 

deviation with no other surveillance error (None) and with the ADSB_2 surveillance error model. 
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Figure 36. CD performance metric sensitivities to surveillance groundspeed error standard deviation 

with no other surveillance error (None) and with the ADSB_2 surveillance error model. 

 
Figure 37. CD performance metric sensitivities to surveillance vertical speed error standard deviation 

with no other surveillance error (None) and with the ADSB_2 surveillance error model. 
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Figure 38. CD performance metric sensitivities to surveillance track angle error standard deviation 

with no other surveillance error (None) and with the ADSB_2 surveillance error model. 

 
Figure 39. CD performance metric sensitivities to the conflict comparison criterion with no other 

surveillance error (None) and with the ADSB_2 surveillance error model. 
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B. Level and Quality of Intent Information Results and Discussion 
The results of the analysis runs for the level and quality of intent information test matrix 1 (IQ1) are 

listed in Table 29-Table 32.  Table 33 shows the results of some comparison runs performed using the 

circular scenarios and analysis method 2.  The figures associated with test matrix IQ1 are Figure 41-Figure 

45.  The intent information quality trends indicate that conflict detection performance is improved as the 

intent horizon approaches the trajectory prediction and conflict detection horizon.  This is expected because, 

for intent horizons shorter than the CD horizon, the trajectory predictions are less accurate due to the lack 

of complete intent information.  Comparing the results where the CD horizon is equal to the intent horizon 

(e.g., 𝑇𝑝𝑟𝑒𝑑 = 𝑇𝑖𝑛𝑡), CD performance is improved by a shorter detection horizon (e.g.,  

𝑇𝑝𝑟𝑒𝑑 = 300 s and 𝑇𝑖𝑛𝑡 = 300s) for the metrics of false alerts, missed alerts, and missed detections but there 

is a negative impact to the mean time-to-LOS metric. 

In general, conflict detection performance is improved as the quality of intent information is increased.  

Reduced false alerts, missed alerts, and missed detections and increased mean time-to-LOS are the trends 

observed as the intent quality increases from none (𝐼𝑄𝑉 = 0, 𝐼𝑄𝐻 = 0) to maximum information (𝐼𝑄𝑉 = 4, 

𝐼𝑄𝐻 = 4).  One exception to these trends are the cases where the vertical and horizontal intent information 

quality is of quality 1.  These cases show better CD performance compared to the cases where horizontal 

intent information quality is of quality 2.  This exception is likely due to the assumptions made in trajectory 

prediction for this analysis where, in absence of a turn radius and turn rate, the turn rate is assumed to be 

0.2 deg/s, based on observations of the recorded data, and the turn radius is computed using the average 

speed of the previous leg and this assumed turn rate.  CD performance is shown to be better when only the 

turn reference point is provided (𝐼𝑄𝐻 = 1) and reasonable values are assumed for the turn rate and turn 

radius as compared to the cases were a partially specified turn is provided (𝐼𝑄𝐻 = 2) and other turn 

parameters have to be assumed.  However, a fully specified turn geometry (𝐼𝑄𝐻 = 3) still produces better 

 
Figure 40. Difference in CD performance metrics between symmetric and asymmetric trajectory 

prediction over all SQ2 sensitivity runs (with no other surveillance error (None) and with the ADSB_2 

surveillance error model). 
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CD performance.  Notably, one example of a partially specified turn geometry is the definition proposed 

by the ADS-B DO-242 MASPS. 

The analysis runs conducted using analysis method 2 and shown in Figure 41-Figure 43 provide an 

upper bound on CD performance for false alerts, missed alerts and missed detections.  Because method 2 

uses perfect trajectory prediction, as the intent horizon approaches the trajectory prediction and conflict 

detection horizon, the false alert and missed alert probabilities approach zero.  The missed detection 

probabilities are always zero because, as long as there is some intent horizon larger than the conflict 

detection cycle period, there is always at least one CD cycle in which to correctly detect a LOS.  The mean 

time-to-LOS parameter, however, does not represent an upper limit on performance because of the random 

nature of the circular scenarios and the fact that some LOS were introduced into the scenarios with a time-

to-LOS that was less than the trajectory prediction and conflict detection horizon; the conflict detector never 

had the opportunity to detect those losses at the full detection horizon. 

The use of shorter conflict detection cycle period has a positive impact on CD performance, primarily 

by reducing the missed detection rate.  For all intent information qualities of 1-4, there was approximately 

a 40 percent reduction of the missed detection probabilities when using CD cycle period of 15 seconds 

versus 60 seconds and little or no change to the other metrics (Figure 44).  The shorter cycle period provides 

four times as many detection cycles over which to successfully detect a LOS. 

Similar to the surveillance analysis runs, conflict detection performance using asymmetric predictions 

(perfect prediction for aircraft 1 in a pair) versus symmetric prediction had a positive impact on CD 

performance for all metrics (Figure 45).  

The results of the analysis runs for the level and quality of intent information test matrix 2 (IQ2) are 

listed in Table 34 and Table 35.  Table 34 presents the results of the analysis runs for the variability due to 

different traffic scenarios; those results are summarized in Table 36.  The variability of the CD performance 

metrics due to different traffic scenarios is small with 0.33% or less of standard deviation in the false alert 

probability, 0.38% or less of standard deviation in the missed alert probability, 0.27% or less of standard 

deviation in the missed detection probability, and less than 7 seconds of standard deviation in the mean 

time-to-loss. 

Table 35 shows the results of the analysis runs for the sensitivity of the time and altitude interval for 

the intent information quality 4 horizontal and vertical points.  The associated figures are shown in Figure 

46 and Figure 47.  The sensitivities indicate that the choice of the time and altitude interval for the quality 

4 intent points can be chosen within a fairly wide range with only a small impact to the CD performance.  

The choice of time interval for the additional horizontal points is less critical than the choice of the altitude 

interval for the additional vertical points due to the flatter sensitivity profiles.  As expected, all of the intent 

information quality 4 analysis runs showed better CD performance when compared to the equivalent intent 

quality 3 runs.  

It can be noted that one problem with intent information in the form used in this study arises from 

considering the horizontal and vertical trajectory profiles to be, aside from the initial and end points, 

completely independent.  Because both horizontal and vertical intent points are indexed only by time, 

variations in groundspeed, especially in long segments between turns, can result in a vertical profile that is 

insufficiently synchronized with the horizontal profile to allow for accurate four-dimensional conflict 

detection.  This can have the apparent effect of introducing along-track errors, which can be emphasized 

from a detection standpoint for predicted climb and descent segments.  Intent information quality 4 tends 

to mitigate this by introducing additional points that allow for localized speed corrections in the absence of 

speed intent information. 
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Level and Quality of Intent Results Tables 
 

 

Table 29.  Intent quality run data with symmetric predictions and 60 second CD cycle period. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑻𝒊𝒏𝒕 

[s] 

𝑰𝑸𝑽 𝑰𝑸𝑯 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

iq1_001 60 1200 1200 4 4 0.037 0.053 0.029 882 

iq1_002 60 1200 1200 3 3 0.086 0.109 0.037 871 

iq1_003 60 1200 1200 2 2 0.280 0.220 0.067 854 

iq1_004 60 1200 1200 1 2 0.308 0.253 0.070 849 

iq1_005 60 1200 1200 1 1 0.172 0.195 0.056 851 

iq1_006 60 1200 600 4 4 0.191 0.282 0.020 672 

iq1_007 60 1200 600 3 3 0.214 0.309 0.027 665 

iq1_008 60 1200 600 2 2 0.395 0.395 0.046 635 

iq1_009 60 1200 600 1 2 0.405 0.406 0.046 633 

iq1_010 60 1200 600 1 1 0.262 0.353 0.040 655 

iq1_011 60 1200 300 4 4 0.386 0.486 0.018 484 

iq1_012 60 1200 300 3 3 0.393 0.499 0.023 476 

iq1_013 60 1200 300 2 2 0.529 0.558 0.034 440 

iq1_014 60 1200 300 1 2 0.531 0.559 0.030 438 

iq1_015 60 1200 300 1 1 0.414 0.517 0.027 467 

iq1_016 60 600 600 4 4 0.038 0.053 0.026 500 

iq1_017 60 600 600 3 3 0.072 0.095 0.033 496 

iq1_018 60 600 600 2 2 0.251 0.184 0.057 489 

iq1_019 60 600 600 1 2 0.264 0.202 0.058 489 

iq1_020 60 600 600 1 1 0.133 0.156 0.047 490 

iq1_021 60 600 300 4 4 0.206 0.241 0.018 399 

iq1_022 60 600 300 3 3 0.220 0.261 0.023 395 

iq1_023 60 600 300 2 2 0.393 0.335 0.034 374 

iq1_024 60 600 300 1 2 0.388 0.338 0.031 371 

iq1_025 60 600 300 1 1 0.250 0.290 0.028 387 

iq1_026 60 300 300 4 4 0.036 0.051 0.025 253 

iq1_027 60 300 300 3 3 0.054 0.080 0.031 252 

iq1_028 60 300 300 2 2 0.218 0.136 0.050 250 

iq1_029 60 300 300 1 2 0.213 0.136 0.044 250 

iq1_030 60 300 300 1 1 0.083 0.107 0.038 251 

iq1_031 60 1200 1200 0 0 0.559 0.710 0.122 301 

iq1_032 60 600 600 0 0 0.410 0.590 0.122 232 

iq1_033 60 300 300 0 0 0.269 0.440 0.123 157 
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Table 30.  Intent quality run data with symmetric predictions and 15 second CD cycle period. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑻𝒊𝒏𝒕 

[s] 

𝑰𝑸𝑽 𝑰𝑸𝑯 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

iq1_034 15 1200 1200 4 4 0.037 0.053 0.016 889 

iq1_035 15 1200 1200 3 3 0.086 0.110 0.021 880 

iq1_036 15 1200 1200 2 2 0.280 0.220 0.040 859 

iq1_037 15 1200 1200 1 2 0.308 0.253 0.039 851 

iq1_038 15 1200 1200 1 1 0.173 0.195 0.030 855 

iq1_039 15 1200 600 4 4 0.191 0.282 0.011 691 

iq1_040 15 1200 600 3 3 0.215 0.310 0.016 681 

iq1_041 15 1200 600 2 2 0.395 0.395 0.027 651 

iq1_042 15 1200 600 1 2 0.405 0.406 0.026 648 

iq1_043 15 1200 600 1 1 0.261 0.353 0.023 670 

iq1_044 15 1200 300 4 4 0.386 0.486 0.010 511 

iq1_045 15 1200 300 3 3 0.393 0.499 0.012 499 

iq1_046 15 1200 300 2 2 0.530 0.558 0.018 462 

iq1_047 15 1200 300 1 2 0.531 0.559 0.019 463 

iq1_048 15 1200 300 1 1 0.414 0.517 0.017 492 

iq1_049 15 600 600 4 4 0.038 0.052 0.014 514 

iq1_050 15 600 600 3 3 0.072 0.095 0.018 512 

iq1_051 15 600 600 2 2 0.251 0.184 0.033 505 

iq1_052 15 600 600 1 2 0.263 0.201 0.030 505 

iq1_053 15 600 600 1 1 0.133 0.155 0.025 506 

iq1_054 15 600 300 4 4 0.207 0.241 0.010 421 

iq1_055 15 600 300 3 3 0.221 0.261 0.012 415 

iq1_056 15 600 300 2 2 0.395 0.335 0.018 395 

iq1_057 15 600 300 1 2 0.389 0.337 0.019 394 

iq1_058 15 600 300 1 1 0.250 0.290 0.017 408 

iq1_059 15 300 300 4 4 0.036 0.051 0.013 272 

iq1_060 15 300 300 3 3 0.055 0.080 0.015 271 

iq1_061 15 300 300 2 2 0.219 0.137 0.026 269 

iq1_062 15 300 300 1 2 0.213 0.136 0.023 271 

iq1_063 15 300 300 1 1 0.083 0.106 0.019 271 

iq1_064 15 1200 1200 0 0 0.553 0.709 0.020 300 

iq1_065 15 600 600 0 0 0.402 0.588 0.020 232 

iq1_066 15 300 300 0 0 0.261 0.437 0.020 163 

 



 

54 

Table 31.  Intent quality run data with asymmetric predictions and 60 second CD cycle period. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑻𝒊𝒏𝒕 

[s] 

𝑰𝑸𝑽 𝑰𝑸𝑯 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

iq1_067 60 1200 1200 4 4 0.024 0.031 0.017 886 

iq1_068 60 1200 1200 3 3 0.065 0.075 0.022 878 

iq1_069 60 1200 1200 2 2 0.219 0.169 0.050 864 

iq1_070 60 1200 1200 1 2 0.243 0.192 0.051 859 

iq1_071 60 1200 1200 1 1 0.130 0.137 0.038 865 

iq1_072 60 1200 600 4 4 0.133 0.199 0.011 737 

iq1_073 60 1200 600 3 3 0.154 0.221 0.016 730 

iq1_074 60 1200 600 2 2 0.295 0.295 0.033 703 

iq1_075 60 1200 600 1 2 0.307 0.304 0.032 701 

iq1_076 60 1200 600 1 1 0.192 0.255 0.027 723 

iq1_077 60 1200 300 4 4 0.269 0.364 0.010 589 

iq1_078 60 1200 300 3 3 0.278 0.374 0.013 581 

iq1_079 60 1200 300 2 2 0.393 0.430 0.022 548 

iq1_080 60 1200 300 1 2 0.397 0.432 0.018 546 

iq1_081 60 1200 300 1 1 0.296 0.391 0.015 574 

iq1_082 60 600 600 4 4 0.024 0.031 0.015 502 

iq1_083 60 600 600 3 3 0.051 0.060 0.020 500 

iq1_084 60 600 600 2 2 0.186 0.131 0.041 494 

iq1_085 60 600 600 1 2 0.201 0.144 0.040 494 

iq1_086 60 600 600 1 1 0.101 0.106 0.032 495 

iq1_087 60 600 300 4 4 0.133 0.157 0.010 436 

iq1_088 60 600 300 3 3 0.146 0.171 0.013 433 

iq1_089 60 600 300 2 2 0.276 0.232 0.022 416 

iq1_090 60 600 300 1 2 0.277 0.234 0.018 414 

iq1_091 60 600 300 1 1 0.172 0.195 0.015 426 

iq1_092 60 300 300 4 4 0.023 0.030 0.014 255 

iq1_093 60 300 300 3 3 0.038 0.050 0.018 254 

iq1_094 60 300 300 2 2 0.154 0.092 0.032 252 

iq1_095 60 300 300 1 2 0.154 0.091 0.028 252 

iq1_096 60 300 300 1 1 0.062 0.069 0.022 253 

iq1_097 60 1200 1200 0 0 0.405 0.540 0.062 453 

iq1_098 60 600 600 0 0 0.294 0.410 0.062 318 

iq1_099 60 300 300 0 0 0.204 0.282 0.064 193 
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Table 32.  Intent quality run data with asymmetric predictions and 15 second CD cycle period. 

Run 𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑻𝒊𝒏𝒕 

[s] 

𝑰𝑸𝑽 𝑰𝑸𝑯 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

iq1_100 15 1200 1200 4 4 0.024 0.031 0.008 894 

iq1_101 15 1200 1200 3 3 0.065 0.075 0.011 887 

iq1_102 15 1200 1200 2 2 0.219 0.168 0.029 871 

iq1_103 15 1200 1200 1 2 0.243 0.192 0.029 867 

iq1_104 15 1200 1200 1 1 0.130 0.137 0.021 873 

iq1_105 15 1200 600 4 4 0.133 0.200 0.006 753 

iq1_106 15 1200 600 3 3 0.154 0.221 0.008 744 

iq1_107 15 1200 600 2 2 0.295 0.295 0.019 716 

iq1_108 15 1200 600 1 2 0.307 0.304 0.020 717 

iq1_109 15 1200 600 1 1 0.193 0.256 0.016 740 

iq1_110 15 1200 300 4 4 0.270 0.365 0.005 613 

iq1_111 15 1200 300 3 3 0.278 0.375 0.006 602 

iq1_112 15 1200 300 2 2 0.394 0.430 0.012 567 

iq1_113 15 1200 300 1 2 0.397 0.432 0.011 569 

iq1_114 15 1200 300 1 1 0.296 0.391 0.009 599 

iq1_115 15 600 600 4 4 0.024 0.031 0.007 517 

iq1_116 15 600 600 3 3 0.051 0.060 0.009 515 

iq1_117 15 600 600 2 2 0.187 0.130 0.023 510 

iq1_118 15 600 600 1 2 0.201 0.144 0.022 510 

iq1_119 15 600 600 1 1 0.101 0.106 0.018 511 

iq1_120 15 600 300 4 4 0.134 0.157 0.005 456 

iq1_121 15 600 300 3 3 0.147 0.171 0.007 452 

iq1_122 15 600 300 2 2 0.278 0.232 0.012 435 

iq1_123 15 600 300 1 2 0.277 0.234 0.011 435 

iq1_124 15 600 300 1 1 0.172 0.195 0.009 447 

iq1_125 15 300 300 4 4 0.023 0.029 0.007 274 

iq1_126 15 300 300 3 3 0.039 0.049 0.008 273 

iq1_127 15 300 300 2 2 0.154 0.091 0.017 271 

iq1_128 15 300 300 1 2 0.154 0.091 0.014 272 

iq1_129 15 300 300 1 1 0.062 0.068 0.010 273 

iq1_130 15 1200 1200 0 0 0.402 0.539 0.012 457 

iq1_131 15 600 600 0 0 0.291 0.408 0.012 325 

iq1_132 15 300 300 0 0 0.200 0.280 0.012 205 
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Table 33.  Comparison level of intent run data using circular method 2 with symmetric predictions, 60 

second CD cycle period, and 3 CD horizons. 

𝑻𝒅𝒆𝒕 

[s] 

𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑻𝒊𝒏𝒕 

[s] 

𝑰𝑸𝑽 𝑰𝑸𝑯 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

60 300 60 3 3 0.160 0.158 0.000 167 

60 300 120 3 3 0.086 0.098 0.000 180 

60 300 300 3 3 0.002 0.000 0.000 202 

60 300 600 3 3 0.003 0.000 0.000 202 

60 300 900 3 3 0.003 0.000 0.000 202 

60 300 1200 3 3 0.003 0.000 0.000 202 

60 600 60 3 3 0.354 0.323 0.000 228 

60 600 120 3 3 0.270 0.269 0.000 244 

60 600 300 3 3 0.097 0.121 0.000 293 

60 600 600 3 3 0.003 0.000 0.000 335 

60 600 900 3 3 0.003 0.000 0.000 335 

60 600 1200 3 3 0.004 0.000 0.000 335 

60 1200 60 3 3 0.569 0.493 0.000 266 

60 1200 120 3 3 0.500 0.451 0.000 284 

60 1200 300 3 3 0.318 0.328 0.000 341 

60 1200 600 3 3 0.135 0.163 0.000 422 

60 1200 900 3 3 0.038 0.050 0.000 479 

60 1200 1200 3 3 0.002 0.000 0.000 505 
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Table 34.  Intent quality run data with 10 different traffic scenarios, 3 intent horizons, and symmetric and 

asymmetric predictions. 

Run Scenario Number 𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑻𝒊𝒏𝒕 

[s] 

Symmetric/ 

Asymmetric 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

iq2_001 1 1200 1200 symmetric 0.087 0.111 0.034 894 

iq2_002 2 1200 1200 symmetric 0.081 0.111 0.038 879 

iq2_003 3 1200 1200 symmetric 0.085 0.102 0.031 876 

iq2_004 4 1200 1200 symmetric 0.087 0.115 0.033 881 

iq2_005 5 1200 1200 symmetric 0.086 0.109 0.037 871 

iq2_006 6 1200 1200 symmetric 0.089 0.106 0.034 879 

iq2_007 7 1200 1200 symmetric 0.088 0.104 0.031 879 

iq2_008 8 1200 1200 symmetric 0.084 0.110 0.034 880 

iq2_009 9 1200 1200 symmetric 0.086 0.108 0.032 874 

iq2_010 10 1200 1200 symmetric 0.092 0.107 0.030 881 

iq2_011 1 1200 600 symmetric 0.216 0.314 0.026 675 

iq2_012 2 1200 600 symmetric 0.217 0.312 0.028 666 

iq2_013 3 1200 600 symmetric 0.217 0.309 0.024 664 

iq2_014 4 1200 600 symmetric 0.214 0.312 0.023 669 

iq2_015 5 1200 600 symmetric 0.214 0.309 0.027 665 

iq2_016 6 1200 600 symmetric 0.218 0.310 0.023 666 

iq2_017 7 1200 600 symmetric 0.218 0.307 0.023 666 

iq2_018 8 1200 600 symmetric 0.214 0.309 0.022 669 

iq2_019 9 1200 600 symmetric 0.219 0.306 0.021 669 

iq2_020 10 1200 600 symmetric 0.219 0.310 0.021 668 

iq2_021 1 1200 300 symmetric 0.394 0.503 0.022 481 

iq2_022 2 1200 300 symmetric 0.397 0.500 0.021 476 

iq2_023 3 1200 300 symmetric 0.400 0.500 0.019 474 

iq2_024 4 1200 300 symmetric 0.392 0.499 0.019 479 

iq2_025 5 1200 300 symmetric 0.393 0.499 0.023 476 

iq2_026 6 1200 300 symmetric 0.396 0.500 0.019 475 

iq2_027 7 1200 300 symmetric 0.398 0.498 0.019 476 

iq2_028 8 1200 300 symmetric 0.393 0.497 0.020 478 

iq2_029 9 1200 300 symmetric 0.401 0.492 0.019 482 

iq2_030 10 1200 300 symmetric 0.397 0.499 0.017 476 

iq2_031 1 1200 1200 asymmetric 0.068 0.076 0.021 900 

iq2_032 2 1200 1200 asymmetric 0.061 0.074 0.022 883 

iq2_033 3 1200 1200 asymmetric 0.064 0.069 0.020 884 

iq2_034 4 1200 1200 asymmetric 0.067 0.075 0.020 888 

iq2_035 5 1200 1200 asymmetric 0.065 0.075 0.022 878 

iq2_036 6 1200 1200 asymmetric 0.066 0.068 0.020 887 

iq2_037 7 1200 1200 asymmetric 0.065 0.070 0.020 885 

iq2_038 8 1200 1200 asymmetric 0.062 0.075 0.020 883 

iq2_039 9 1200 1200 asymmetric 0.063 0.071 0.020 881 

iq2_040 10 1200 1200 asymmetric 0.068 0.071 0.018 889 

iq2_041 1 1200 600 asymmetric 0.157 0.224 0.016 743 

iq2_042 2 1200 600 asymmetric 0.156 0.222 0.017 732 

iq2_043 3 1200 600 asymmetric 0.157 0.219 0.015 731 

iq2_044 4 1200 600 asymmetric 0.155 0.222 0.014 737 

iq2_045 5 1200 600 asymmetric 0.154 0.221 0.016 730 

iq2_046 6 1200 600 asymmetric 0.157 0.218 0.015 735 

iq2_047 7 1200 600 asymmetric 0.158 0.218 0.014 734 

iq2_048 8 1200 600 asymmetric 0.156 0.222 0.013 732 

iq2_049 9 1200 600 asymmetric 0.158 0.217 0.013 734 

iq2_050 10 1200 600 asymmetric 0.159 0.222 0.012 735 

iq2_051 1 1200 300 asymmetric 0.281 0.379 0.013 591 

iq2_052 2 1200 300 asymmetric 0.282 0.376 0.013 584 

iq2_053 3 1200 300 asymmetric 0.284 0.375 0.012 582 

iq2_054 4 1200 300 asymmetric 0.280 0.376 0.011 587 

iq2_055 5 1200 300 asymmetric 0.278 0.374 0.013 581 

iq2_056 6 1200 300 asymmetric 0.281 0.374 0.012 585 

iq2_057 7 1200 300 asymmetric 0.285 0.372 0.012 586 

iq2_058 8 1200 300 asymmetric 0.282 0.376 0.011 583 

iq2_059 9 1200 300 asymmetric 0.286 0.369 0.011 588 

iq2_060 10 1200 300 asymmetric 0.284 0.377 0.010 584 

 



 

58 

 

Table 35.  Intent quality 4 time and altitude interval parameter sensitivity runs with symmetric and 

asymmetric trajectory predictions. 

Run 𝑻𝒑𝒓𝒆𝒅 

[s] 

𝑻𝒊𝒏𝒕 

[s] 

Symmetric/ 

Asymmetric 

∆𝒕𝑸𝟒 ∆𝒂𝒍𝒕𝑸𝟒 𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 

[s] 

iq2_061 600 600 symmetric 15 1000 0.037 0.049 0.025 501 

iq2_062 600 600 symmetric 30 1000 0.037 0.050 0.026 500 

iq2_063 600 600 symmetric 45 1000 0.037 0.050 0.026 500 

iq2_064 600 600 symmetric 60 1000 0.038 0.051 0.026 500 

iq2_065 600 600 symmetric 75 1000 0.038 0.051 0.026 500 

iq2_066 600 600 symmetric 90 1000 0.038 0.052 0.026 500 

iq2_067 600 600 symmetric 120 1000 0.038 0.053 0.026 500 

iq2_068 600 600 symmetric 180 1000 0.039 0.054 0.027 500 

iq2_069 600 600 symmetric 300 1000 0.044 0.058 0.028 500 

iq2_070 600 600 symmetric 120 100 0.037 0.047 0.022 500 

iq2_071 600 600 symmetric 120 200 0.037 0.047 0.023 500 

iq2_072 600 600 symmetric 120 300 0.037 0.048 0.024 500 

iq2_073 600 600 symmetric 120 400 0.037 0.049 0.024 500 

iq2_074 600 600 symmetric 120 500 0.037 0.050 0.025 500 

iq2_075 600 600 symmetric 120 750 0.038 0.050 0.025 500 

iq2_076 600 600 symmetric 120 1000 0.038 0.053 0.026 500 

iq2_077 600 600 symmetric 120 2000 0.040 0.059 0.028 500 

iq2_078 600 600 symmetric 120 5000 0.047 0.068 0.030 498 

iq2_079 600 600 asymmetric 15 1000 0.023 0.028 0.014 503 

iq2_080 600 600 asymmetric 30 1000 0.023 0.029 0.014 503 

iq2_081 600 600 asymmetric 45 1000 0.023 0.029 0.015 502 

iq2_082 600 600 asymmetric 60 1000 0.024 0.029 0.015 503 

iq2_083 600 600 asymmetric 75 1000 0.024 0.030 0.015 502 

iq2_084 600 600 asymmetric 90 1000 0.024 0.030 0.015 502 

iq2_085 600 600 asymmetric 120 1000 0.024 0.031 0.015 502 

iq2_086 600 600 asymmetric 180 1000 0.025 0.032 0.015 502 

iq2_087 600 600 asymmetric 300 1000 0.029 0.035 0.016 502 

iq2_088 600 600 asymmetric 120 100 0.023 0.027 0.013 502 

iq2_089 600 600 asymmetric 120 200 0.023 0.027 0.013 502 

iq2_090 600 600 asymmetric 120 300 0.023 0.028 0.013 502 

iq2_091 600 600 asymmetric 120 400 0.023 0.028 0.013 502 

iq2_092 600 600 asymmetric 120 500 0.023 0.029 0.014 502 

iq2_093 600 600 asymmetric 120 750 0.024 0.029 0.014 502 

iq2_094 600 600 asymmetric 120 1000 0.024 0.031 0.015 502 

iq2_095 600 600 asymmetric 120 2000 0.026 0.035 0.016 502 

iq2_096 600 600 asymmetric 120 5000 0.030 0.041 0.017 501 
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Level and Quality of Intent Information Results Figures 
 

 

Table 36.  CD performance metric variability to different scenario randomizations with 1200s CD 

horizon, horizontal and vertical intent quality levels of 3, and 3 intent horizons – symmetric and 

asymmetric predictions. 

Case 

𝑷𝑭𝑨 𝑷𝑴𝑨 𝑷𝑴𝑫 ∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏 [s] 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Std. 

Dev. 

1200 s Intent Horizon - 

Symmetric 0.086 0.00284 0.108 0.00376 0.033 0.00261 879 6.12 

1200 s Intent Horizon - 

Asymmetric 0.065 0.00245 0.072 0.00285 0.020 0.00109 886 5.89 

600 s Intent Horizon - 

Symmetric 0.217 0.00205 0.310 0.00245 0.024 0.00226 668 3.21 

600 s Intent Horizon - 

Asymmetric 0.157 0.00153 0.221 0.00234 0.014 0.00142 734 3.74 

300 s Intent Horizon - 

Symmetric 0.396 0.00322 0.499 0.00287 0.020 0.00163 477 2.61 

300 s Intent Horizon - 

Asymmetric 0.282 0.00246 0.375 0.00277 0.012 0.00106 585 2.86 

 

 
Figure 41. CD performance metrics versus intent horizon for various intent quality levels, with long CD 

and trajectory prediction horizon (1200 s), symmetric predictions, and 60 second CD cycle period. 
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Figure 42. CD performance metrics versus intent horizon for various intent quality levels, with medium 

CD and trajectory prediction horizon (600 s), symmetric predictions, and 60 second CD cycle period. 

 
Figure 43. CD performance metrics versus intent horizon for various intent quality levels, with short CD 

and trajectory prediction horizon (300 s), symmetric predictions, and 60 second CD cycle period. 
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Figure 44. Difference in CD performance metrics between a CD cycle period of 15 seconds and a CD cycle 

period of 60 seconds over all IQ1 intent quality analysis runs. 

 
Figure 45. Difference in CD performance metrics between symmetric and asymmetric trajectory 

predictions over all IQ1 intent quality analysis runs with CD cycle period of 60 seconds. 
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Figure 46. CD performance metrics sensitivity to the time interval for intent quality 4 horizontal points 

with vertical quality 4 altitude interval of 1000 ft. 

 
Figure 47. CD performance metrics sensitivity to the altitude interval for intent quality 4 vertical points 

with horizontal quality 4 time interval of 120 seconds. 
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Appendix 

A.1. Surveillance Error Modeling 
The surveillance error model consisted of standard deviation parameters for a set of Gaussian 

distributions relating to the level of error on the position and velocity states of an aircraft.  Each surveillance 

technology has its own unique error signature and the choice of Gaussian distributions was chosen for 

convenience as the simple compromise amongst the many possible error distributions.   

A fixed surveillance lag parameter, 𝑡𝑠𝑙, was applied equally over all aircraft tracks to simulate the un-

compensated time delay that may exist between surveillance sampling time and the time of trajectory 

prediction.  At any conflict detection cycle time, 𝑡𝑐𝑑, the true track position states of an aircraft were given 

by 𝒔(𝑡𝑐𝑑), where, 

and the velocity states were given by 𝒗(𝑡𝑐𝑑), where, 

Linear interpolation was used to compute a true track data point at the surveillance time when the 

surveillance lag time was not an integer increment of the recorded track data.  During the same conflict 

detection cycle, the surveillance position estimate used for trajectory prediction, �̂�(𝑡𝑐𝑑), was given by the 

true position at surveillance time, 𝒔(𝑡𝑠) = 𝒔(𝑡𝑐𝑑 − 𝑡𝑠𝑙), plus the surveillance error components in position 

and velocity, 𝜺𝑠 and 𝜺𝑣, respectively.  The surveillance error components were computed using equations 

(15)-(19) as, 

 [𝜀𝑙𝑎𝑡(𝑡𝑠), 𝜀𝑙𝑜𝑛(𝑡𝑠)] = 𝒇𝐺𝐶𝐷(𝑙𝑎𝑡(𝑡𝑠), 𝑙𝑜𝑛(𝑡𝑠), 𝑁(0, 𝜎𝑟), 𝑈(0,360)) − [𝑙𝑎𝑡(𝑡𝑠), 𝑙𝑜𝑛(𝑡𝑠)] (15) 

 𝜀𝑎𝑙𝑡(𝑡𝑠) = 𝑁(0, 𝜎𝑎) (16) 

 𝜀𝑔𝑠(𝑡𝑠) = 𝑁(0, 𝜎𝑔𝑠) (17) 

 

 𝜀𝑣𝑠(𝑡𝑠) = 𝑁(0, 𝜎𝑣𝑠) (18) 

 𝜀𝑡𝑟𝑘(𝑡𝑠) = 𝑁(0, 𝜎𝑡𝑟𝑘) (19) 

where the horizontal position error components, 𝜀𝑙𝑎𝑡(𝑡𝑠) and 𝜀𝑙𝑜𝑛(𝑡𝑠), were computed using a great-circle 

projection from the true position at surveillance time, 𝑙𝑎𝑡(𝑡𝑠) and 𝑙𝑜𝑛(𝑡𝑠), with a radial distance error 

sampled from a Gaussian distribution, 𝑁(0, 𝜎𝑟), and an azimuth sampled from a Uniform distribution, 

𝑈(0,360).  The great-circle projection function, 𝒇𝐺𝐶𝐷, computes a latitude and longitude position projected 

some arc-distance along an initial track on the surface of a sphere from a starting latitude and longitude 

position.  Finally, the surveillance position and velocity states used at conflict detection time were given 

by: 

 �̂�(𝑡𝑐𝑑) = [𝑙𝑎𝑡(𝑡𝑠) + 𝜀𝑙𝑎𝑡(𝑡𝑠), 𝑙𝑜𝑛(𝑡𝑠) + 𝜀𝑙𝑜𝑛(𝑡𝑠), 𝑎𝑙𝑡(𝑡𝑠) + 𝜀𝑎𝑙𝑡(𝑡𝑠)] (20) 

 

 �̂�(𝑡𝑐𝑑) = [𝑔𝑠(𝑡𝑠) + 𝜀𝑔𝑠(𝑡𝑠), 𝑣𝑠(𝑡𝑠) + 𝜀𝑣𝑠(𝑡𝑠), 𝑡𝑟𝑘(𝑡𝑠) + 𝜀𝑡𝑟𝑘(𝑡𝑠)] (21) 

Figure 2 shows a diagram of the surveillance error modeling described above.   

 𝒔(𝑡) = [𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡] (13) 

 𝒗(𝑡) = [𝑔𝑠, 𝑣𝑠, 𝑡𝑟𝑘] (14) 
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A.2. Some Metrics Issues Associated with Intent 
In measuring the performance of an intent-based conflict detector, the problem of deciding whether a 

specific detected conflict matches a true LOS is more complicated than with a state-based conflict detector.  

There are several reasons for this complication.  The first reason is that, an intent-based conflict detector 

can return a prediction of more than one future losses-of-separation (multiple detected conflicts with the 

same aircraft pair within the conflict detection horizon).  The second reason is that, there may be several 

true LOS between a pair of aircraft and a smaller number of predicted LOS.  The question arises: which 

predicted LOS correspond to which true LOS, if any? 

Figure 48 illustrates the case where a single loss-of-separation exists but where the intent-based conflict 

detector predicts multiple conflicts.  In this figure, the x-axis represents time and the transition up represents 

an entry into LOS while a transition down is an exit from LOS, with both the true and predicted cases shown 

for the same time horizon.  It is clear that, at least in some sense, the prediction is incorrect.  The times do 

not match exactly and the prediction goes in and out of loss several times.  But in an abstract sense it is 

really pretty close.  An assumption in our metrics is to analyze each predicted loss separately since each 

LOS is characterized by the entry time into that LOS.  In the example below there would be 3 detections 

and, after applying the same conflict comparison criterion, any number of those could be could be identified 

as correct alerts.  Consequently, the remaining conflicts in a group like this would be labeled as false alerts 

because they would fail to meet the same conflict comparison criterion.  For example, the first two predicted 

losses could be considered correct alerts to the true LOS if they both satisfy the same conflict comparison 

criterion whereas, the last predicted conflict does not satisfy the same conflict comparison criterion and is 

labeled as a false alert. 

 
Figure 49 illustrates the case where multiple losses of separation exist but the intent-based conflict 

detector predicts only a single conflict.  A similar application of the same conflict comparison criteria is 

used to categorize the predicted and true LOS here.  Each predicted LOS is compared sequentially against 

each true LOS and multiple true LOS could be considered “the same” as a single predicted LOS.  In this 

example, one possibility is that the first true LOS meets the same conflict comparison criterion with respect 

to the predicted LOS whereas, the second true LOS does not.  In this case, the second true LOS would be 

label as a missed alert and the predicted LOS would be labeled as a correct alert.  Another possibility is that 

neither true LOS meets the same conflict comparison criterion with respect to the predicted LOS.  In that 

case, both true LOS would be labeled as missed alerts and the predicted LOS would be labeled a false alert. 

There are many possible and complicated approaches that one could use to try and group the multiple 

predicted or multiple true LOS together but those were not pursued in this study. 

 
Figure 48. Example single true LOS and multiple predicted LOS. 
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Figure 49. Example multiple true LOS and single predicted LOS. 
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